Math 241 Sections 01** Exam 2 Solutions

1. (a) Use the gradient to find a vector perpendicular to the graph of the curve $y=x^{3}+x-2$ at the point where $x=2$.

Solution: We write $f(x, y)=x^{3}+x-2-y$ so then $\nabla f=\left(3 x^{2}+1\right) \hat{\imath}-\hat{\jmath}$. When $x=2$ we have $y=8$ and so $\nabla f(2,8)=13 \hat{\imath}-\hat{\jmath}$.
(b) Suppose the base of a triangle is growing at 2 inches per hour while the height is growing at 3 inches per hour. At what rate is the area growing when the height is 10 inches and the base is 20 inches?

Solution: We have

$$
\begin{aligned}
A & =\frac{1}{2} b h \\
\frac{d A}{d t} & =\frac{\partial A}{\partial b} \frac{\partial b}{\partial t}+\frac{\partial A}{\partial h} \frac{\partial h}{\partial t} \\
& =\frac{1}{2} h(2)+\frac{1}{2} b(3) \\
\left.\frac{d A}{d t}\right|_{h=10, b=20} & =\frac{1}{2}(10)(2)+\frac{1}{2}(20)(2)
\end{aligned}
$$

2. (a) Sketch the graph of the surface $y^{2}=x^{2}+z^{2}$. Write the name.

Solution: The graph is a double-cone:

(b) Sketch the graph of the surface $y=x^{2}$. Write the name.

Solution: The graph is a parabolic sheet:

(c) Find the directional derivative of $f(x, y)=y \sin (x y)$ in the direction of $\bar{a}=2 \hat{\imath}+\hat{\jmath}$ at the [10 pts] point $\left(\frac{\pi}{8}, 2\right)$. Simplify.

Solution: We have $\bar{u}=\frac{2}{\sqrt{5}} \hat{\imath}+\frac{1}{\sqrt{5}} \hat{\jmath}$. We have $f_{x}=y^{2} \cos (x y)$ and $f_{y}=\sin (x y)+x y \cos (x y)$. Then

$$
\begin{aligned}
D_{\bar{u}} f(x, y) & =\frac{2}{\sqrt{5}}\left(y^{2} \cos (x y)\right)+\frac{1}{\sqrt{5}}(\sin (x y)+x y \cos (x y)) \\
D_{\bar{u}} f\left(\frac{\pi}{8}, 2\right) & =\frac{2}{\sqrt{5}}\left(2^{2} \cos \left(\frac{\pi}{8} 2\right)\right)+\frac{1}{\sqrt{5}}\left(\sin \left(\frac{\pi}{8} 2\right)+\frac{\pi}{8} 2 \cos \left(\frac{\pi}{8} 2\right)\right) \\
& =\frac{2}{\sqrt{5}}\left(4 \frac{\sqrt{2}}{2}\right)+\frac{1}{\sqrt{5}}\left(\frac{\sqrt{2}}{2}+\frac{\pi}{8} 2 \frac{\sqrt{2}}{2}\right)
\end{aligned}
$$

3. (a) All together on one graph sketch the level curves for $f(x, y)=y-|x|$ at $c=-2,0,2$ and label each with its value of c.

Solution: The functions are:

$$
\begin{aligned}
y-|x|=2 y & =|x|+2 \\
y-|x|=0 y & =|x| \\
y-|x|=-2 y & =|x|-2
\end{aligned}
$$

(b) Suppose the unit vector \bar{u} makes an angle of 30° with the gradient of a function f at $(1,2) \quad$ [5 pts] and $\|\nabla f(1,2)\|=3$. Find $D_{\bar{u}} f(1,2)$.

Solution: We have:

$$
\begin{aligned}
D_{\bar{u}} f(1,2) & =\bar{u} \cdot \nabla f(1,2) \\
& =\|\bar{u}\|\|\nabla f(1,2)\| \cos \left(30^{\circ}\right) \\
& =(1)(3)\left(\frac{\sqrt{3}}{2}\right)
\end{aligned}
$$

(c) The function $f(x, y)=x^{2} y-2 x^{2}-y^{2}$ has the following:
[10 pts]

$$
f_{x x}(x, y)=2 y-4 \quad f_{y y}(x, y)=-2 \quad f_{x y}(x, y)=2 x
$$

There are three critical points at $(0,0),(2,2)$ and $(-2,2)$. Categorize each critical point as a relative maximum, relative minimum or saddle point.

Solution: We find $D(x, y)=(2 y-4)(-2)-(2 x)^{2}$ and then test the points: $D(0,0)=(-4)(-2)=+$ so then $f_{x x}(0,0)=-4$ so $(0,0)$ is a relative maximum. $D(2,2)=(0)(-2)-16=-$ so $(2,2)$ is a saddle point.
$D(-2,2)=(0)(-2)-16=-$ so $(-2,2)$ is a saddle point.
4. Find the maximum and minimum values of $f(x, y)=x^{2}+2 y^{2}$ on the quarter circle $x^{2}+y^{2} \leq 4 \quad[20 \mathrm{pts}]$ with $x, y \geq 0$.

Solution: First we check the critical points. We have $f_{x}=2 x$ and $f_{y}=4 y$. When these equal zero we have $(0,0)$ and $f(0,0)=0$.

Then we check the edge:
Left side: Here $x=0$ so $f=2 y^{2}$ with $0 \leq y \leq 2$ which has a minimum of 0 and a maximum of 8 . Bottom side: Here $y=0$ so $f=x^{2}$ with $0 \leq x \leq 2$ which has a minimum of 0 and a maximum of 4 .
Round side: Here $y^{2}=4-x^{2}$ so $f=x^{2}+2\left(4-x^{2}\right)=-x^{2}+8$ with $0 \leq x \leq 2$ which has a minimum of 4 and a maximum of 8 .

Thus overall the maximum is 8 and the minimum is 0 .
5. Let $f(x, y)=x^{2}+6 y^{2}$ and suppose (x, y) is constrained by $x+3 y=10$.
(a) Use Lagrange multipliers to find the minimum of $f(x, y)$ subject to the constraint.

Solution: We have

$$
\text { Objective: } f(x, y)=x^{2}+6 y^{2}
$$

Constraint: $g(x, y)=x+3 y=10$
and so our system of equations is

$$
\begin{aligned}
2 x & =\lambda \\
12 y & =\lambda(3) \\
x+3 y & =10
\end{aligned}
$$

The first gives us $\lambda=2 x$ and the second gives us $\lambda=4 y$. thus $2 x=4 y$ and $x=2 y$. Plugging this into the third gives $2 y+3 y=10$ so $y=2$ and $x=4$. Thus we have $(2,4)$ and $f(2,4)=100$.
(b) Explain why $f(x, y)$ has no maximum subject to the constraint.

Solution: Basically we can make x very positive and y very negative, keeping $x+3 y=10$, but then f is arbitrarily large.

