Math 241 Sections 01** Exam 2 Solutions

1. (a) Use the gradient to find a vector perpendicular to the graph of the curve $y = x^3 + x - 2$ at [10 pts] the point where x = 2.

Solution: We write $f(x, y) = x^3 + x - 2 - y$ so then $\nabla f = (3x^2 + 1)\hat{i} - \hat{j}$. When x = 2 we have y = 8 and so $\nabla f(2, 8) = 13\hat{i} - \hat{j}$.

(b) Suppose the base of a triangle is growing at 2 inches per hour while the height is growing [10 pts] at 3 inches per hour. At what rate is the area growing when the height is 10 inches and the base is 20 inches?

Solution: We have

$$\begin{split} A &= \frac{1}{2}bh \\ \frac{dA}{dt} &= \frac{\partial A}{\partial b}\frac{\partial b}{\partial t} + \frac{\partial A}{\partial h}\frac{\partial h}{\partial t} \\ &= \frac{1}{2}h(2) + \frac{1}{2}b(3) \\ \frac{dA}{dt} \bigg|_{h=10, b=20} &= \frac{1}{2}(10)(2) + \frac{1}{2}(20)(2) \end{split}$$

2. (a) Sketch the graph of the surface $y^2 = x^2 + z^2$. Write the name. [5 pts]

Solution: The graph is a double-cone:

Solution: We have $\bar{u} = \frac{2}{\sqrt{5}} \hat{i} + \frac{1}{\sqrt{5}} \hat{j}$. We have $f_x = y^2 \cos(xy)$ and $f_y = \sin(xy) + xy \cos(xy)$. Then

$$D_{\bar{u}}f(x,y) = \frac{2}{\sqrt{5}} \left(y^2 \cos(xy)\right) + \frac{1}{\sqrt{5}} \left(\sin(xy) + xy \cos(xy)\right)$$
$$D_{\bar{u}}f\left(\frac{\pi}{8}, 2\right) = \frac{2}{\sqrt{5}} \left(2^2 \cos\left(\frac{\pi}{8}2\right)\right) + \frac{1}{\sqrt{5}} \left(\sin\left(\frac{\pi}{8}2\right) + \frac{\pi}{8}2 \cos\left(\frac{\pi}{8}2\right)\right)$$
$$= \frac{2}{\sqrt{5}} \left(4\frac{\sqrt{2}}{2}\right) + \frac{1}{\sqrt{5}} \left(\frac{\sqrt{2}}{2} + \frac{\pi}{8}2\frac{\sqrt{2}}{2}\right)$$

[5 pts]

3. (a) All together on one graph sketch the level curves for f(x, y) = y - |x| at c = -2, 0, 2 and [5 pts] label each with its value of c.

Solution: The functions are:

$$y - |x| = 2y = |x| + 2$$

$$y - |x| = 0y = |x|$$

$$- |x| = -2y = |x| - 2$$

y

(b) Suppose the unit vector \bar{u} makes an angle of $\beta 0^{\circ}$ with the gradient of a function f at (1,2) [5 pts] and $||\nabla f(1,2)|| = 3$. Find $D_{\bar{u}}f(1,2)$.

Solution: We have:

$$D_{\bar{u}}f(1,2) = \bar{u} \cdot \nabla f(1,2)$$

= $||\bar{u}|| ||\nabla f(1,2)|| \cos(30^{\circ})$
= $(1)(3)\left(\frac{\sqrt{3}}{2}\right)$

(c) The function $f(x, y) = x^2y - 2x^2 - y^2$ has the following:

$$f_{xx}(x,y) = 2y - 4$$
 $f_{yy}(x,y) = -2$ $f_{xy}(x,y) = 2x$

There are three critical points at (0,0), (2,2) and (-2,2). Categorize each critical point as a relative maximum, relative minimum or saddle point.

Solution: We find $D(x, y) = (2y - 4)(-2) - (2x)^2$ and then test the points: D(0,0) = (-4)(-2) = + so then $f_{xx}(0,0) = -4$ so (0,0) is a relative maximum. D(2,2) = (0)(-2) - 16 = - so (2,2) is a saddle point. D(-2,2) = (0)(-2) - 16 = - so (-2,2) is a saddle point. [10 pts]

4. Find the maximum and minimum values of $f(x, y) = x^2 + 2y^2$ on the quarter circle $x^2 + y^2 \le 4$ [20 pts] with $x, y \ge 0$.

Solution: First we check the critical points. We have $f_x = 2x$ and $f_y = 4y$. When these equal zero we have (0,0) and f(0,0) = 0.

Then we check the edge:

Left side: Here x = 0 so $f = 2y^2$ with $0 \le y \le 2$ which has a minimum of 0 and a maximum of 8. Bottom side: Here y = 0 so $f = x^2$ with $0 \le x \le 2$ which has a minimum of 0 and a maximum of 4.

Round side: Here $y^2 = 4 - x^2$ so $f = x^2 + 2(4 - x^2) = -x^2 + 8$ with $0 \le x \le 2$ which has a minimum of 4 and a maximum of 8.

Thus overall the maximum is 8 and the minimum is 0.

- 5. Let $f(x,y) = x^2 + 6y^2$ and suppose (x,y) is constrained by x + 3y = 10.
 - (a) Use Lagrange multipliers to find the minimum of f(x, y) subject to the constraint. [16 pts]

Solution: We have

Objective:
$$f(x, y) = x^2 + 6y^2$$

Constraint: $g(x, y) = x + 3y = 10$

and so our system of equations is

$$2x = \lambda$$
$$12y = \lambda(3)$$
$$x + 3y = 10$$

The first gives us $\lambda = 2x$ and the second gives us $\lambda = 4y$. thus 2x = 4y and x = 2y. Plugging this into the third gives 2y + 3y = 10 so y = 2 and x = 4. Thus we have (2, 4) and f(2, 4) = 100.

(b) Explain why f(x, y) has no maximum subject to the constraint.

[4 pts]

Solution: Basically we can make x very positive and y very negative, keeping x + 3y = 10, but then f is arbitrarily large.