
Math 241 Fall 2010 Final Exam Solutions THIS IS A ROUGH DRAFT; IF YOU FIND AN
ERROR, TELL ME SO THAT I CAN FIX IT FOR YOUR CLASSMATES! aross@math.umd.edu

1. There are lots of ways that we could complete this problem, but the fastest is a 3-step process:

i) Find a normal vector, n = ai + bj + ck

ii) Find a base point (x0, y0, z0)

iii) Plug into the standard “point-slope”-style formula a(x− x0) + b(y − y0) + c(z − z0) = 0

To find n, we’ll cross two vectors in the plane. We have lots of choices, but two example vectors
in the plane are (1 − 3)i + (1 − (−1))j + (0 − (−2))k which points from the first point to the
second point, and (0− 3)i + (1− (−1))j + (2− (−2))k which points from the first point to the
third point. Simplifying and crossing, we get

(−2i + 2j + 2k)× (−3i + 2j + 4k) = 4i + 2j + 2k.

Taking the second point as our base point (arbitrarily), we have

4(x− 1) + 2(y − 1) + 2(z − 0) = 0

which in “slope-intercept”-style looks like 2x+ y + z = 3 (either form is fine, or any equation

which is equivalent to these).

2. (a) If we start with the unit circle centered at the origin and stretch it out to be twice as wide
and thrice as tall, we have the given ellipse. Thus a quick-and-dirty parametrization in
stretched polar coordinates is

r(t) = 2 cos(t)i + 3 sin(t)j

defined on the interval 0 ≤ t < 2π, for example. This is by no means a unique solution.

(b) We have
v(t) = r′(t) = −2 sin(t)i + 3 cos(t)j and

a(t) = r′′(t) = v′(t) = −2 cos(t)i− 3 sin(t)j

so that

κ(t) =
‖v × a‖
‖v‖3

=
‖(6 sin2(t) + 6 cos2(t))k‖√

(4 sin2(t) + 9 cos2(t)
3 =

6

(4 + 5 cos2(t))3/2
.

(c) The fraction above is at its maximum when cos2(t) is as small as possible, that is when

cos2(t) = 0 i.e. t = (2n+1)π
2 for integers n. Conversely, the fraction is at its minimum when

the denominator is as big as possible, that is when cos2(t) = 1, i.e. t = nπ for integers n.
These maximal and minimal values are

κ
(π

2

)
=

6

43/2
=

3

4
and κ (0) =

6

93/2
=

2

9

respectively. To determine where they are attained, we look at the position function r. The

maximum occurs at r(π/2) (the top intercept, (0, 3) ) and at r(3π/2) (the bottom intercept,

(0,−3) ). The minimum occurs at r(0) (the right intercept, (2, 0) ) and at r(π) (the left

intercept, (−2, 0) ). This makes sense; since the ellipse is taller than it is wide, it has to

curve (bend; turn; change direction) more sharply at its top and bottom than on its sides.
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3. Since we can’t evaluate this integral directly, let’s change the order of integration (we’ll go
vertically simple). Our region is a right triangle. Its bottom edge is the line y = 0, and its top
edge is the line y = x. The range of x values is [0, 1]. Hence we can compute

1∫
0

x∫
0

ex
2
dydx =

1∫
0

xex
2
dx =

1∫
0

1

2
eudu =

1

2
(e1 − e0) =

e− 1

2

where we have made the substitution u = x2 with du = 2xdx.

4. Recall that the surface area of a surface Σ is exactly
∫∫
Σ

1dS. If Σ is the portion of the sphere

x2 + y2 + z2 = 16 on which x2 + y2 ≤ 1, then we can either parameterize Σ in cylindrical or
spherical coordinates quite easily. The fact that we have a sphere segment suggests spherical
coordinates, but our constraint suggests cylindrical; in general, the constrain will win out, so
we’ll use cylindrical here. First though, note that Σ has two separate components (call the
northern polar cap ΣN and the southern one ΣS) which are mirror images; in particular they
have the same surface area. Thus to get the total surface area of Σ, we can just double the
surface area of one or the other (we’ll work with ΣN ).

Now let’s look at our cylindrical coordinates. Our equation becomes r2 + z2 = 16 so that we
have z = ±

√
16− r2 (since we’ve picked the top, z = +

√
16− r2). So ΣN is parameterized by

r(r, θ) = r cos(θ)i + r sin(θ)j +
√

16− r2 k

on the domain R where 0 ≤ r ≤ 1 and 0 ≤ θ < 2π. The first partials of r are

rr(r, θ) = cos(θ)i + sin(θ)j +
−r√

16− r2
k

rθ(r, θ) = −r sin(θ)i + r cos(θ)j + 0k

with cross product

(rr × rθ)(r, θ) =
r2 cos(θ)√

16− r2
i +

r2 sin(θ)√
16− r2

j + (r cos2(θ) + r sin2(θ))k.

This cross product has magnitude

‖rr × rθ‖ =

√
r4 cos2(θ)

16− r2
+
r4 sin2(θ)

16− r2
+ r2

=

√
r4

16− r2
+

16r2 − r4

16− r2

=

√
16r2

16− r2

= 4r(16− r2)−1/2



Thus we have ∫∫
Σ

1dS = 2

∫∫
ΣN

1dS

= 2

∫∫
R

1‖rr × rθ‖dA

= 2

2π∫
0

1∫
0

4r(16− r2)−1/2 drdθ

= 2

2π∫
0

15∫
16

−2u−1/2 dudθ

= 2

2π∫
0

4(
√

16−
√

15)dθ

= 16π(4−
√

15)

where u = 16− r2 so that du = −2rdr.

5. We can use the divergence theorem to convert this flux integral to a triple integral over the
interior solid D. We have∫∫∫

D

∇ · F dV =

∫∫∫
D

(y − 1 + 1) dV

=

1∫
0

1−y2∫
0

1+x∫
0

y dzdxdy

=

1∫
0

1−y2∫
0

y(1 + x) dxdy

=

1∫
0

y

(
1− y2 +

(1− y2)2

2

)
dy

=
1

2

1∫
0

(3y − 4y3 + y5) dy

=
1

2

(
3

2
− 4

4
+

1

6

)
=

1

3
.



6. (a) First, let’s check that both surfaces pass through the point (0, 2, 2). We have

2 = 4(0)2 + (2)2 − 2

and
2 = (0)2 + 4(2)− 6

so that checks out. Now recall that the gradient of a function is normal to its level sets.
Let’s take a function like

g1(x, y, z) = 4x2 + y2 − z
which has our first surface as one of its level sets (although it is not the only such function).
Its gradient is

∇g1(x, y, z) = 8xi + 2yj− 1k

and so the vector
∇g1(0, 2, 2) = 0i + 4j− 1k

is normal to the first surface at the desired point. Thus it is also normal to the tangent
plane there.

Similarly for the second surface, take

g2(x, y, z) = x2 + 4y − z
so that

∇g2(x, y, z) = 2xi + 4j− 1k

and so the vector
∇g2(0, 2, 2) = 0i + 4j− 1k

is normal to the second surface at the desired point (thus is also normal to that tangent
plane).

Now our two tangent planes share both a point (that is, (0, 2, 2)) and a normal vector, and
hence are the same plane. Note that it would have sufficed for these normal vectors to be
parallel (that is, for one to be a scalar multiple of the other) but it happened to work out
that they were exactly the same since we picked nice g1 and g2.

(b) We wish to investigate the tangent planes of our surface, so just as above, we take

g(x, y, z) = x3 + y − z2

so that
∇g(x, y, z) = 3x2i + 1j− 2zk

is normal to our surface, as long as we are subject to the constraint x3 + y − z2 = 10 (or,
rearranging, y = 10−x3 +z2). We would like this vector to be parallel to the normal vectors
of the given plane, for example to n = 27i + 1j− 8k. Thus let

∇g(x, y, z) = λn

for some λ 6= 0, subject to the constraint y = 10− x3 + z2. The vector equation expands to

3x2 = λ27(1)

1 = λ1(2)

−2z = λ(−8)(3)

and, from (2), we see that λ = 1. using that to simplify (1) and (3) we obtain x = ±3 and
z = 4. Now plugging these values into the constraint, we obtain two solution points,

(3,−1, 4) and (−3, 53, 4) .



7. We have
fx =

y

2
√

1 + x
+
√

1 + y

and
fy =

√
1 + x+

x

2
√

1 + y

which are both continuous for all (x, y) in the domain. Thus the only critical points will be those
where both first partials are simultaneously 0, i.e. solutions to the system

0 =
y

2
√

1 + x
+
√

1 + y

0 =
√

1 + x+
x

2
√

1 + y
or, rearranging,

y = −2
√

1 + x
√

1 + y

x = −2
√

1 + x
√

1 + y

so that first of all x = y. Back-substituting,

x = −2(1 + x)

and so
x = −2/3,

thus our only critical point is

(
−2

3
,−2

3

)
. We compute the various second derivatives:

fxx =
−y

4(1 + x)3/2

fyy =
−x

4(1 + y)3/2

fxy = fyx =
1

2
√

1 + x
+

1

2
√

1 + y
and evaluate them at the critical point:

fxx

(
−2

3
,
−2

3

)
=

2/3

4(1/3)3/2
=
√

3/2

fyy

(
−2

3
,
−2

3

)
=

2/3

4(1/3)3/2
=
√

3/2

fxy

(
−2

3
,
−2

3

)
= fyx

(
−2

3
,
−2

3

)
=

1

2
√

1/3
+

1

2
√

1/3
=
√

3

so that our discriminant is

D

(
−2

3
,
−2

3

)
=

√
3

2

√
3

2
− (
√

3)2 =
−9

4
< 0

and hence this is a saddle point .



8. (a) We have ∇ × F = (0 − 0)i + (0 − 0)j + (2y − 2y)k = 0, and F is defined everywhere since
polynomial in each component. So it is conservative.

(b) This integral is path-independent (by part (a)) so we can use the FTOLI. First let’s find the
potential function. If ∇f = F, then we have

fx = x2 + y2

fy = 2xy

fz = 3z

so that, integrating the first equation, f = x3

3 + xy2 + g(y, z) and so

fy = 0 + 2xy + gy(y, z).

Hence gy = 0. So g is just a function of z, say h(z). Thus

f =
x3

3
+ xy2 + h(z)

and
fz = 0 + 0 + h′(z)

so h′(z) = 3z. Thus h(z) = 3z2

2 and so

f =
x3

3
+ xy2 +

3z2

2
.

Now we may apply the FTOLI:∫
C

F · dr = f(2, 2, 0)− f(−2,−2, 0)

=

(
8

3
+ 8 + 0

)
−
(
−8

3
− 8 + 0

)
=

64

3
.


