What to Submit:

For this project you will need to turn in a printout of your published m-file. See the guide for instructions on how to write an m-file (it's easy!) and how to publish it.

Note: Each of questions 1-3 and 5-8 should be done in a single Matlab entry. (The view command can be on a separate line though). The remaining questions can be broken up into several lines for neatness. In the m-file each numbered question should be separated by $\% \%$ as the guide indicates.

1. Clear Matlab completely with clear all.
2. Plot the function $f(x, y)=\sqrt{x^{2}+y^{2}}$ with the view at $(10,10,10)$.
3. Plot the function $f(x, y)=\sqrt{9-x^{2}-y^{2}}$ with the view at $(10,10,10)$.
4. Plot the surface $y=4-x^{2}$ with the view at $(10,10,10)$.
5. Find $\frac{\partial}{\partial x}\left[x \sin \left(x^{2} y\right)\right]$
6. Find $\frac{\partial^{2}}{\partial x \partial y}\left[\frac{x^{2}-y}{x+y}\right]$
7. Find ∇f for $f(x, y)=x \ln \left(x y^{2}\right)+x y$.
8. Find $\nabla f(-1,0)$ for $f(x, y)=5 x^{3} y^{2}-\frac{y}{x}$.
9. Find the directional derivative of $g(x, y)=x^{2}+y^{3}$ at $(2,-2)$ in the direction of $\bar{a}=2 \hat{\imath}-3 \hat{\jmath}$.
10. Find all critical points for $f(x, y)=(y-2) \ln (x y)$. Remember that \ln in Matlab is log. On your printout write the points as coordinate pairs next to the output.
11. Find all critical points for $f(x, y)=x^{3}+y^{3}-6 x y$. On your printout write the points as coordinate pairs next to the output.
12. Use Lagrange multipliers to find the maximum and minimum values of $f(x, y)=x y^{2}$ subject to the constraint $x^{2}+y=16$. On your printout write a neat summary next to the output.
