What to Submit:

For this project you will need to turn in a printout of your published m-file. Some requirements and comments:

- Put the command lines for each question in the m-file separated by a blank line then a \%\% line and then another blank line.
- Each question should start with a clear all line followed by the declaration of any symbolic variables necessary for that problem. In other words each question should be completely self-contained.

- I've made some notes for those who are interested (NFI) but they're not relevant to getting the project done.

The questions are:

1. Plot the portion of $x^{2}+z^{2}=9$ above the $x y$-plane and between $y=-1$ and $y=2$.
2. Plot the portion of the cone $z=9-\sqrt{x^{2}+y^{2}}$ inside the cylinder $r=2$.
3. Plot the vector field $\bar{F}(x, y)=0.2(x+y) \hat{\imath}+0.2(x-y) \hat{\jmath}$ using meshgrid ($-5: 1: 5,-5: 1: 5$).
4. A piece of wire is in the shape of the circle $x^{2}+y^{2}=1$. The density at any point is given by $\delta(x, y)=x^{2}+y^{4}$. Find the mass of the wire.
NFI: $\delta(x, y)$ could be in grams per cm in which case the mass would be grams.
5. Evaluate the line integral $\int_{C}(x+y) d s$ where C is the straight line segment from $(0,1,1)$ to $(3,2,2)$.
6. Evaluate the line integral $\int_{C} y z d x+y z d y+y d z$ where C is the top half of $y^{2}+z^{2}=4$ in the $y z$-plane traveling from left to right.
7. Suppose Σ is the portion of the plane $z=10-x-y$ inside the cylinder $x^{2}+y^{2}=1$. The surface Σ is submerged in an electric field such that at any point the electric charge density is $\delta(x, y, z)=x^{2}+y^{2}$. Find the total amount of electric charge on the surface.
NFI: $\delta(x, y, z)$ could be in coulombs per cubic centimeter in which case the total charge would be in coulombs.
8. A fluid is flowing through space following the vector field $\bar{F}(x, y, z)=y \hat{\imath}-x \hat{\jmath}+z \hat{k}$. A filter is in the shape of the portion of the paraboloid $z=x^{2}+y^{2}$ having $0 \leq x \leq 3$ and $0 \leq y \leq 3$, oriented inwards (and upwards). Find the rate at which the fluid is moving through the filter. NFI: The fluid flow F could have units $g /\left(\mathrm{cm}^{2} s\right)$ (really \bar{F} is $\delta \bar{F}$ where δ has units g / cm^{3} and \bar{F} has units cm / s) in which case the total flow would be in grams per second.
