Math 241 Sections 01** Exam 1 Solutions

1. Given the following data:

$$
\begin{aligned}
& P=(1,2,3) \\
& Q=(4,10,2) \\
& \bar{a}=1 \hat{\imath}+2 \hat{\jmath}-2 \hat{k} \\
& \bar{b}=-3 \hat{\imath}+2 \hat{\jmath}+1 \hat{k}
\end{aligned}
$$

(a) Find a vector perpendicular to both $\overrightarrow{P Q}$ and \bar{a}.

Solution: We have $\overrightarrow{P Q}=3 \hat{\imath}+8 \hat{\jmath}-1 \hat{k}$ so a vector perpendicular to both would be $\overrightarrow{P Q} \times \bar{a}=$ $-14 \hat{\imath}+5 \hat{\jmath}-2 \hat{k}$.
(b) Find the projection of \bar{b} onto \bar{a}.

Solution: We have

$$
\operatorname{Pr}_{\bar{a}} \bar{b}=\frac{\bar{a} \cdot \bar{b}}{\bar{a} \cdot \bar{a}} \bar{a}=\frac{-2}{9}(1 \hat{\imath}+2 \hat{\jmath}-2 \hat{k})
$$

(c) Find the unit vector in the direction of $\overrightarrow{P Q}$.

Solution: The answer is

$$
\frac{\overrightarrow{P Q}}{\|\overrightarrow{P Q}\|}=\frac{3 \hat{\imath}+8 \hat{\jmath}-1 \hat{k}}{\sqrt{3^{2}+8^{2}+(-1)^{2}}}=\frac{3 \hat{\imath}+8 \hat{\jmath}-1 \hat{k}}{\sqrt{74}}
$$

2. (a) Find the distance between the point $(3,2,1)$ and the plane $2 x-3 y+10 z=20$. Simplify.

Solution: The normal vector for the plane is $\bar{N}=2 \hat{\imath}-3 \hat{\jmath}+10 \hat{k}$ and a point on the plane is $P=(10,0,0)$. We have $Q=(3,2,1)$ off the plane. The distance is then

$$
\begin{aligned}
\operatorname{dist} & =\frac{|\overrightarrow{P Q} \cdot \bar{N}|}{\|\bar{N}\|} \\
& =\frac{|(-7 \hat{\imath}+2 \hat{\jmath}+1 \hat{k}) \cdot(2 \hat{\imath}-3 \hat{\jmath}+10 \hat{k})|}{\sqrt{2^{2}+(-3)^{2}+10^{2}}} \\
& =\frac{|-14-6+10|}{\sqrt{113}} \\
& =\frac{10}{\sqrt{113}}
\end{aligned}
$$

(b) Find the symmetric equation for the line through the points $(2,-1,4)$ and $(0,1,4)$.

Solution: The line (one version) has $x=2-2 t, y=-1+2 t$ and $z=4$. If we solve for t in the first two and set equal we get

$$
\frac{x-2}{-2}=\frac{y+1}{2}, z=4
$$

3. (a) Find the point where the line through $(0,2,1)$ and $(3,4,5)$ passes through the plane $z=0$. Solution: The line has parametric equation $x=3 t, y=2+2 t$ and $z=1+4 t$. This hits the plane when $1+4 t=0$ or $t=-\frac{1}{4}$ hence at $x=3(-1 / 4), y=2+2(-1 / 4)$ and $z=0$.
(b) Sketch the VVF $\bar{r}(t)=2 t \hat{\imath}+(2-4 t) \hat{\jmath}+t \hat{k}$ for $0 \leq t \leq 2$. Indicate direction.

Solution: This is a straight line from $\bar{r}(0)=0 \hat{\imath}+2 \hat{\jmath}+0 \hat{k}$ to $\bar{r}(2)=4 \hat{\imath}-6 \hat{\jmath}+2 \hat{k}$. More or less like this:

(c) Give a parametrization of the oriented semi-ellipse shown here.

Solution: We have $\bar{r}(t)=-2 \cos t \hat{\imath}+4 \sin t \hat{\jmath}$ with $0 \leq t \leq \pi$.
4. (a) Assuming a and b are positive constants calculate the curvature of the ellipse
$\bar{r}(t)=a \cos t \hat{\imath}+b \sin t \hat{\jmath}$ at $t=\frac{\pi}{2}$.
Solution:
We have $\bar{v}=-a \sin t \hat{\imath}+b \cos t \hat{\jmath}$ and $\bar{a}=-a \cos t-b \sin t$. Then $\bar{v} \times \bar{a}=a b \hat{k}$ and so the curvature is $\kappa=\frac{\|\bar{v} \times \bar{a}\|}{\|\bar{v}\|^{3}}=\frac{a b}{\left(a^{2} \sin ^{2} t+b^{2} \cos ^{2} t\right)^{3 / 2}}$ hence at $t=\frac{\pi}{2}$ we have $\kappa=\frac{a b}{a^{3}}=\frac{b}{a^{2}}$
(b) Calculate the length of the curve $\bar{r}(t)=2 t \hat{\imath}+t^{2} \hat{\jmath}+\ln t \hat{k}$ for $1 \leq t \leq 2$. Simplify.

Solution: We have $\bar{r}^{\prime}(t)=2 \hat{\imath}+2 t \hat{\jmath}+\frac{1}{t} \hat{k}$ and so

$$
\begin{aligned}
\text { Length } & =\int_{1}^{2}\left\|\bar{r}^{\prime}(t)\right\| d t \\
& =\int_{1}^{2} \sqrt{4+4 t^{2}+\frac{1}{t^{2}}} d t \\
& =\int_{1}^{2} \sqrt{\left(2 t+\frac{1}{t}\right)^{2}} d t \\
& =\int_{1}^{2} 2 t+\frac{1}{t} d t \\
& =t^{2}+\left.\ln |t|\right|_{1} ^{2} \\
& =(4+\ln 4)-(1+\ln 1) \\
& =3+\ln 4
\end{aligned}
$$

5. (a) Find the position vector satisfying $\bar{a}(t)=2 \hat{\imath}+2 \hat{\jmath}, \bar{v}(0)=1 \hat{\imath}-2 \hat{\jmath}$ and $\bar{r}(1)=3 \hat{\imath}+5 \hat{\jmath}$.
[13 pts]
Solution: First:

$$
\begin{aligned}
& \bar{a}(t)=2 \hat{\imath}+2 \hat{\jmath} \\
& \bar{v}(t)=\int 2 \hat{\imath}+2 \hat{\jmath} d t \\
& \bar{v}(t)=2 t \hat{\imath}+2 t \hat{\jmath}+\bar{C}
\end{aligned}
$$

Then $\bar{v}(0)=0 \hat{\imath}+0 \hat{\jmath}+\bar{C}=1 \hat{\imath}-2 \hat{\jmath}$ so $\bar{C}=1 \hat{\imath}-2 \hat{\jmath}$ and so $\bar{v}(t)=(2 t+1) \hat{\imath}+(2 t-2) \hat{\jmath}$. Then

$$
\begin{aligned}
& \bar{v}(t)=(2 t+1) \hat{\imath}+(2 t-2) \hat{\jmath} \\
& \bar{r}(t)=\int(2 t+1) \hat{\imath}+(2 t-2) \hat{\jmath} d t \\
& \bar{r}(t)=\left(t^{2}+t\right) \hat{\imath}+\left(t^{2}-2 t\right) \hat{\jmath}+\bar{D}
\end{aligned}
$$

Then $\bar{r}(1)=2 \hat{\imath}-1 \hat{\jmath}+\bar{D}=3 \hat{\imath}+5 \hat{\jmath}$ so $\bar{D}=1 \hat{\imath}+6 \hat{\jmath}$ and so $\bar{r}(t)=\left(t^{2}+t+1\right) \hat{\imath}+\left(t^{2}-2 t+6\right) \hat{k}$.
(b) Sketch the plane $x+2 y+3 z=12$. Label the three intercepts with their coordinates.

Solution: We have:

