## Math 241 Exam 2 Sample 4 Solutions

1. Define $f(x, y)=x^{2}+6 x y-2 y^{3}$.
(a) We use $\bar{u}=\frac{1}{\sqrt{2}} \hat{\imath}-\frac{1}{\sqrt{2}} j$ and we have $f_{x}(x, y)=2 x+6 y$ and $f_{y}(x, y)=6 x-6 y^{2}$ and so

$$
D_{\bar{u}}(2,2)=\frac{1}{\sqrt{2}}(2(2)+6(2))-\frac{1}{\sqrt{2}}\left(6(2)-6(2)^{2}\right)
$$

(b) We have

$$
\begin{aligned}
2 x+6 y & =0 \\
6 x-6 y^{2} & =0
\end{aligned}
$$

The first gives $x=-3 y$ which we plug into the second to get $-18 y-6 y^{2}=0$ or $-6 y(3+y)=0$ which gives $y=-3$ or $y=0$.

If $y=-3$ we have $x=-3(-3)=9$ yielding $(9,-3)$.

If $y=0$ we have $x=-3(0)=0$ yielding $(0,0)$.
(c) We have $f_{x x}(x, y)=2, f_{y y}(x, y)=-12 y$ and $f_{x y}(x, y)=6$ so that

$$
D(x, y)=(2)(-12 y)-(6)^{2}
$$

Then:

For $(9,-3)$ we have $D(9,-3)=(2)(36)-36=+$ so $f_{x x}(9,-3)=+$ and it's a relative min.

For $(0,0)$ we have $D(0,0)=(2)(0)-36$ and it's a saddle point.
2. (a) Our function tree is:

and so

$$
\begin{aligned}
\frac{\partial z}{\partial t} & =\frac{\partial z}{\partial x} \frac{\partial x}{\partial t}+\frac{\partial z}{\partial y} \frac{\partial y}{\partial t} \\
& =(2 x y+1)(1)+\left(x^{2}\right)(\sin s) \\
& =2(2 s+t)(t \sin s)+1+(2 s+t)^{2} \sin s
\end{aligned}
$$

(b) The surface is the level surface for $z=x^{2} y+y^{2}$ or $f(x, y, z)=x^{2} y+y^{2}-z$ so we find

$$
\begin{aligned}
& \nabla f(x, y, z)=2 x y \hat{\imath}+\left(x^{2}+2 y\right) \hat{\jmath}-\hat{k} \\
& \nabla f(1,2,6)=4 \hat{\imath}+5 \hat{\jmath}-\hat{k}
\end{aligned}
$$

So $\bar{N}=4 \hat{\imath}+4 \hat{\jmath}-\hat{k}$ and using the point $(1,2,6)$ we have

$$
4(x-1)+4(y-2)-1(z-6)=0
$$

3. (a) The figure is:

(b) The figure is:

(c) The equation is $(x-2)^{2}+y^{2}+z^{2}=4$.
(d) The equation is $z=4-x^{2}-y^{2}$.
4. We first find the critical points and set equal to zero:

$$
\begin{aligned}
& f_{x}(x, y)=y+2 x=0 \\
& f_{y}(x, y)=x=0
\end{aligned}
$$

This yields the single point $(0,0)$ and $f(0,0)=0$.

On the bottom edge $y=0$ so $f=x^{2}$.
The minimum is 0 at $(0,0)$ and the maximum is 4 at $(2,0)$.

On the right edge $x=2$ so $f=2 y+4$.
The minimum is 4 at $(2,0)$ and the maximum is 8 at $(2,2)$.

On the diagonal edge $y=x$ so $f=2 x^{2}$.
The minimum is 0 at $(0,0)$ and the maximum is 8 at $(2,2)$.

Overall the minimum is 0 and the maximum is 8 .
5. We have $f(x, y)=x y+2 y$ and $g(x, y)=x^{2}+y^{2}$. Our three equations are then:

$$
\begin{aligned}
y & =\lambda(2 x) \\
x+2 & =\lambda(2 y) \\
x^{2}+y^{2} & =4
\end{aligned}
$$

Call these (A), (B) and (C). Then from (A) we have $x=0$ or $\lambda=\frac{y}{2 x}$. We can't have $x=0$ because $(A)$ would give $y=0$ and together these contradict (C).

So $\lambda=\frac{y}{2 x}$ and then plugging into (B) yields

$$
\begin{aligned}
x+2 & =\frac{y}{2 x}(2 y) \\
x+2 & =\frac{y^{2}}{x} \\
x^{2}+2 x & =y^{2}
\end{aligned}
$$

Put this into (C) to get

$$
\begin{array}{r}
x^{2}+x^{2}+2 x=4 \\
x^{2}+x-2=0 \\
(x-1)(x+2)=0
\end{array}
$$

which gives us $x=1$ or $x=-2$.

If $x=-2$ then (C) gives us $y=0$ for the point $(-2,0)$
If $x=1$ then (C) gives us points $(1, \sqrt{3})$ and $(1,-\sqrt{3})$.

Then check these points:
$f(-2,0)=0$
$f(1, \sqrt{3})=3 \sqrt{3} \quad$ This is the max!
$f(1,-\sqrt{3})=-3 \sqrt{3} \quad$ This is the min!

