Math 241 Exam 4 Sample 3 Solutions

1. We're looking for

$$
\iint_{\Sigma}(0 \hat{\imath}+x \hat{\jmath}+z \hat{k}) \cdot \bar{n} d S
$$

We parametrize Σ by

$$
\bar{r}(x, y)=x \hat{\imath}+y \hat{\jmath}+\left(9-x^{2}\right) \hat{k} \quad \text { with } \quad 0 \leq x \leq 2,0 \leq y \leq 2
$$

and then

$$
\begin{aligned}
\bar{r}_{x} & =1 \hat{\imath}+0 \hat{\jmath}-2 x \hat{k} \\
\bar{r}_{y} & =0 \hat{\imath}+1 \hat{\jmath}+0 \hat{k} \\
\bar{r}_{x} \times \bar{r}_{y} & =2 x \hat{\imath}+0 \hat{\jmath}+1 \hat{k}
\end{aligned}
$$

Note that these vectors have a positive \hat{k} component which matches the orientation of Σ. So we have

$$
\begin{aligned}
\iint_{\Sigma}(0 \hat{\imath}+x \hat{\jmath}+z \hat{k}) \cdot \bar{n} d S & =+\iint_{R}\left(0 \hat{\imath}+x \hat{\jmath}+\left(9-x^{2}\right) \hat{k}\right) \cdot(2 x \hat{\imath}+0 \hat{\jmath}+1 \hat{k}) d A \\
& =\iint_{R} 9-x^{2} d A \\
& =\int_{0}^{2} \int_{0}^{2} 9-x^{2} d y d x \\
& =\int_{0}^{2} 9 y-\left.x^{2} y\right|_{0} ^{2} d x \\
& =\int_{0}^{2} 18-2 x^{2} d x \\
& =18 x-\left.\frac{2}{3} x^{3}\right|_{0} ^{2} \\
& =18(2)-\frac{2}{3}(2)^{3}
\end{aligned}
$$

2. (a) Since \bar{F} is conservative with potential function $f(x, y)=\frac{1}{2} x^{2} y^{2}+x$ and so

$$
\begin{aligned}
\int_{C} x^{2} y+1 d x+x y^{2} d y & =f(3,3)-f(1,-2) \\
& =\left[\frac{1}{2}(3)^{2}(3)^{2}+3\right]-\left[\frac{1}{2}(1)^{2}(-2)^{2}+1\right]
\end{aligned}
$$

(b) We parametrize the line segment as

$$
\bar{r}(t)=5 t \hat{\imath}+4 t \hat{\jmath} \quad \text { with } \quad 0 \leq t \leq 1
$$

and then

$$
\begin{aligned}
\bar{r}^{\prime}(t) & =5 \hat{\imath}+4 \hat{\jmath} \\
\left\|\bar{r}^{\prime}(t)\right\| & =\sqrt{41}
\end{aligned}
$$

and then

$$
\int_{C} 2 x+y d s=\int_{0}^{1}[2(5 t)+4 t] \sqrt{41} d t
$$

3. By Green's Theorem we have

$$
\int_{C} 2 x d x+x^{2} d y=\iint_{R} 2 x-0 d A
$$

where R is the region inside the curve. This region is parametrized best in polar coordinates so we have

$$
\begin{aligned}
\int_{C} 2 x d x+x^{2} d y & =\iint_{R} 2 x-0 d A \\
& =\int_{0}^{\pi / 2} \int_{1}^{2} 2 r \cos \theta r d r d \theta \\
& =\left.\int_{0}^{\pi / 2} \frac{2}{3} r^{3} \cos \theta\right|_{1} ^{2} d \theta \\
& =\int_{0}^{\pi / 2} \frac{14}{3} \cos \theta d \theta \\
& =\left.\frac{14}{3} \sin \theta\right|_{0} ^{\pi / 2} \\
& =\frac{14}{3}[\sin (\pi / 2)-\sin (0)] \\
& =\frac{14}{3}
\end{aligned}
$$

4. The best Σ would be the portion of the plane $x+y=5$ inside the cylinder. The orientation of Σ would be toward the right.
Since $\bar{F}(x, y, z)=x \hat{\imath}+3 \hat{\jmath}+2 y \hat{k}$ we have $\nabla \times F=2 \hat{\imath}+0 \hat{\jmath}+0 \hat{k}$.
Then Stokes's Theorem tells us

$$
\int_{C} x d x+3 d y+2 y d z=\iint_{\Sigma}(2 \hat{\imath}+0 \hat{\jmath}+0 \hat{k}) \cdot \bar{n} d S
$$

Since Σ is inside the cylinder it's a good choice to parametrize it as

$$
\bar{r}(r, \theta)=r \cos \theta \hat{\imath}+(5-r \cos \theta) \hat{\jmath}+r \sin \theta \hat{k} \quad \text { with } \quad 0 \leq r \leq 2,0 \leq \theta \leq 2 \pi
$$

Then

$$
\begin{aligned}
\bar{r}_{r} & =\cos \theta \hat{\imath}-\cos \theta \hat{\jmath}+\sin \theta \hat{k} \\
\bar{r}_{\theta} & =-r \sin \theta \hat{\imath}+r \sin \theta \hat{\jmath}+r \cos \theta \hat{k} \\
\bar{r}_{r} \times \bar{r}_{\theta} & =-r \hat{\imath}-r \hat{\jmath}+0 \hat{k}
\end{aligned}
$$

Note that these vectors point have negative \hat{k} component and hence point left, opposite to that for Σ. So we have

$$
\begin{aligned}
\iint_{\Sigma}(2 \hat{\imath}+0 \hat{\jmath}+0 \hat{k}) \cdot \bar{n} d S & =-\iint_{R}(2 \hat{\imath}+0 \hat{\jmath}+0 \hat{k}) \cdot(-r \hat{\imath}-r \hat{\jmath}+0 \hat{k}) d A \\
& =-\iint_{R}-2 r d A \\
& =-\int_{0}^{2 \pi} \int_{0}^{2}-2 r d r d \theta
\end{aligned}
$$

5. If D is the solid cube then the Divergence Theorem gives us

$$
\begin{aligned}
\iint_{\Sigma}(5 x \hat{\imath}+2 y \hat{\jmath}-2 z \hat{k}) \cdot \bar{n} d S & =\iiint_{D}(5+2-2) d V \\
& =5 \iiint_{D} 1 d V \\
& =5 \text { Volume of Cube } \\
& =5(8) \\
& =40
\end{aligned}
$$

