Uniform Final Examination

Monday, 12/15/08

Instructions: Number the answer sheets from 1 to 8. Fill out <u>all</u> the information on the top of <u>each</u> sheet. Answer problem n on page n, n = 1, ..., 8. <u>Do not</u> answer one problem on more than one sheet. If you need more space use the back of the correct sheet. Please write out and sign the **Honor Pledge** on page 1 only.

SHOW ALL WORK

You May Not Use Calculators, Notes, Or Any Other Form Of Assistance On This Exam

- 1. (a) (10 pts) Let $\mathbf{a} = \mathbf{i} + 2\mathbf{j} 2\mathbf{k}$ and $\mathbf{b} = 2\mathbf{i} + 3\mathbf{j} 5\mathbf{k}$. Find the projection of \mathbf{b} onto \mathbf{a} . (b)(10 pts) Find the symmetric equations for the line that passes through the point (1,0,2) and is perpendicular to the plane 3x + y = 7.
- 2. The trajectory of a particle is given by

$$\mathbf{r}(t) = (\sin 2t) \mathbf{i} + (\cos 2t) \mathbf{j} + \frac{2}{3} t^{3/2} \mathbf{k}$$
 for $t \ge 0$.

- (a) (10 pts) Find the velocity and speed of this particle.
- (b) (10 pts) Find the total distance L traveled by the particle for $0 \le t \le 5$.
- 3. Consider the curve C parametrized by

$$\mathbf{r}(t) = (t^2 + 2)\mathbf{i} + (3t - 3)\mathbf{j} + (t^2 - 6t)\mathbf{k}.$$

- (a) (5 pts) Show that the point P = (3, -6, 7) lies on C.
- (b) (10 pts) Find an equation of the line through P in the direction of the tangent to C at P.
- 4. (10 pts each) Consider the function $f(x, y, z) = xye^z$.
 - (a) Find the gradient of f.
 - (b) Compute the directional derivative $D_{\mathbf{u}}f$ at the point (1, 1, 0), where \mathbf{u} is the unit vector in the direction $\mathbf{i} \mathbf{j} + 2\mathbf{k}$.
 - (c) Find a point on the level surface f(x, y, z) = 1 where the tangent plane is parallel to the plane x + y + 2z = 3.

EXAM CONTINUES ON THE OTHER SIDE

- 5. Consider the function $f(x,y) = x^2y 2xy + 2y^2 15y$.
 - (a) (15 pts) Find all the critical points of f.
 - (b) (10 pts) Use the second partials test to classify the critical points found in (5a) above as relative maxima, relative minima, or saddle points.
- 6. (25 pts) Compute the double integral

$$I = \iint_R y \ dA \ ,$$

where R is the region of the first quadrant that is bounded above by the circle $x^2 + y^2 = 1$ and below by the parabola $y = 1 - x^2$.

7. (15 pts each) Consider the vector field

$$\mathbf{F} = 2xyz\,\mathbf{i} + zx^2\,\mathbf{j} + (x^2y + 1)\,\mathbf{k} \ .$$

- (a) Is it possible to write $\mathbf{F} = \text{grad} f$ for some function f? EXPLAIN. If the answer is yes, find this function f.
- (b) Compute the line integral

$$\int_C \mathbf{F} \cdot d\mathbf{r} \ ,$$

where C is the curve parametrized by

$$\mathbf{r}(t) = \cos(\pi t^3) \,\mathbf{i} + t^{5/3} \,\mathbf{j} + \frac{2t}{1+t^2} \,\mathbf{k} \;, \qquad 0 \le t \le 1 \;.$$

- 8. Consider the solid region D that lies above the xy-plane and is bounded above by the sphere $x^2+y^2+z^2=4$, below by the sphere $x^2+y^2+z^2=1$ and on the sides by the cone $3z^2=x^2+y^2$.
 - (a) (20 pts) Compute the triple integral

$$\iiint\limits_{D}(x^2+y^2+z^2)\,dV.$$

(b) (15 pts) Compute the flux integral

$$\iint\limits_{\Sigma} \mathbf{F} \cdot \mathbf{n} \ dS \ ,$$

where **F** is the vector field $\mathbf{F} = x^3 \mathbf{i} + y^3 \mathbf{j} + z^3 \mathbf{k}$, Σ is the boundary of region D and \mathbf{n} is the unit outward normal vector on Σ . **Hint:** You might find part (8a) helpful.

END OF EXAM - GOOD LUCK!