Math 241 Exam 2 Sample 3 Solutions

1. (a) We have $\bar{u}=\frac{1}{\sqrt{2}} \hat{\imath}-\frac{1}{\sqrt{2}} \hat{\jmath}$ and so

$$
\begin{aligned}
D_{\bar{u}} h & =\frac{1}{\sqrt{2}}(6 x)-\frac{1}{\sqrt{2}} 3 x^{2} \\
D_{\bar{u}} h(1,1) & =\frac{1}{\sqrt{2}}(6)-\frac{1}{\sqrt{2}} 3
\end{aligned}
$$

(b) We rewrite the plane as a level surface for a function of three variables and then take the gradient:

$$
\begin{aligned}
f(x, y) & =x^{2}+y^{2} \\
z & =x^{2}+y^{2} \\
0 & =x^{2}+y^{2}-z \\
g(x, y, z) & =x^{2}+y^{2}-z \\
\nabla g(x, y, z) & =2 x \hat{\imath}+2 y \hat{\jmath}-\hat{k} \\
\nabla g(2,1,5) & =4 \hat{\imath}+2 \hat{\jmath}-\hat{k}
\end{aligned}
$$

We use this vector as the normal vector and the point $(2,1,5)$ to give the equation of the plane

$$
4(x-2)+2(y-1)-1(z-5)=0
$$

The point $(1,0,-1)$ is on this plane because

$$
4(1-2)+2(0-1)-(-1-5)=0
$$

2. (a) We know $A=\frac{1}{2} b h$. The chain rule tells us

$$
\frac{d A}{d t}=\frac{\partial A}{\partial b} \frac{d b}{d t}+\frac{\partial A}{\partial h} \frac{d h}{d t}=\frac{1}{2} h(2)+\frac{1}{2} b(3)
$$

and so at $b=10$ and $h=20$ we have

$$
\frac{d A}{d t}=\frac{1}{2}(20)(2)+\frac{1}{2}(10)(3)
$$

(b) We find $D(x, y)=(2 y-4)(-2)-(2 x)^{2}$ and then test the points:
$D(0,0)=(-4)(-2)=+$ so then $f_{x x}(0,0)=-4$ so $(0,0)$ is a relative maximum.
$D(2,2)=(0)(-2)-16=-$ so $(2,2)$ is a saddle point.
$D(-2,2)=(0)(-2)-16=-$ so $(-2,2)$ is a saddle point.
3. (a) We have

(b) We have

(c) $x^{2}+y^{2}=9$
(d) $z=1+x^{2}+y^{2}$
4. First we find $f_{x}(x, y)=2(x-1)=0$ when $x=1$ and $f_{y}(x, y)=2 y=0$ when $y=0$ and the point $(1,0)$ is in the region so then $f(1,0)=0$.

On the boundary:

- For the circular part $y^{2}=4-x^{2}$ so $f=(x-1)^{2}+\left(4-x^{2}\right)=x^{2}-2 x+1+4-x^{2}=$ $-2 x+5$ for $0 \leq x \leq 2$ which attains a maximum of 5 (when $x=0$) and a minimum of 1 (when $x=2$).
- On the left vertical part $x=0$ so $f=(0-1)^{2}+y^{2}=y^{2}+1$ for $-2 \leq y \leq 2$ which attains a maximum of 5 (when $y= \pm 2$) and a minimum of 1 (when $y=0$).

Thus the maximum is 5 and the minimum is 0 .
5. The constraint is the level curve for $g(x, y)=x^{2}+y^{2}$ and so we have the system:

$$
\begin{aligned}
y+2 & =\lambda(2 x) \\
x & =\lambda(2 y) \\
x^{2}+y^{2} & =4
\end{aligned}
$$

Label these (a), (b) and (c).

Then (b) tells us $\lambda=\frac{x}{2 y}$ or $y=0$.
If $y=0$ then (b) tells us $x=0$ but (c) tells us $x= \pm 2$ which contradicts itself so $y \neq 0$.
If $\lambda=\frac{x}{2 y}$ then into (a) gives us $y+2=\left(\frac{x}{2 y}\right)(2 x)$ so that $x^{2}=y(y+2)$ which goes into (c) to give us

$$
\begin{aligned}
y(y+2)+y^{2} & =4 \\
2 y^{2}+2 y-4 & =0 \\
2(y+2)(y-1) & =0
\end{aligned}
$$

So that $y=-2$ or $y=1$. If $y=-2$ then (c) tells us $x=0$ giving us $(0,-2)$ and if $y=1$ then (c) tells us $x= \pm \sqrt{3}$ giving us $(\pm \sqrt{3}, 1)$.

Then:
$f(0,-2)=0$
$f(\sqrt{3}, 1)=3 \sqrt{3}$
$f(-\sqrt{3}, 1)=-3 \sqrt{3}$
So the maximum is $3 \sqrt{3}$ and the minimum is $-3 \sqrt{3}$.

