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1. Introduction

A conformal structure on a manifold M is an equivalence class of semi-Riemannian metrics,
where two metrics are equivalent if they are related by multiplication with a positive, smooth,
real-valued function. A manifold that is locally conformally equivalent to a flat affine space is
called conformally flat. Such manifolds can alternatively be characterized as those admitting a
(G,X)-structure where X is the suitable conformally flat, homogeneous model space. The locally

homogeneous structure on M gives rise to a developing pair (δ, ρ) where δ : M̃ → X is a local

diffeomorphism from the universal cover M̃ of M to X, and ρ : π1(M) → G is the holonomy
representation, such that δ is ρ-equivariant. Under group-theoretic assumptions on the holonomy
image, classification results for (G,X)-manifolds can be obtained; for example, the first author
proved:

Theorem 1.1 ([10, Thm A]). Let M be a closed, conformally flat, n-dimensional Riemannian

manifold, and assume that the image of the holonomy representation is virtually nilpotent—that

is, there exists a nilpotent subgroup of finite index. Then M is finitely covered by the sphere Sn,

a flat torus Tn, or a Hopf manifold, diffeomorphic to S1 × Sn−1.

In each case, the developing map is proved to be a diffeomorphism onto an open subset of X, in
which case the structure is called Kleinian, possibly all of X, in which case it is complete (see
Definition 2.3 below). Then M is geometrically isomorphic to the quotient of the developing
image by the holonomy action.

This article concerns closed, conformally flat Lorentzian manifolds. We consider those with unipo-
tent holonomy image. The conformally flat model space in Lorentzian signature is Einn−1,1.
Uniquely to this signature, it has infinite fundamental group, and the target of the developing

map in general is the noncompact universal cover X = Ẽin
n−1,1

. These spaces are treated in
§2, see also the references [4, 1]. Unipotence forces the holonomy image to stabilize an isotropic
flag in the standard representation of G, which corresponds to a chain of invariant subspaces in
Einn−1,1

(1) {p0} ⊂ ∆̄ ⊂ L(p0),

consisting of a distinguished point, contained in a photon, contained in the lightcone of p0. The
complement of a light cone in Einn−1,1 is conformally equivalent to Minkowsi space Minn−1,1

and is called a Minkowski patch (see §2.2.1 below). Noting that G acts transitively on isotropic
flags, we fix one. Our proof is organized according to the intersection of the developing image
with the components of this flag.
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In conformal Riemannian geometry, the model is the round sphere, and the corresponding decom-
position comprises just a point p0 ∈ Sn. In that case, with unipotent holonomy, if the developing
image contains p0, then M ∼= Sn; otherwise, it is a flat torus. The Lorentzian case is considerably
more complex. Two cases are Lorentzian analogues of the Riemannian classification. Between
these are two intermediate cases, each giving rise to new examples.

The subspace ∆̄ ⊂ L(p0) from (1) lifts in Ẽin
n−1,1

to a photon ∆ ⊂ L(p̃0) contained in a light cone,
both unbounded, for p̃0 any point in the preimage of p0. The complement of L(p̃0) is a countable

union of Minkowski patches. We denote by Õ(2, n) the connected conformal group of Ẽin
n−1,1

;
it is an infinite covering group of O0(2, n). Its central element generating π1(Einn−1,1) ∼= Z will
be denoted α (see §2.2.2 for details). We denote by δ̄ the composition of δ with the covering

πEin : Ẽin
n−1,1

→ Einn−1,1.

Theorem 1.2. Let M be a closed, conformally flat, Lorentzian manifold of dimension n ≥ 3,

with unipotent holonomy. Then, up to composition of δ with a conformal equivalence of Ẽin
n−1,1

,

one of the following holds:

(1) p0 ∈ im δ̄: Then M is a complete (Õ(n, 2), Ẽin
n−1,1

)-manifold. The holonomy image is

generated by an element of the form αig with i ̸= 0 and g projecting to a unipotent element

of PO0(n, 2). Topologically M ∼= Sn−1 × S1, up to a finite covering.

(2) p0 /∈ im δ̄ but im δ̄∩∆̄ ̸= ∅: Then δ is a diffeomorphism to a bounded open subset compris-

ing the union of two Minkowski charts and the interstitial component of L(p̃0)\π−1
Ein(p0)

lying in their common closure. The holonomy image is generated by one element which

descends to act nontrivially on ∆̄. Topologically, M ∼= Sn−1 × S1 up to a finite covering.

(3) im δ̄∩∆̄ = ∅ but im δ̄∩L(p0) ̸= ∅: Then n = 2k+2 for k ∈ N, and δ is a diffeomorphism to

Ẽin
n−1,1

\∆. The holonomy image is a nilpotent extension by Z of a discrete Heisenberg

group of rank 2k + 1. Topologically, M is a nilmanifold, more precisely, a Heisenberg-

nilmanifold bundle over S1 with unipotent monodromy.

(4) im δ̄ ∩ L(p0) = ∅: Then M is a complete (O(n − 1, 1) ⋉Rn,Minn−1,1)-manifold. Topo-

logically, M is a nilmanifold of degree at most 3.

In every case, M is Kleinian.

Slightly more detailed statements and the proofs for cases (1), (2), (3), and (4) are in sections 3,
4, 5, and 6, respectively.

One consequence of the above theorem is the following topological classification of closed confor-
mally flat Lorentzian manifolds of dimension n ≥ 3 with unipotent holonomy.

Corollary 1.3. Let M be a closed, conformally flat, Lorenztian manifold with unipotent holo-

nomy, of dimension n ≥ 3. Then M is finitely covered by Sn−1 × S1 or M is a nilmanifold of

degree at most 3.

One motivation for our classification is the goal of classifying closed Lorentzian manifolds ad-
mitting an essential conformal flow—that is, a flow that does not preserve any metric in the
conformal class. In the Riemannian case, these can only be Sn by a celebrated theorem of Obata
[14] and Ferrand [13]. By the Lorentzian Lichnerowicz Conjecture, which has been proved for



3-dimensional, real-analytic Lorentzian manifolds [6], all essential examples should be confor-
mally flat. These can, however, be of infinitely-many different topological types (see [5]). The
conformally flat, closed Lorentzian manifolds admitting an essential conformal flow and having
unipotent holonomy correspond to cases (1) and (2) in our classification theorem above. In section
6 we obtain the following topological classification.

Theorem 1.4. Let M be a closed, conformally flat Lorentzian manifold with unipotent holonomy

of dimension n ≥ 3. Then the conformal structure on M is essential if and only if M is finitely

covered by Sn−1 × S1.

2. Preliminary definitions and results

While conformally flat Riemannian manifolds are locally modeled on the round sphere with its
group of Möbius transformations, the Einstein universe (also called the Lorentzian Möbius space)
is the local model for conformally flat Lorentzian manifolds, and comes with a rank-two simple
group of conformal transformations. We put conformally flat Lorentzian geometry in the context of
(G,X)-structures in the next subsection. Then we explore the geometry of the Einstein universe
and its universal cover. Finally, we focus on the action of the maximal connected unipotent
subgroup of conformal transformations of the Einstein universe.

2.1. The (G,X)-structure of a conformally flat Lorentzian manifold. Let n ≥ 3. Let
N ⊂ Rn+2 be the null cone of a nondegenerate quadratic form of index 2. Let X ⊂ RPn+1 be the
image of N under projectivization, a quadric hypersurface. The restriction of the quadratic form
to TN is a degenerate symmetric form which descends to a Lorentzian metric on X, well-defined
up to conformal equivalence; the resulting conformal Lorentzian manifold is Einn−1,1. The group
O(2, n) of linear isometries of the quadratic form descends to a group of conformal transformations
of Einn−1,1 which is easily seen to be transitive. The quotient PO(2, n) will be G.

Let (Mn, g) be a conformally flat Lorentzian manifold. For each p ∈ M , there is an open neigh-
borhood U of p and a conformal diffeomorphism of (U, g|U ) with an open subset of Minn−1,1.

Minkowski space conformally embeds in Einn−1,1, which is shown in 2.2.1 below. In fact, Einn−1,1

is the conformal completion of Minn−1,1 in the following sense:

Theorem 2.1. (see [4] Thm 2.13, [17] Thm 5.2) Let U, V ⊂ Minn−1,1 be connected open sub-

sets. Fix a conformal embedding ι : Minn−1,1 → Einn−1,1. Let f : U → V be a conformal

diffeomorphism. Then there is a unique F ∈ G = PO(2, n) such that f is conjugate by ι to F |ι(U).

This is the Lorentzian version of the Liouville Theorem. A consequence is the following Develop-
ment Theorem.

Theorem 2.2. (compare [10, Thm 1.1]) Let (Mn, g) be a conformally flat Lorentzian manifold

with universal cover πM : M̃ → M . Then there exists a pair (δ̄, h) with δ̄ : M̃ → Einn−1,1 a

conformal immersion and h : π1(M) → PO(2, n) a homomorphism such that the diagram

M̃ Einn−1,1

M̃ Einn−1,1

δ̄

γ h(γ)

δ̄



commutes for all γ ∈ π1(M). Moreover, if (δ̄′, h′) is another such pair, then there exists g ∈
PO(2, n) such that δ̄ = g ◦ δ̄′ and h′(γ) = gh(γ)g−1 for all γ ∈ π1(M).

More generally, we can take the existence of such a developing pair for any (G,X) to be the
definition of a (G,X)-structure on M . The following are standard terms.

Definition 2.3. Let (δ, h) be a developing pair for a (G,X)-structure on M . Let Γ < G be the

image of h. The (G,X)-structure is

(1) complete if M ∼= X/Γ

(2) Kleinian if M ∼= Ω/Γ for Ω ⊂ X an open subset.

The following lemma will be applied to the developing map in Section 3 in order to conclude
completeness.

Lemma 2.4 (see [3, Lem 3.4]). Let F : U → X be a local diffeomorphism. Let W ⊆ U be an open

subset on which F restricts to a diffeomorphism onto X. Assuming U is connected, then W = U

and F is a diffeomorphism.

We introduce here a few techniques for studying developing pairs for (G,X)-structures, which will
be refined for our particular setting in subsequent sections. The general idea is that holonomy-
invariant objects on X correspond to well-defined objects on M . Assuming M is closed, these
objects will provide leverage to establish completeness. A first example is the following proposi-
tion, of which the short and easy proof is left to the reader.

Proposition 2.5. Let (δ, h) be a developing pair for a (G,X)-structure on M , and let Γ be the

image of h. Let V ⊂ X be closed and Γ-invariant. Then πM (δ−1(V )) ⊆M is closed.

Because δ is a local diffeomorphism, vector fields on X have well-defined pull-backs to M̃ . In fact,
the same is true for vector fields on submanifolds V ⊂ X. For Y ∈ X (V ), the pull-back to δ−1(V )
will be denoted δ∗Y .

Proposition 2.6. Let (δ, h) be a developing pair for a (G,X)-structure on M , and let Γ be the

image of h. Suppose that a regular submanifold V ⊂ X and a complete vector field Y ∈ X (V ) are

Γ-invariant. Let V̂ be a connected component of δ−1(V ). If V̂ is closed, then δ∗Y is complete,

and the image δ(V̂ ) ⊂ V is invariant by the flow along Y .

Proof. Let Γ̂ be the group of deck transformations of M̃ . By Γ-invariance of Y , the pullback δ∗Y

is Γ̂-invariant on δ−1(V ) = Γ̂.V̂ . The latter is a union of connected components, each of which is

closed in M̃ . Therefore the image πM (V̂ ) is closed in M . The vector field δ∗Y pushes forward to

this image and the push-forward is complete. Therefore δ∗Y is complete on V̂ . By design, δ|V̂
intertwines the two flows, so δ(V̂ ) is invariant by the flow along Y . □

2.2. The geometry of the Einstein space and its universal cover. This subsection details

some of the analytic and synthetic geometry of Einn−1,1 and Ẽin
n−1,1

. Identities for causally
defined sets are established, which will be used in the construction of examples in Section 4
below.



2.2.1. Geometry of Einn−1,1. Recall that the construction of Einn−1,1 begins with a nondegen-
erate, index-2 quadratic form on Rn+2. It is convenient to fix the following one

qn,2(x) = 2x0xn+1 + 2x1xn +
n−1∑
i=2

x2i

and to define for x ∈ Rn

qn−1,1(x) = 2x1xn +
n−1∑
i=2

x2i

which is of index 1.

Consider the following immersion of Minn−1,1 → Rn+2

(x1, . . . , xn) 7→ (−qn−1,1(x)/2, x1, . . . , xn, 1)

This is a semi-Riemannian immersion of Minn−1,1 to Rn,2 = (Rn+2, qn,2). The image is in the
null cone N and is transverse to the fibers of the projectivization map. Thus the composition

ι : (x1, . . . , xn) 7→ [−qn−1,1(x)/2 : x1 : · · · : xn : 1]

defines a conformal embedding of Minn−1,1 in Einn−1,1, called a Minkowski chart. The image of
such an embedding will also be called a Minkowski patch below.

The complement of the above Minkowski patch is the intersection of Einn−1,1 with the subvariety
of RPn+1 defined by xn+1 = 0 in homogeneous coordinates. According to qn,2, this latter sub-

variety is the projectivization of e⊥0 . The intersection e⊥0 ∩ N is the union of the totally istropic
planes containing e0. The projectivization of a totally isotropic plane in Rn,2 is called a photon in
Einn−1,1. The projectivization of e⊥0 ∩ N comprises all the photons of Einn−1,1 passing through
[e0]. It is a singular hypersurface called the lightcone of p0 = [e0], denoted L(p0). This is thus
the complement of our Minkowski patch, which is thus determined by p0 and will accordingly be
denoted Min(p0) ⊂ Einn−1,1.

Note that O(n, 2) acts transtively on isotropic flags as above, and so PO(n, 2) acts transitively on
configurations p0 ⊂ ∆̄ ⊂ L(p0), where ∆̄ is a photon through p0.

The photon ∆̄ can be identified with RP1, in a geometric sense. The stabilizer in PO(n, 2) of a
totally isotropic plane is a subgroup isomorphic to PSL(2,R). Thus ∆̄ inherits a 1-dimensional
real-projective structure from the geometry of Einn−1,1, isomorphic to that of RP1.

Topologically, Einn−1,1 is homeomorphic to Sn−1 × S1/⟨σ⟩, where σ is the antipodal map on
both factors. The fundamental group of Einn−1,1 is isomorphic to Z. Moreover, the metric
corresponding to gSn−1 ⊕−gS1 , where gSk is the constant-curvature metric on Sk, belongs to the
conformal class of Einn−1,1. For these facts we refer to [4], [1, Sec 4].

Another way to see the topology of Einn−1,1 is via the following useful projection. Let ∆̄ be a
photon, corresponding to the projectivization of the totally isotropic subspace span{u, v} ⊂ Rn,2.
Let

ρ∆̄ : Einn−1,1 \∆̄ → ∆̄

[x] 7→ [⟨x, v⟩u− ⟨x, u⟩v]
where the inner product is the one determined by qn,2. This map is well-defined, as span{p, q} is
the inverse image of ∆̄ inN and is a maximal isotropic subspace. It is moreover easily checked that
this map is independent of the choice of basis u, v and depends only on the isotropic plane ∆̄. For
any p ∈ ∆̄, the fiber ρ−1

∆̄
(p) is L(p)\∆̄. For p ̸= q both in ∆̄, the intersection L(p)∩L(q) is precisely



∆̄. It follows that ρ∆̄ is a submersion, the fibers of which form a foliation by hypersurfaces,
exhibiting Einn−1,1 \∆̄ as diffeomorphic to Rn−1 × S1.

2.2.2. Geometry of Ẽin
n−1,1

. The universal covering Ẽin
n−1,1

is homeomorphic to Sn−1×R such
that σ lifts to

σ̃ : Sn−1 ×R → Sn−1 ×R
(x, t) 7→ (−x, t+ π)

The generator α of π1(Einn−1,1) is represented by the deck transformation corresponding to σ̃
under this identification. Each photon in this model is the graph of a unit-speed curve in Sn−1.

Given a photon ∆ ⊂ Ẽin
n−1,1

, with ∆̄ = πEin(∆), the map ρ∆̄ from the previous section lifts to

Ẽin
n−1,1

: the fibration of Einn−1,1 \∆̄ lifts to a foliation of Ẽin
n−1,1

\∆ by closed hypersurfaces;
then any lift of ρ∆̄ corresponds to the quotient map to the leaf space of this foliation, which is

diffeomorphic to R. We will define a specific lift which will in fact be a map ρ∆ : Ẽin
n−1,1

\∆ → ∆
in §2.3.2 below.

Note that the geometric isomorphism ∆̄ ∼= RP1 lifts to a (PSL(2,R),RP1)-structure on ∆, in

which it is isomorphic to R̃P
1
, with its transitive S̃L(2,R)-action.

In a useful refinement of the model for Ẽin
n−1,1

, we identify Sn−1×R with Rn \ {0} in the usual
way, by

(x, θ) 7→ eθx.

Under this identification, α becomes

z 7→ −eπz.

Furthermore, each photon becomes a logarithmic spiral contained in a 2-dimensional linear sub-
space of Rn. The lightcone at a point p̃ is the revolution of any photon through p̃ around the
axis connecting p̃ and α(p̃). The complement of L(p̃) is a disjoint union of Minkowski patches,
comprising the lifts of Min(p), where p = πEin(p̃). The connected components are permuted by α.
Figure 1 shows a 2-dimensional cross-section of a light cone and a photon in it. The Minkowski
patches are the regions bounded between successive loops. Two distinguished Minkowski patches
adjacent to p̃ are labeled Min+(p̃) and Min−(p̃); these have a causal interpretation, which is given
in the next section. A reference for this material is [1, Sec 4.3].

2.2.3. Causal Geometry of Ẽin
n−1,1

. A reference for some of the basic material on causality is [16,
Chs 1–2]. Recall that a causal tangent vector is timelike or null, and a causal curve is one with
causal velocity. A time-orientation of a Lorentzian manifold is given by a timelike vector field,
and a simply connected Lorentzian manifold is always time-orientable. A causal tangent vector is
future-pointing, respectively past-pointing, if its inner product with the time-orienting vector field
is negative, respectively positive, and similarly for a causal curve. A piecewise smooth curve is
called timelike, lightlike, or causal, respectively, if the velocity vectors, including the velocity from
above and below at break points, are of the corresponding type; moreover, at the break points
both velocity vectors must have the same time orientation—that is, all velocity vectors along the
curve are future-pointing or all are past-pointing.

Definition 2.7. For M a time-orientable Lorentzian manifold, let x, y ∈M .



Figure 1. The above figure shows a cross-section of Ẽin
n−1,1 ∼= Rn \ {0}, where

the solid lines indicate a lightcone and the orange line indicates a photon in it.

(1) x chronologically precedes y (often denoted x ≪ y) if there is a future-directed timelike

curve from x to y.

(2) x causally precedes y (often denoted x ≤ y) if there is a future-directed causal curve from

x to y.

(3) M is causal if x ≤ y, y ≤ x ⇐⇒ x = y.

If x ≤ y but x ̸= y, we write x < y.

Under the conformal equivalence

Ẽin
n−1,1 ∼= (Sn−1 ×R, gSn−1 ⊕−dθ2)

a time-orientation is given by the vector field ∂θ. The map α preserves time-orientation; thus
Einn−1,1 is time-orientable, although it is not orientable (see [1, §4.2]). It is also causal (in fact,
it is globally hyperbolic). For future reference, a natural choice of coordinate θ on Einn−1,1 gives,
in homogeneous coordinates

(2) ∂θ = (x0 − xn+1) (∂1 − ∂n) + (xn − x1) (∂0 − ∂n+1)

Definition 2.8. Let S ⊂M . The causal future set J+(S) and future set I+(S) are defined as

J+(S) = {y ∈M : ∃x ∈ S, x ≤ y} I+(S) = {y ∈M : ∃x ∈ S, x≪ y}.

The causal past set and the past set are defined analogously.

The future and past sets of a point in Ẽin
n−1,1

have the following identifications in Sn−1 ×R ∼=
Ẽin

n−1,1
.



Lemma 2.9. Let p = (x0, t0) ∈ Ẽin
n−1,1

. Then the causal past and future can be expressed as

J−(p) = {(x, t) : t− t0 ≤ d(x, x0)} J+(p) = {(x, t) : t− t0 ≥ d(x, x0)}

and the past I−(p) and the future I+(p) as

I−(p) = {(x, t) : t− t0 < d(x, x0)}, I+(p) = {(x, t) : t− t0 > d(x, x0)}

where d denotes the standard Riemannian distance on Sn−1.

The proof is left to the reader.

Remark 2.10. An immediate consequence of the above lemma is that x ∈ Ẽin
n−1,1

always

causally precedes αx.

The causal future, respectively past, sets are the closure of the future, respectively past, sets.
Note that given a point p, its future set and its past set are not exactly complementary; however,

Lemma 2.11. For any point p = (x0, t0) ∈ Ẽin
n−1,1

,

Ẽin
n−1,1

\ I+(p) = J−(αp)

Ẽin
n−1,1

\ J+(p) = I−(αp)

Proof. We prove only the first statement; the second is proved mutatis mutandis. From Lemma

2.9,

J+(αp) = {(x, t) : (t0 + π)− t ≥ d(x,−x0)}
As d(−x0, x) + d(x, x0) = π for any x ∈ Sn−1, we have, again using Lemma 2.9,

Ẽin
n−1,1

\ I+(p) = {(x, t) : t− t0 ≤ d(x, x0)}
= {(x, t) : t− t0 ≤ π − d(x,−x0)}
= {(x, t) : t− (t0 + π) ≤ −d(x,−x0)}
= {(x, t) : (t0 + π)− t ≥ d(x,−x0)}
= J−(αp),

as desired. □

For p ∈ Ẽin
n−1,1

, the distinguished Minkowski patch Min+(p) is the Minkowski patch containing
p in its closure and in the future of p, while Min−(p) is the Minkowski patch containing p in its
closure, the points of which are not causally related to p. We will take as definition the following,
and verify a little later that these project to a Minkowski patch in Einn−1,1 as previously defined.

Definition 2.12. For p ∈ Ẽin
n−1,1

,

(1) Min+(p) = I+(p) ∩ I−(α2p),

(2) Min−(p) = I+(α−1p) ∩ I−(αp).

The following relation follows immediately from Definition 2.12.



Proposition 2.13. For any p ∈ Ẽin
n−1,1

,

Min+(p) = Min−(αp)

For two points p and q such that q = αi.p for some i ∈ Z>0, we define the following subsets,
contained in L = L(p) ∩ L(q):

L(p, q) = {x ∈ L : p < x < q}, L[p, q] = {x ∈ L : p ≤ x ≤ q}

The boundaries of the Minkowski patches are the following subsets of L(p).

Corollary 2.14. For any p ∈ Ẽin
n−1,1

,

∂Min+(p) = L[p, α2.p] ∂Min−(p) = L[α−1.p, α.p]

Proof. For p = (ϕ0, θ0), Proposition 2.12 gives explicitly

Min+(p) = {(ϕ, θ) : (θ0 + 2π)− θ < d(ϕ, ϕ0) < θ − θ0}

Using that 0 ≤ d(ϕ, ϕ0) ≤ π for all ϕ, the boundary set

{θ − θ0 = d(ϕ, ϕ0)} = L[p, α.p]

while

{(θ0 + 2π)− θ = d(ϕ0, ϕ)} = L[α.p, α2.p]

This proves the equality for ∂Min+(p); the second follows from this one and Corollary 2.13. □

It can now be easily shown that Min+(p) projects to Min(p̄) for p̄ = πEin(p). By Definition 2.12,

πEin(Min+(p)) ⊆ I+(p̄) ∩ I−(p̄) = I+(p̄) = Min(p̄)

On the other hand, the boundary of Min+(p) projects to πEin(L[p, α
2.p]) = L(p̄), which is the

boundary of Min(p̄). Similarly, Min−(p) also projects to Min(p̄).

2.3. Unipotent dynamics on Einn−1,1.

2.3.1. The maximal unipotent subgroup. The maximal unipotent subgroup of Ĝ = O(n, 2) is the
unipotent radical of the minimal parabolic subgroup. (These groups are of course unique only

up to conjugacy in Ĝ.) The latter subgroup is the stabilizer of an isotropic flag of Rn,2; the
unipotent is the subgroup of the stabilizer of an isotropic flag which moreover acts trivially on
each subquotient of the flag. For the quadratic form qn,2 and the isotropic flag

F = Re0 ⊂ span{e0, e1} ⊂ e⊥0 ⊂ Rn,2

the maximal unipotent subgroup is upper-triangular. It will be denoted U . This group is sim-
ply connected, thus contained in Ĝ0. As −Idn+2 is not in the identity component, U projects
isomorphically to its image in G = PO(n, 2), which we will also denote by U .

Recall that Õ(n, 2) denotes the conformal group of Ẽin
n−1,1

, for which we may also write G̃.

(Note that π1(O
0(n, 2)) ∼= Z2 × Z for n ≥ 3, so G̃0 is a two-fold quotient of the universal cover

of O0(n, 2).) Denote by q : Õ(n, 2) → PO(n, 2) the quotient. As π1(Einn−1,1) ∼= Z this is a

Z-covering on the identity components. We will denote by Ũ the full lift q−1(U) and by Ũ0 the
identity component; the latter group is also isomorphic to U , as U is simply connected.



The isotropic flag F stabilized by U corresponds to the chain of subspaces

p0 = [e0] ⊂ ∆̄ ⊂ L(p0) ⊂ Einn−1,1

where ∆̄ is the photon obtained from the projectivization of span{e0, e1}. The U-action on

∆̄ ∼= RP1 is the projective parabolic flow fixing p0. The Ũ0-action on ∆ ⊂ Ẽin
n−1,1

corresponds

under the geometric isomorphism ∆ ∼= R̃P
1
to the lift of this one-parameter subgroup to ˜SL(2,R).

Because it stabilizes the complementary light cone, U acts conformally on the Minkowski patch
Min(p0). By the Liouville Theorem 2.1, this action is faithful. The conformal group of Minn−1,1

is the similarity group CO(n − 1, 1) ⋉ Rn. For g ∈ U , we denote by Lg the image under the
homomorphism U → CO(n − 1, 1). The image L(U) is a unipotent subgroup of SO(n − 1, 1),
stabilizing the isotropic flag Re1 ⊂ e⊥1 ⊂ Rn−1,1 for the quadratic form qn−1,1. We denote

by ug the Rn-component of g ∈ U , so that g acts on Minn−1,1(p0) ∼= Minn−1,1 by the affine
transformation v 7→ Lg(v) + ug. Note that u : U → Rn is a 1-cocycle for the representation of U
on Rn via L.

2.3.2. The τ -flow. The maximal unipotent subgroup U has one-dimensional center that corre-
sponds to a translation by the isotropic vector e1 on Minn−1,1. We will refer to the R-action of
Z(U) on Einn−1,1 as the τ -flow. In homogeneous coordinates on Einn−1,1, it is

(3) τ s.[x0 : · · · : xn+1] = [x0 + sxn : x1 − sxn+1 : x2 : · · · : xn+1]

The lift to Ũ0 acting on Ẽin
n−1,1

will be denoted by τ as well. We will denote the corresponding

vector fields on Einn−1,1 and Ẽin
n−1,1

by Yτ . In homogeneous coordinates on Einn−1,1 it is
Yτ = xn∂0 − xn+1∂1. Using the time orientation ∂θ from (2), the inner product ⟨Yτ , ∂θ⟩ ≤ 0,

vanishing exactly on ∆̄. Thus Yτ is future-pointing on Einn−1,1 \∆̄ and Ẽin
n−1,1

\∆.

Each point of Einn−1,1 \∆̄ tends under τ s to a point of the fixed set ∆̄ as s→ ±∞. The limit point
is given by the projection ρ∆̄ from §2.2.1. As a consequence, we have the following description,
for q ∈ ∆̄:

Min(q) = {p ∈ Einn−1,1 \∆̄ : lim
t→±∞

τ t.p = ρ∆̄(p) ̸= q}.

Similarly, the fixed set in Ẽin
n−1,1

of {τ s} is ∆ and points of Ẽin
n−1,1

\∆ tend under τ s to

a point of ∆ as s → ±∞. Each Minkowski patch in Ẽin
n−1,1

\ ∆, can be written as a set
of points converging to a particular segment of ∆ under the τ -flow. For any p, q ∈ ∆, denote
∆[p, q] = L[p, q] ∩∆, and similarly for ∆(p, q).

Proposition 2.15. For any p ∈ ∆,

Min±(p) = {x ∈ Ẽin
n−1,1

\∆ : lim
t→∓∞

τ t.x ∈ ∆(p, αp)}.

Proof. From Corollary 2.14, we know that

∆ ∩Min+(p) = ∆[p, α2p].

For x ∈ Min+(p), let x̄ = πEin(x) and p̄ = πEin(p). Let

q̄ = lim
t→∞

τ t.x̄ = lim
t→−∞

τ t.x̄ ∈ ∆̄ \ {p̄}



and let q be the πEin-preimage of q̄ in ∆(p, αp). Since x /∈ L(p) = L(αip) for all i, we have

Min+(p) ⊆ {x ∈ Ẽin
n−1,1

\∆ : lim
t→−∞

τ t.x ∈ ∆(p, αp) ∪∆(αp, α2p)}.

Thus lim
t→±∞

τ t.x ∈ {q, αq}. Note that the path t 7→ τ t.x for t ∈ (−∞,∞) is future-pointing, as

Yτ is future-pointing. If the two limits lim
t→±∞

τ t.x were equal, the result would be a closed causal

loop, violating causality of Ẽin
n−1,1

(see §2.2.3). Moreover, the forward limit must be in the

future of the backward limit, from which we conclude

lim
t→−∞

τ t.x = q ∈ ∆(p, αp) lim
t→∞

τ t.x = q ∈ α(∆(p, αp))

On the other hand, every point of ∆̄\{p̄} is the forward and backward limit of a point of Min(p̄)

under {τ t}. As α commutes with τ t, every q ∈ ∆(p, αp) is limt→−∞ τ t.x for some x ∈ Min+(αip)

for some i; also every q ∈ ∆(αp, α2p) is limt→∞ τ t.x for some x ∈ Min+(αjp) for some j. By the

containments proved in the previous paragraph, necessarily i = j = 0, and

Min+(p) = {x ∈ Ẽin
n−1,1

\∆ : lim
t→−∞

τ t.x ∈ ∆(p, αp)}

= {x ∈ Ẽin
n−1,1

\∆ : lim
t→∞

τ t.x ∈ ∆(αp, α2p)}

The desired identity for Min−(p) now follows from Corollary 2.13. □

We now define ρ∆ : Ẽin
n−1,1

\∆ → ∆. Let x ∈ Ẽin
n−1,1

with x̄ = πEin(x).

ρ∆(x) = lim
t→∞

τ t.x =

{
αip x ∈ L(αi−1p, αip)\∆

π−1
Ein(ρ∆̄(x̄)) ∩∆(αip, αi+1p) x ∈ Min−(αip)

This map is a submersion onto ∆ lifting ρ∆̄.

2.3.3. An iterative technique for establishing completeness. The following is a general technique
for showing that the developing map is a diffeomorphism onto eligible subsets of the model space
X. The basic version appears for affine manifolds with unipotent holonomy in the proof of
completeness of [8, Thm 6.8] and our proof idea is derived from theirs.

Proposition 2.16. Let (δ, h) be a developing pair for a (G,X)-structure on a closed manifold M ,

with holonomy image Γ < G. Let V ⊂ X be a connected, Γ-invariant regular submanifold, with a

Γ-invariant foliation F . Let V̂ be a connected component of δ−1(V ). Assume V̂ is a closed set.

(1) Suppose there are complete vector fields Y1, . . . , Yd ∈ X (V ), such that, for all i,

• Yi is locally projectable modulo F
• γ∗Yi ≡ Yi mod TF ∀γ ∈ Γ

If the image δ(V̂ ) is F-saturated, then δ(V̂ ) ⊂ V is invariant by the flow along every Yi.

(2) Let W ⊆ V be a connected, regular submanifold saturated by F and by the flows along

{Yi}, such that

• at all y ∈W , the projections mod F of {Yi} form a frame of the local leaf space

• [Yi, Yj ] ≡ 0 mod TF ∀i, j on W



Denote by F̂ the pulled-back foliation of V̂ , and let Ŵ be a connected component of

δ−1(W ). If δ maps each leaf of F̂ in Ŵ diffeomorphically to its image, then δ|Ŵ is a

covering map onto W .

Proof. Begin with the assumptions of (1). The first step is to build vector fields {Xi} on M̃

corresponding to {Yi}. The saturation Γ̂.V̂ is a union of closed connected components, so its

projection toM is closed, as is the component πM (V̂ ). For any x̄ ∈ πM (V̂ ), there is a neighborhood

Ū and a diffeomorphism from Ū to a neighborhood U ⊂ V . Let {Ūj} be a finite cover of πM (V̂ ) by

such neighborhoods, and define vector fields X̄j
1 , . . . , X̄

j
d by pulling back Y1, . . . , Yd from U ⊂ V to

Ūj , for each j. Let {ψj} be a partition of unity subordinate to {Ūj} and define X̄i =
∑

j ψj · X̄j
i .

Let Xi be the lift of X̄i to V̂ ⊂ M̃ for each i; it is complete.

By the assumption of Γ-invariance of F , the pulled back foliation F̂ descends to δ(V̂ ). For any i,

by the Γ-invariance of Yi mod F , on the overlap of Ūj with some Ūk, the vector fields X̄j
i ≡ X̄k

i

modulo the foliation. For the lifted vector fields {Xi}, this construction gives that for any x ∈ V̂

with neighborhood Û ⊂ V̂ mapping diffeomorphically under δ to U ⊂ V , the push-forward

(δ|Û )∗Xi ≡ Yi mod TF for all i. In particular, the {Xi} are projectable modulo F̂ .

We proceed to prove (1). Let y = δ(x) for x ∈ V̂ , and let Y = Yi for some i ∈ {1, . . . , d}.
Consider for arbitrary t0 > 0 a path α(t) = φt

Y .y, 0 ≤ t ≤ t0. Let X = Xi and let α̂(t) = φt
X .x

for 0 ≤ t ≤ t0, which is defined because X is complete. Let β(t) = δ ◦ α̂(t).
Now let τ = {t : β(t) ≡ α(t)} where equivalence means belonging to the same leaf of F . By

construction 0 ∈ τ . Suppose that tk → t with tk ∈ τ . By continuity of α, β, and F ,

Fα(tk) → Fα(t) and Fβ(tk) → Fβ(t)

so

Fα(tk) = Fβ(tk) ∀k ⇒ Fα(t) = Fβ(t)

Then τ is closed. For t ∈ τ , let L be a sufficiently small transversal so that the F-holonomy

Hβ(t),α(t) is defined on L. Denote by ρL the projection from a small neighborhood U of β(t) to

L. Then (ρL)∗Y is defined by projectability. Shrinking L if necessary, (ρL)∗δ∗X is also defined.

These projected vector fields are equal, because δ∗X ≡ Y modulo F wherever both are defined.

The projection ρL ◦ β, where defined, is the integral curve through β(t) of either projected vector

field. Now let L′ = Hβ(t),α(t)(L), a transversal to F through α(t). Here (ρL′)∗Y is defined and

ρL′ ◦α, where defined, is its integral curve through α(t). It follows that ρL′ ◦α = Hβ(t),α(t) ◦ρL ◦β.
Then on a small interval of time around t where these projections are both defined, α ≡ β. Thus

τ is open. We conclude τ = [0, t0], so α(t0) ≡ β(t0) ∈ δ(V̂ ). By the hypothesis that δ(V̂ ) is

F-saturated, α(t0) ∈ δ(V̂ ), as desired.

Now let W and Ŵ be as in (2). Given y ∈ W , let U ⊂ W be a foliated neighborhood with

projection L to the local leaf space. The hypotheses imply that after possibly shrinking U , there

is ϵ > 0 such that the map

B2ϵ(R
d) → L c = (c1, . . . , cd) 7→ ρL(φ

cd
Yd

◦ · · · ◦ φc1
Y1
.y)



is a diffeomorphism. Let L′ be the image of B = Bϵ(R
d). For a point y′ of the leaf space, denote

by Fy′ ⊂ W the corresponding leaf. Let U ′ = ∪y′∈L′Ey′ where Ey′ = U ∩ Fy′ . Given c ∈ Rd,

denote by φc
Y the flow φcd

Yd
◦ · · · ◦ φc1

Y1
.

Given c ∈ Rd, let φc
X denote the flow φcd

Xd
◦ · · · ◦ φc1

X1
on V̂ . Given x ∈ δ−1(y) ∩ Ŵ , let

L̂x = {φc
X.x : c ∈ B}

Then L̂x maps diffeomorphically via ρL ◦ δ onto L′. Indeed, suppose u = φc
X.x and u′ = φc′

X.x

map to the same point in L′. Then by equivariance of δ, that would mean ρL(φ
c
Y.y) = ρL(φ

c′
Y.y).

Then ρL(φ
c−c′

Y .y) = ρL(y), with c − c′ ∈ B2ϵ(R
d). By the assumption on ϵ, this means c = c′.

Thus injectivity is proved. Surjectivity follows from equivariance of δ, as well. For u ∈ L̂x, define

Êu = (δ|F̂u
)−1(EρL(δ(u))), where F̂u is the F̂-leaf of u in V̂ . By assumption, these each map

diffeomorphically to their images. Thus

Ûx =
⋃

u∈L̂x

Eu ⊂ Ŵ

maps diffeomorphically to U ′ ⊂W under δ.

Finally, suppose that u ∈ Ûx ∩ Ûx′ . Let F̂u ∩ L̂x = v and F̂u ∩ L̂x′ = v′. Write v = φc
X.x and

v′ = φc′
X.x

′. Then φ−c′

X ◦ φc
X.x is in the same leaf as x′. Then φ−c′

Y ◦ φc
Y.y is in the same leaf as

δ(x′) = y. As c−c′ ∈ B2ϵ(R
d), the first point is in U , and the two points have the same projection

under ρL. By the assumption on ϵ, it follows that c = c′. But then x and x′ are in the same leaf,

which implies they are equal. Therefore the open sets Ûx are disjoint for different x ∈ δ−1(y)∩Ŵ .

We conclude that δ is a covering from Ŵ onto its image in W . The image is open. If there were

y ∈ ∂(δ(Ŵ )), then by the framing assumption of (2) it would be connected by a finite sequence of

flows along {Yi} and segments in leaves of F to a point of δ(Ŵ ). But then by the flow-invariance

of Ŵ and the assumption on δ along the foliations, y would also be in the image δ(Ŵ ). We

conclude δ is a covering map of Ŵ onto W , as desired. □

3. The developing image contains p0.

Recall the U-invariant flag
p0 ⊂ ∆̄ ⊂ L(p0) ⊂ Einn−1,1

Our first case is when the image of δ̄ contains p0. We prove in this case that the (G̃, Ẽin
n−1,1

)-
structure on M is complete—that is, δ is a diffeomorphism.

Theorem 3.1. If the image of δ̄ contains p0, then up to a finite covering, M is the quotient of

Ẽin
n−1,1

by a free, properly discontinuous Z-action that leaves ∆ invariant. More precisely, M

is finitely covered by Ẽin
n−1,1

\⟨gαi⟩ where i > 0 and g ∈ Ũ0.

The first step of the proof deals with the developing map vis-a-vis ∆ ⊂ Ẽin
n−1,1

; recall ∆ is
connected. The following proposition serves for this case as well as the second case in the next
section. Thus there is no special assumption on δ at this stage.

Proposition 3.2. Any connected component Λ of δ−1(∆) is mapped by δ diffeomorphically onto

its image. In particular,



(1) if p0 ∈ δ̄(Λ), then δ maps Λ diffeomorphically onto ∆.

(2) if p0 /∈ δ̄(Λ), then δ maps Λ diffeomorphically onto a connected component of ∆ \ {p̃i},
where {p̃i} = π−1

Ein(p0).

Proof. The restriction of U to ∆̄ is the parabolic flow with unique fixed point p0—see §2.3.1.
Denote the corresponding vector field on ∆̄, and its lift to ∆, by Yσ. The lift to ∆ vanishes

precisely at the points {p̃i} and has no periodic points in each connected component of ∆\{p̃i}.
By Proposition 2.6, δ∗Yσ restricted to δ−1(∆) is a complete vector field on δ−1(∆), on Λ in

particular; moreover, the image δ(Λ) is invariant by the flow along Yσ. The flow-invariant subsets

of ∆ are unions of components of ∆\{p̃i}. In case (1) of this proposition, δ(Λ) = ∆, and in case

(2), δ(Λ) is one component, which we will call ∆i.

In case (2), ∆i can be parametrized by the flow along Yσ. As δ intertwines the two flows, it follows

in this case that δ maps Λ diffeomorphically onto ∆i, as desired.

In case (1), observe that the saturation of Λ by the deck transformations of M̃ → M is a union

of connected components of the closed set δ−1(Λ), and therefore is also closed. Then δ(Λ) ⊂ M

is a closed photon, which inherits from the (G,Einn−1,1)-structure on M a (PSL(2,R),RP1)-

structure. Of course, the latter structure also has unipotent holonomy. From the classification

of one-dimensional (PSL(2,R), RP1)-manifolds—see [12] or [9, §5.5]—the structure on δ(Λ) is

complete. The developing map of this structure is a diffeomorphism to R̃P1, which is embedded

into Ẽin
n−1,1

as ∆—see §2.2.2. This developing map is the restriction of δ to Λ, so we conclude

that δ maps Λ diffeomorphically onto ∆. □

Completeness will extend from Λ to all of M̃ with the help of the τ -flow. By Proposition 2.6,

δ∗Yτ = Xτ is a complete vector field on M̃ and the image of δ is τ -saturated. Denote by {τ̂ s} the

corresponding flow on M̃ . The following lemma is proved using only the equivariance and local
diffeomorphism properties of δ. The interval I in the statement need not map diffeomorphically
onto its image.

Lemma 3.3. Let I ⊆ δ−1(∆) be open and connected. Then the set

W+(I) = {x ∈ M̃ \ δ−1(∆) : lim
t→∞

τ̂ t.x ∈ I}

is open in M̃ . The same holds for the analogously defined set W−(I).

Proof. Let x ∈W+(I) with x∞ = limt→∞ τ̂ t.x, and let y = δ(x). The developing map intertwines

the τ̂ - and τ -flows. Because limt→∞ τ̂ t.x exists, it is mapped under δ to limt→∞ τ t.y by conti-

nuity. By assumption, y /∈ ∆, so this latter limit can be expressed as ρ∆(y). Choose connected

neighborhoods x∞ ∈ A ⊂ M̃ and ρ∆(y) ∈ B ⊂ Ẽin
n−1,1

such that δ maps A diffeomorphically to

B; shrink them if necessary to ensure that A ∩ Λ ⊂ I.

Choose connected neighborhoods x ∈ U ⊂ M̃ and y ∈ V ⊂ Ẽin
n−1,1

\∆ such that δ maps U

diffeomorphically to V , and let

U ′ = (ρ∆ ◦ δ|U )
−1 (B ∩∆)

which is again an open neighborhood of x. Let V ′ = δ(U ′).



Consider x′ ∈ U ′, and let y′ = δ(x′). As {τ t} converges uniformly on compact sets to ρ∆, there

are T > 0 and a connected open W ⊂W ⊂ V ′ containing y and y′ with τ t(W ) ⊂ B for all t ≥ T .

We can choose T large enough that τ̂T (x) ∈ A. Connectedness of {τ t.y : t ≥ T} ⊂ B implies that

τ̂ t.x ∈ A for all t ≥ T . Now (δ|U ′)−1(W ) is connected and open, so for any t ≥ T ,

τ̂ t((δ|U ′)
−1(W )) = (δ|A)

−1(τ t(W )) ⊂ A

Since limt→∞ τ t(y′) exists and belongs to B∩∆, it now follows via equivariance that limt→∞ τ̂ t(x′)

exists and belongs to A∩Λ ⊂ I. As x′ was an arbitrary point of U ′, we conclude that U ′ ⊂W+(I),

which completes the proof for W+(I). The proof for W−(I) is completely analogous. □

Adding the assumption that I maps diffeomorphically onto its image, we can take the key step
for proving completeness.

Proposition 3.4. Let J ⊆ ∆ be open and connected and I be a connected component of δ−1(J).

If δ maps I to J diffeomorphically, then the sets

W±(I) = {x ∈ M̃ \ δ−1(∆) : lim
t→±∞

τ̂ t.x ∈ I}

each map diffeomorphically onto the sets

Ω±(J) = {z ∈ Ẽin
n−1,1

\∆ : lim
t→±∞

τ t.z ∈ J}.

Proof. The proof here is for W+(I) and Ω+(J); the other case is proved mutatis mutandis.

Let x1, x2 ∈ W+(I) with yi = δ(xi), i = 1, 2. As limt→∞ τ̂ t.xi = zi exists, it maps under δ to

limt→∞ τ t.yi, for i = 1, 2. Suppose that y1 = y2 = y. Then by equivariance

δ(z1) = δ(z2) = lim
t→∞

τ t(y)

By our assumption, this implies z1 = z2 = z. Now let A be a neighborhood of z mapping diffeomor-

phically under δ to its image, which we will denote B. Let T > 0 be such that τ̂T (x1), τ̂
T (x2) ∈ A.

By equivariance, τT (y) ∈ B. But then τ̂T (x1) = τ̂T (x2) which implies x1 = x2. Therefore δ is

injective in restriction to W+(I).

Next let y ∈ Ω+(J), with limt→∞ τ t.y = z. Let w ∈ I be the δ-preimage of z. Let A be a

neighborhood of w mapping diffeomorphically to B, a neighborhood of z. Let T > 0 such that

τ t.y ∈ B for all t ≥ T . Let x = (δ|A)−1(τT .y). Then limt→∞ τ̂ t(x) = w and δ(τ−T .x) = y.

Now δ restricted to the open set W+(I) is a bijective local diffeomorphism onto Ω+(J), hence a

diffeomorphism onto Ω+(J). □

We are ready to assemble the proof of Theorem 3.1. Assume that p0 is in the image of δ̄. Let Λ be a
connected component of δ−1(∆). By Proposition 3.2 (2), δ maps Λ diffeomorphically onto ∆. Let

Ω = Ẽin
n−1,1

\∆ and W = W+(Λ). Proposition 3.4 above says that W maps diffeomorphically

under δ to Ω. Since dimM ≥ 3, the codimension of δ−1(∆) is at least two, so M̃\δ−1(∆) is

path connected. Lemma 2.4 applies to U = M̃\δ−1(∆) and X = Ω, to give that W = W+(Λ)

maps diffeomorphically to Einn−1,1 \∆̃ and equals U . Any other component Λ′ of δ−1(∆) would
give W+(Λ′) disjoint from W+(Λ) yet equal to U—a contradiction. Therefore Λ = δ−1(∆), so



M̃ = W ∪ Λ. Finally, δ is a bijective local diffeomorphism, so δ maps M̃ diffeomorphically onto

Ẽin
n−1,1

. Completeness is proved.

To analyze the holonomy, recall that πM (Λ) ∼= ∆̄ is a complete (PSL(2,R),RP1)-manifold. The

restricton to Λ of the covering group action on M̃ is conjugated by δ to the action of ⟨αi⟩ on
∆, for some i > 0. On the other hand, this restriction to Λ is faithful, so π1(M) ∼= Z. Since
we assume that the holonomy projected to PO(n, 2) belongs to U , it follows that Γ = ⟨αig⟩ with
i > 0 and g ∈ Ũ0.

4. The developing image does not contain p0 but does meet ∆̄

We continue to the second case of our classification. Notice that this case does not have an
analogue in the conformal Riemannian setting.

4.1. The developing image. Write {p̃i} = π−1
Ein(p0), and let ∆0 be a connected component of

∆\{p̃i} meeting the image of δ. Let Λ0 be a connected component of δ−1(∆0). By Proposition
3.2 (2), Λ0 maps diffeomorphically under δ onto ∆0. The lattter set is of the form

∆0 = {x ∈ ∆ : p̃i < x < αp̃i}
for some i, which we will assume to be 0.

Let Γ̂0 < Conf M̃ be the stabilizer of Λ0 in the group of deck transformations of M̃ →M . As ∆0

is homeomorphic to R, so is Λ0. Proposition 2.5 gives that πM (δ−1(∆)) is closed; then πM (Λ0),

a connected component of this set, is also closed. Thus Γ̂0
∼= Z.

Let S0 ⊂ L(p̃0)\{p̃i} be the connected component containing ∆0. Note that S0 = L(p̃0, α.p̃0).
Let Σ0 be a connected component of δ−1(S0). The following proposition establishes completeness
of δ between Σ0 and S0. It is not assumed that δ(Σ0) meets ∆; part (2) of the proposition will
be used for case 3, in §5 below.

Proposition 4.1. Assume that p0 /∈ im δ̄. Let S be a connected component of L(p̃0)\π−1
Ein(p0)

and ∆0 = S ∩∆. Let Σ be a connected component of δ−1(S). Then δ maps Σ diffeomorphically

to its image, which equals

(1) S if δ(Σ) ∩∆0 ̸= ∅.
(2) S\∆0 if δ(Σ) ∩∆0 = ∅

Proof. The submanifold Σ is a connected component of δ−1(L(p̃0)), so it is closed in M̃ . On the

other hand, S is a regular submanifold. The holonomy subgroup Γ0 = h(Γ̂0) leaves S invariant,

as does all of Ũ0. The Γ-orbit of S is a union of connected components of L(p̃0)\{p̃i}. Thus

Σ can also be considered a connected component of the inverse image of the Γ-invariant regular

submanifold Γ.S.

Let F be the foliation of S by photons. It is invariant by Γ0 (and extends to a Γ-invariant

foliation of Γ.S). We have seen just above that if δ(Σ) meets ∆0 then any connected component

of δ−1(∆0) in Σ maps diffeomorphically to ∆0 under δ. On any photon in S\∆0, the τ -flow acts

simply transitively—this can be seen from the formula (3) for the τ -flow, taking xn+1 = 0 and

xn ̸= 0. By Proposition 2.6, δ∗Yτ = Xτ is a complete vector field on M̃ . It follows that for

any photon γ of S\∆0, each component of δ−1(γ) ∩ Σ is mapped diffeomorphically by δ to γ.



We conclude that δ maps leaves of F̂ in Σ diffeomorphically to leaves of F in S, where F̂ is the

pulled-back foliation by photons on Σ.

Next we define vector fields Y2, . . . , Yn−1 on S. They will be lifted from S̄ = L(p0)\{p0} ⊂
Einn−1,1. Denote by F̄ the foliation by photons on S̄. Consider the map given in homogeneous

coordinates by

(4) ι : R×Rn−2 → S̄ (t, (y2, . . . , yn−1)) 7→ [t : −||y||2

2
: y2 : · · · : yn−1 : 1 : 0]

It is an injective immersion onto S̄\∆̄. Let Yi = ι∗(∂yi) for i = 2, . . . , n− 1. As ∂yi is projectable

under R × Rn−2 → Rn−2, and ι maps the fibers R × {y} diffeomorphically to the photons of

S̄\∆̄, it follows that Yi is projectable modulo F̄ for all i. The U-action on Einn−1,1 preserves the

image of ι. The conjugated U-action on R ×Rn−2 descends to the Rn−2-action by translations

on (R×Rn−2)/R ∼= Rn−2, and thus centralizes ∂yi modulo the R-factor, for all i. The U-action
on S̄\∆̄ thus centralizes each Yi modulo T F̄ .

Let L = L([e0])∩L([en+1]), a conformally embedded copy of Sn−2, corresponding in homogeneous

coordinates on Einn−1,1 to the locus where x0 = 0 = xn+1. In the affine chart on P(e⊥0 ∩ e⊥n+1)
∼=

RPn−1 where xn = 1, a routine calculation gives Yi = ∂xi − xi∂x1. In the affine chart where

x1 = 1, the expression is

Yi =

n−1∑
j=2

xixj∂xj + xn∂xi + xnxi∂xn

which tends to 0 as x→ 0. The origin of this affine chart corresponds to [e1] ∈ ∆̄. The conclusion

is that Yi extends by 0 to ∆̄. Now lift the resulting vector fields on S̄ to S; we will continue to

denote these by Yi, for i = 2, . . . , n− 1.

The vector fields Yi are each projectable and Ũ0-invariant modulo F , thus they are Γ0-invariant

(and Γ-invariant when equivariantly extended to Γ.S) modulo F . We are now in a position to

apply Proposition 2.16. The image δ(Σ) is invariant by the flow along Yi for all i, which means

that it meets every leaf of S\∆0. In case (1) or (2), δ maps Σ onto the claimed set. In case (2),

the vector fields {Yi} form a framing of the local leaf space at every point of S\∆0, so part (2) of

Proposition 2.16 applies to give that Σ → S\∆0
∼= Rn−1 is a covering map, which means it is a

diffeomorphism.

In case (1), we take W = S\∆ in Proposition 2.16 (2). It gives that any connected component of

Σ\δ−1(∆0) maps by a covering map onto S\∆0
∼= Rn−1, therefore by a diffeomorphism. By the

following lemma, there is only one such component. Then δ is a bijective local diffeomorphism

on Λ ∪ Σ\δ−1(∆0) = Σ, so it maps Σ diffeomorphically to S, as desired. □

Lemma 4.2. For S and Σ as in Proposition 4.1 case (1), Σ\δ−1(∆0) is connected.

Proof. Let Λ be a connected component of δ−1(∆0)∩Σ. ConsiderW±(Λ) as in Lemma 3.3. Since

Λ maps diffeomorphically under δ to ∆0, Proposition 3.4 gives thatW±(Λ) maps diffeomorphically

to Ω±(∆0), respectively. By Proposition 2.15, these are Min∓(p̃0), respectively. By Corollary

2.14, the boundaries of these sets in Ẽin
n−1,1

\{p̃i} are α−1.S ∪ S and S ∪ α.S, respectively.



For x ∈ Σ ∩ ∂W+(Λ), let Û be a neighborhood mapping diffeomorphically to its image under δ,

which will be denoted U . Now

Û ∩ ∂W+(Λ) = Û ∩ δ−1(∂Ω+(∆0)) = Û ∩ δ−1(α−1.S ∪ S)

By shrinking Û to ensure that U ∩ (L(p̃0)\{p̃i}) is connected, we may arrange that

Û ∩ ∂W+(Λ) = Û ∩ δ−1(S) = Û ∩ Σ

Thus Σ ∩ ∂W+(Λ) is open in Σ. Since it is also closed and Σ is connected, it follows that

Σ ⊂ ∂W+(Λ). The analogous argument implies Σ ⊂ ∂W−(Λ).

Now suppose x ∈ Σ\δ−1(∆0). Then Û meets W±(Λ) and U meets only the Minkowski patches

Min±(p̃0); by Proposition 3.4, Û\Σ ⊂W+(Λ)∪W−(Λ). Now δ is a local diffeomorphism between

the open sets

W+(Λ) ∪ (Σ\δ−1(∆0)) ∪W−(Λ) → Min−(p̃0) ∪ (S\∆0) ∪Min+(p̃0)

Any component Σ′ of Σ\δ−1(∆0) maps diffeomorphically to S\∆0, as seen in the proof of Propo-

sition 4.1. Then the open subset W+(Λ) ∪ Σ′ ∪W−(Λ) maps diffeomorphically onto the target

above. Therefore Σ\δ−1(∆0) = Σ′ by Proposition 2.4. □

With Proposition 4.1 and the arguments of the preceding proof, we have also established:

Proposition 4.3. Let S and Σ be as in case (1) of Proposition 4.1. Then

• W = W+(Λ) ∪ Σ ∪ W−(Λ) is open and is mapped diffeomorphically by δ onto Ω =

Min−(p̃0) ∪ S ∪Min+(p̃0).

• δ−1(∆0) ∩ Σ = Λ is connected.

The following complete description of δ will conclude this subsection.

Proposition 4.4. The set W in the conclusion of Proposition 4.3 equals M̃ , and Γ0 = Γ. The

developing map is a diffeomorphism of M̃ onto Ω, and the holonomy image is a subgroup of Ũ0

isomorphic to Z.

Proof. Assume to the contrary that there is x ∈ ∂W . Then δ(x) ∈ ∂Ω ∩ (Ẽin
n−1,1

\ {p̃i}). From
Corollary 2.14 the boundaries of Min±(p̃0)∩ Ẽin

n−1,1
\{p̃i} are contained in the three punctured

light cone components L(αi.p, αi+1.p) for i = −1, 0, 1. One of these, L(p, α.p), equals S and is in

the interior of Ω. Therefore

∂Ω = L(α−1.p, p) ∪ L(α.p, α2.p) = α.S ∪ α−1.S

By construction, Γ0 is contained in the stabilizer of ∆0; the latter intersects Ũ in Ũ0. Thus Γ0 is

also contained in the stabilizer of αi.S and αi.∆0 for all i. Without loss of generality, we assume

δ(x) ∈ α.S. Let Σ′ ⊂ δ−1(α.S) be a nonempty connected component. Proposition 4.1 implies

that Σ′ maps diffeomorphically onto α.S or α.S\α.∆0 under δ. By the usual argument with

Proposition 2.5, the stabilizer in π1(M) of Σ′ acts cocompactly. On the other hand, this stabilizer

maps isomorphically to Γ0
∼= Z. It is therefore impossible that δ(Σ′) = α.S\α.∆0

∼= Rn−1.

Therefore necessarily Σ′ maps diffeomorphically under δ onto α.S.



Figure 2. The lightcone L(q0) in Min+(p̃0) has compact closure in Ẽin
n−1,1

\{p̃i}.

Now Σ′∪W−(Λ)∪Σ develops diffeomorphically to α.S∪Min+(p̃0)∪S. The latter set is the closure
of Min+(p̃0) in Ẽin

n−1,1
\{p̃i} by Corollary 2.14. We will show that Γ0

∼= Z does not act properly

on this set. Let q0 be the origin of the Minkowski patch Min+(p̃0), and let K = L(q0)∩Min+(p̃0).

Since any two lightcones in Minn−1,1 intersect, the images γ.K intersect K for any γ ∈ Γ0. The

closure K ⊂ Min+(p̃0) does not meet {p̃i}—it is easily seen from the Minkowski chart in §2.2.1
that p0 /∈ πEin(K)—so K is a compact subset of Ẽin

n−1,1
\{p̃i}. Thus δ−1(K)∩(Σ′ ∪W−(Λ) ∪ Σ)

is compact, and intersects its image under any γ ∈ Γ̂0
∼= Z. Because Γ̂0 acts properly by deck

transformations on M̃ , this is a contradiction. See Figure 2. The conclusions of the proposition

now follow. □

4.2. Determination of holonomy, conclusion of classification. It is established that Γ̂0
∼=

Γ ∼= Z; moreover, Γ is generated by an element of Ũ0 acting freely, properly discontinuously, and
cocompactly on ∆0, S, and Ω. We first establish necessary conditions on this generator, which
we will call γ.

Proposition 4.5. Let γ be the generator of the holonomy image under the assumptions of this

section, and let γ̄ = q(γ) ∈ G. Let L(γ̄) + uγ̄ be the affine decomposition as in Section 2.3.1.

Then uγ̄ is nontrivial modulo e⊥1 . Moreover, if L(γ̄) = Id, then uγ̄ is timelike.

Proof. The restriction of U to ∆̄ = P(span{e0, e1}) corresponds in the affine representation to the

projection of uγ̄ modulo e⊥1 , and this must be nontrivial.



Next suppose that γ̄ ∈ kerL, and let v = uγ̄ . Let ι : R × Rn−2 → S̄′ be the chart on S̄′ =

πEin(S)\∆̄ given in (4). In this chart, the action of γ̄ is by

(t, y) 7→ (t+ ⟨v, (−||y||2/2, y2, . . . , yn, 1)⟩, y)

where the scalar product on Rn−1,1 is the one with quadratic form qn−1,1. The lines

{t(−||y||2/2, y2, . . . , yn, 1) : t ∈ R, y ∈ Rn−2}

describe the full null cone N n−1,1 of Rn−1,1 except for the line Re1. We have already established

that v is not orthogonal to e1. Then γ̄ will pointwise fix some photon of S̄ unless it is not

orthogonal to any line in N n−1,1. Since γ̄ must act freely on S̄, we conclude that v is timelike. □

Lemma 4.6. Let q0 be the origin of the Minkowski patch Min−(p̃0), and suppose there is γ ∈ G̃

that satisfies

(1) q0 ≪ γ.q0,

(2) lim
i→∞

γi.q0 = α.p̃0 and lim
i→−∞

γi.q0 = α−1.p̃0.

Then ⟨γ⟩ acts on Ω with compact fundamental domain given by

D = J+(q0) ∩ I−(αγ.q0).

Proof. We first prove the union
⋃
i∈Z

γi.D covers the entirety of Ω. From Lemma 2.11,

⋃
i∈Z

γi.(J+(q0) ∩ I−(αγ.q0)) =
⋃
i∈Z

γi.(I−(αγ.q0) \ I−(α.q0))

=
⋃
i∈Z

(I−(αγi+1.q0) \ I−(αγi.q0))

As both α and γ preserve time orientation,

αγi.q0 ≪ αγi+1.q0, ∀i ∈ Z

which gives

I−(αγi.q0) ⊂ I−(αγi+1.q0), ∀i ∈ Z.

It thus follows that⋃
i∈Z

(I−(αγi+1.q0) \ I−(αγi.q0)) =
⋃
i∈Z

I−(αγi.q0) \
⋂
j∈Z

I−(αγj .q0)

From (2),

lim
i→∞

αγi.q0 = α2.p̃0.

Since α2.p̃0 succeeds each αγi.q0,

I−(αγiq0) ⊆ I−(α2p̃0), ∀i ∈ Z.

For any set S, the future and past satisfy I±[S] = I±[S] [16, Prop 2.11]. Thus the reverse

containment holds, and ⋃
i∈Z

I−(αγi.q0) = I−(α2.p̃0).



From Lemma 2.11, ( ⋂
j∈Z

I−(αγj .q0)
)c

=
⋃
j∈Z

J+(γj .q0).

For any x < γi.q0, by (1), x≪ γi+1.q0 and J+(γi.q0) ⊂ I+(γi+1.q0). It follows that⋃
j∈Z

J+(γj .q0) =
⋃
j∈Z

I+(γj .q0)

From (2), lim
i→−∞

γi.q0 = α−1.p̃0. For all i, γi.q0 ∈ Min−(p̃0) ⊂ I+(α−1.p̃0), so γ
i.q0 < α−1.p̃∞ for

all i. By the argument with [16, Prop 2.11] as above, we can conclude⋃
j∈Z

I+(γj .q0) = I+(α−1.p̃∞)

We can finally conclude that ⋃
i∈Z

γi.D = I−(α2.p̃0) ∩ I+(α−1.p̃0)

which by definition equals Min−(p̃0) ∪Min+(p̃0) = Ω.

It remains to show D ∩ γi.D = ∅ for all i ∈ Z. Let i be given, which we may assume is positive.

From (1), it follows that

J+(γi.q0) ⊂ J+(γ.q0).

By Lemma 2.11, we can also express

D = J+(q0) \ J+(γ.q0) and γi.D = J+(γi.q0) \ J+(γi+1.q0).

The desired disjointness now follows. □

Proposition 4.7. Let γ ∈ Ũ0 satisfy either necessary condition of Proposition 4.5. Then γ

satisfies the sufficient conditions of Lemma 4.6 and ⟨γ⟩ acts freely, properly discontinuously, and

cocompactly on Ω.

Proof. First suppose that γ̄ = q(γ) is a translation by a timelike vector v. Considering γ−1 if

necessary, we may assume v is future-pointing. Then evidently, for q0 the origin of Min−(p̃0), we

have q0 ≪ γ.q0.

Under the Minkowski embedding ι inEinn−1,1, the limit limi→±∞ ι(iv) is p0. Thus limi→±∞ γi.q0 ∈
{p̃i}. By Corollary 2.14, both limits belong to {α−1.p̃0, p̃0, α.p̃0}. On the other hand, the for-

ward limit is in the future of q0, so could only equal α.p̃0. The backward limit is in the past of

q0. Lemma 2.11 gives that the complement of Min−(p̃0) is J+(p̃0) ∪ J−(p̃0)—that is, points of

Min−(p̃0) are not causally related to p̃0. Then limi→−∞ γi.q0 = α−1.p̃0. The sufficient condition

(2) is thus verified for the case that γ̄ ∈ kerL.

We now consider γ̄ = Lγ̄ + v, satisfying Lγ̄ ∈ U and ⟨v, e1⟩ = vn ̸= 0. For x ∈ Minn−1,1, the

linear part Lγ̄ = U ∈ U acts by

U.x = x− xnw +
(
⟨x,w⟩ − xn||w||2/2

)
e1 for some w ∈ e⊥1 ∩ e⊥n



Replacing γ by γ−1 if necessary, we can arrange that vn > 0. In the Minkowski patch of Einn−1,1,

(5) γ̄i.0 =

i−1∑
j=0

U j .v =

i−1∑
j=0

(
v − jvnw +

(
j⟨v, w⟩ − j2vn||w||2/2

)
e1
)

i ∈ N

To evaluate the causal asymptotics of this sequence, recall ∂θ given by (2). Under the inverse of

the Minkowski chart (see §2.2.1), it pushes forward to(
(ι−1)∗∂θ

)
x
= (−qn−1,1(x)/2− 1)(∂1 − ∂n)

which has negative inner product with ∂n − ∂1 everywhere in Minn−1,1. We may use this latter

vector field for time orientation on Minn−1,1 (see [15, Lem 5.29]). Since it is a constant vector

field, a vector x will be in the future light cone of the origin exactly when ⟨x, en − e1⟩ < 0.

Now

⟨γ̄i.0, en − e1⟩ = − i(i− 1)(2i− 1)vn||w||2

12
+O(i2) → −∞ as i→ ∞

Replacing γ by γk for some sufficiently large k > 0, we obtain q0 ≪ γ.q0, and condition (1) of

Lemma 4.6 is verified in this case.

The dominant term in (5) is the coefficient of e1. Under the Minkowski embedding, the limit

points of {γ̄i.q̄0 : i > 0} are in P(span{e0, e1}) = ∆̄ (here q̄0 = πEin(q0) = ι(0)). On the

other hand, γ̄ acts nontrivially on ∆̄ with unique attracting fixed point p0 = [e0]. Therefore

limi→∞ γ̄i.q̄0 = p0. For i < 0, the formula (5) becomes

γ̄i.0 =
−i∑
j=1

−U−j .v =
−i∑
j=1

(
−v − jvnw +

(
j⟨v, w⟩+ j2vn||w||2/2

)
e1
)

i < 0

Here again the e1-component is dominant, and the same argument as for i > 0 gives limi→−∞ γ̄i.q̄0 =

p0. Then we conclude as in the translation case that limi→±∞ γi.q0 = α±.p̃0. Sufficient condition

(2) of Lemma 4.6 is verified. □

This case is now finished; the main results are summarized below. The examples with γ a timelike
translation were previously discovered by C. Frances in his dissertation [4, Sec 7.6.3].

Theorem 4.8. If the image of δ̄ does not contain p0 but does meet ∆̄, then, up to composition with

a conformal transformation, δ is a diffeomorphism onto Ω = Min−(p̃0)∩L(p̃0, α.p̃0)∪Min+(p̃0).

The holonomy image Γ = ⟨γ⟩ for γ ∈ Ũ0 satisfying the necessary and sufficient conditions in

Proposition 4.5. The manifold M is diffeomorphic to Sn−1 × S1.

5. The developing image does not meet the photon ∆̄ but does meet the

lightcone L(p0).

In this case, the unipotence of the holonomy image leads, with the help of Proposition 2.16 based

on [8], to δ being a diffeomorphism of M̃ onto Ẽin
n−1,1

\ ∆. Using, among other things, the
algebraic hull of the holonomy, we prove that there are no examples in odd dimensions. In even
dimensions, we find a family of Heisenberg fiber bundles over the circle.



5.1. Development and holonomy for light cone components. Let p̃0 ∈ π−1
Ein(p0). The space

L(p̃0) \∆ consists of infinitely many connected components {Si}. By case (2) of Proposition 4.1,

δ maps each connected component of δ−1(Si) ⊂ M̃ diffeomorphically to Si for each i.

We now choose components S ⊂ L(p̃0)\∆ and Σ ⊂ δ−1(S). Denote by Γ̂Σ the stabilizer in π1(M)
of Σ. Because δ|Σ is a diffeomorphism to its image, the holonomy restricts to an isomorphism of

Γ̂Σ with its image, which will be denoted ΓΣ. The latter lies in the stabilizer of S, which under

our assumptions equals Ũ0. The restriction of Ũ0 to S is faithful, hence so is the restriction of Γ̂Σ

to Σ.

Lemma 5.1. The action of Γ̂Σ on Σ is cocompact. The cohomological dimension cd ΓΣ equals

n− 1.

Proof. The hypersurface Σ is a connected component of the δ-inverse image of the closed, Γ-

invariant set L(p̃0). Them πM (Σ) = Σ/Γ̂Σ is closed by our standard arguments with Proposition

2.5. The second statement follows from Σ ∼= S ∼= L(p0)\∆̄ ∼= Rn−1. □

Now we will focus on Γ̄Σ = q(ΓΣ). Note that πEin ◦ δ is a diffeomorphism from Σ to πEin(S) =

L(p0)\∆̄. This means that q ◦ h is an isomorphism from Γ̂Σ to Γ̄Σ.

For g ∈ U , recall the affine decomposition g = Lg + ug of §2.3.1. Note that the projection
L(U) < SO(1, n− 1) is abelian.

Lemma 5.2. The linear projection L(Γ̄Σ) spans the abelian Lie group L(U). The image is discrete

only if kerL ∩ Γ̄Σ is nontrivial.

Proof. The leaf space of L(p0)\{p0} is identified with the round sphere Sn−2, on which the U-
action factors through the projection L and is conformal. The quotient of L(p0)\∆̄ by the photon

foliation is thus identified with the punctured round sphere. Under stereographic projection, this

leaf space is conformal to Eucn−2. The action of L(U) ∼= Rn−2 is by translations. (This is the

same action as appears in the proof of Proposition 4.1.)

By Lemma 5.1, Γ̂Σ is cocompact on Σ. Since Σ is (q ◦ h)-equivariantly diffeomorphic via S to

L(p0)\∆̄, it follows that Γ̄Σ acts cocompactly on L(p0)\∆̄, and thus on the leaf space of the

foliation by photons. A group of translations of Eucn−2 is cocompact if and only if it spans

Rn−2. Thus L(Γ̄Σ) spans L(U).
If kerL ∩ Γ̄Σ is trivial, then Γ̄Σ maps isomorphically to its image in L(U) ∼= Rn−2. Thus Γ̄Σ is a

free abelian group in this case. On the other hand, by Lemma 5.1, and because ΓΣ
∼= Γ̄Σ, it has

cohomological dimension n− 1. Thus Zn−1 ∼= Γ̄Σ
∼= L(Γ̄Σ) < Rn−2. It follows that L(Γ̄Σ) is not

discrete in this case. □

Lemma 5.3. The intersection kerL∩ Γ̄Σ is generated by a single, possibly trivial, null translation

in the center of U . If it is nontrivial, then L(Γ̄Σ) is discrete.

Proof. Denote T = kerL ∩ Γ̄Σ. It is a free abelian group; let its rank be k. The quotient

L(Γ̄Σ) < L(U) is also a free abelian group, of rank at least n − 2 by Lemma 5.2. On the other

hand, cd Γ̄Σ = cd ΓΣ = n− 1. We conclude that k ≤ 1.



Of course T is normal in Γ̄Σ. If T is nontrivial, it is isomorphic to Z. The conjugation action of Γ̄Σ

on T is moreover unipotent; therefore, it is trivial, and T is central in Γ̄Σ. Because L(Γ̄Σ) spans

L(U), T must be contained in the common fixed space of L(U) in Rn, which is a one-dimensional

isotropic subspace. It acts on Einn−1,1 by {τ s}.
Finally, if T ̸= 1, then the rank of the free abelian group L(Γ̄Σ) ∼= Γ̄Σ/T is at most n − 2 by

Lemma 5.1. Again, because this image spans L(U), its rank is n − 2 and it is discrete in this

case. □

Corollary 5.4. If n = 3 or kerL ∩ Γ̄Σ = 1, then ΓΣ
∼= Γ̄Σ is abelian.

Proof. If kerL∩ Γ̄Σ = 1, then Γ̄Σ
∼= L(Γ̄Σ), which is abelian. If n = 3 and kerL∩ Γ̄Σ is nontrivial,

then by Lemma 5.3, Γ̄Σ is a central extension of L(Γ̄Σ) ∼= Z by Z, which is necessarily abelian. □

5.2. Development and holonomy for Minkowski patches. LetH be the foliation of Ẽin
n−1,1

\∆
by the fibers of ρ∆ (see 2.3.2). Because the developing image is contained in Ẽin

n−1,1
\∆ and

H is invariant by Γ̂, it pulls back to a foliation Ĥ of M̃ by degenerate hypersurfaces, invariant
by the group of deck transformations, which we will denote Γ̂. Each leaf of Ĥ is a connected
component of the δ-preimage of a leaf in H. One of these leaves is Σ, which is already known
to map diffeomorphically under δ to S. We now prove the same property for every leaf of the
foliation.

Proposition 5.5. For the foliation of M̃ pulled back by δ from H, each leaf in M̃ maps diffeo-

morphically to a leaf of H.

Proof. We begin by defining vector fields Y2, . . . , Yn−1 on Einn−1,1 \∆̄. In the Minkowksi chart

Min(p0) = Min([e0]), they are coordinate vector fields of

ι : (y1, y2, . . . , yn) 7→ [−q(y)
2

: y1 : y2 : · · · : yn : 1]

The two Minkowski charts Min([e0]) and Min([e1]) cover Einn−1,1 \∆̄—their complement is the

projectivization of e⊥0 ∩ e⊥1 = span{e0, e1}. The second Minkowski chart is

(x1, . . . , xn) 7→ [x1 : −
q(x)

2
: x2 : · · · : xn−1 : 1 : xn]

The change of coordinates is

x1 = −q(y)
2yn

xi =
yi
yn
, i = 2, . . . , n− 1 xn =

1

yn

For i = 2, . . . , n− 2, the push forward by the change of coordinates is

∂

∂yi
7→ xn

∂

∂xi
− xi

∂

∂x1

These vector fields thus extend to smooth vector fields Y2, . . . , Yn−2 on Einn−1,1 \∆̄.

Note that Min([e1])\Min([e0]) = L(p0)\∆̄ corresponds to xn = 0, and that here, the Yis are

all tangent to the foliation F̄ of the lightcone by photons. Then evidently in restriction to

S̄ = L(p0)\∆̄, the U-action leaves Yi invariant modulo F̄ for all i. Also, as they do not depend on

x1, the Yis are all projectable modulo F̄ on S̄. In the coordinates on Min([e0]) = Min(p0), the



foliation F̄ by photons is the linear foliation tangent to e1, and L(U) is trivial on e⊥1 /Re1, which
means it fixes Yi =

∂
∂yi

modulo F̄ for all i. As the Yi are all constant in these coordinates, they are

projectable modulo F̄ inside Min(p0), too. Lastly, note that the Yis commute on Einn−1,1 \∆.

Now lift {Y2, . . . , Yn−1} to Ẽin
n−1,1

\∆, keeping the same notation for them. They are Γ-invariant

modulo the foliation F by photons and projectable modulo F . The τ -flow is simply transitive on

each photon of Ẽin
n−1,1

\∆. As always, since Γ commutes with {τ s}, it pulls back to a complete

flow {τ̂ s} on M̃ by Proposition 2.6. Thus for the subfoliation F̂ ⊂ Ĥ by photons, each leaf maps

diffeomorphically under δ to its image in Ẽin
n−1,1

\∆.

By Proposition 4.1 (2), every leaf of Ĥ mapping into L(p̃0) maps diffeomorphically to a connected

component of L(p0)\∆ (as previously noted). Therefore, we will consider Hy ⊂ Min−(p̃j) for

some j for the remainder of the proof.

Part (1) of Proposition 2.16 gives that the image of δ is invariant by the flow along any Y ∈
span{Y2, . . . , Yn−1}. For y ∈ Min−(p̃j), the orbit of y under these flows, saturated by F , is the

full leaf Hy. For y ∈ Min−(p̃j), the {Y2, . . . , Yn−1} form a framing modulo F in restriction to

Hy. Then Proposition 2.16 part (2), for W = Hy, gives that the leaf Ĥx mapping onto Hy maps

by a covering. As Hy
∼= Rn−1, this is a diffeomorphism. □

Proposition 5.6. Suppose that the image of δ intersects Min−(p̃i) for some p̃i ∈ π−1
Ein(p0). Then

an open subset Ωi ⊂ M̃ maps diffeomorphically under δ to Min−(p̃i).

Proof. By Proposition 5.5, the image of δ is H-saturated; moreover, δ maps Ĥ-leaves diffeomor-

phically to H-leaves. To define a transverse vector field on Ẽin
n−1,1

\∆, we reprise the Minkowski

charts Min([e0]) and Min([e1]) on Einn−1,1 as in the proof of that proposition.

Under the change of coordinates,

∂

∂yn
7→

(
q(x)

2
+ x1xn

)
∂

∂x1
−

n−1∑
i=2

xixn
∂

∂xi
− x2n

∂

∂xn

Then the coordinate vector field ∂/∂yn onMin(p0) extends by 0 to L(p0)\∆̄, the set corresponding

to xn = 0 in Min([e1]). We obtain a well-defined vector field Yn on Einn−1,1 \∆̄. As Yn is

constant in the chart Min(p0) and 0 elsewhere, it is projectable modulo H̄. As L(U) acts trivially
on Rn−1,1/e⊥1 , and Yn vanishes on the complement of Min(p0), it is U-invariant modulo H̄.

Now lift Yn to Ẽin
n−1,1

\∆, where it will still be denoted Yn. It is Γ-invariant and projectable

modulo H. Take W = Min−(p̃i). It is saturated by H and by the flow along Yn; moreover,

Yn is nonzero modulo H everywhere in W . Then for Ωi any connected component of δ−1(W ),

Proposition 2.16 says that Ωi maps diffeomorphically onto Min−(p̃i). □

A neighborhood of Σ intersects at least one such Ωi ⊂ M̃ . The holonomy subgroup ΓΣ lies in

Ũ0 and preserves each Minkowski patch in Ẽin
n−1,1

. Thus Γ̂Σ leaves invariant the open sets

corresponding to Minkowski patches neighboring Σ in M̃ . Let one such be Ω. It is mapped
diffeomorphically under δ̄ to Min(p0). The Γ̂Σ-action on Ω is thus conjugate to the Γ̄Σ

∼= ΓΣ-
action on Min(p0). We now consider the latter action in detail. We will write the group ΓΣ and
not distinguish from Γ̄Σ for this discussion.



The leaf space of H̄ in Min(p0) is diffeomorphic via ρ∆̄ to ∆̄\{p0} ∼= R. Fix for the remainder
of this section an identification Min(p0) with Minn−1,1, with the quadratic form qn−1,1 of §2.2.1.
Denote by D the homomorphism sending an element of U to its action on this leaf space. The leaf
space can also be identified with Ren, for which D(g) is translation by ⟨e1, ug⟩, the translational
component of g transverse to H̄.

Proposition 5.7. If n ≥ 4 , then ΓΣ ⊂ kerD. On the leaf space of Ĥ in M̃ , the action of Γ̂Σ is

trivial.

For g, h ∈ U , the commutator [g, h] = ghg−1h−1 is easily seen to be

(6) [g, h] = (Lg − Id)uh − (Lh − Id)ug

The identification of L(U) with Rn−2 can be made explicitly as follows: in our coordinates on
Minn−1,1, elements Lg ∈ L(U) act by

Lg(v) ≡ v − ⟨v, e1⟩ℓg mod Re1(7)

for a unique ℓg ∈ e⊥1 /Re1
∼= Rn−2. Denote V = e⊥1 /Re1.

Proof. The aim is to prove that for all g ∈ ΓΣ, the translational component ug ∈ e⊥1 . Since the

linear part L(g) preserves each leaf of H̄ in Min(p0), it will then follow that g preserves each leaf.

The corresponding statement about Γ̂Σ will follow from Proposition 5.6.

Let g, h ∈ ΓΣ, and let ℓg, ℓh ∈ V correspond to L(g) and L(h) as above. The commutator given

by (6) belongs to kerL∩ΓΣ. The latter subgroup acts on Minn−1,1 by a group of translations in

the direction of e1 by Lemma 5.3. Thus

(Lg − Id)uh − (Lh − Id)ug ≡ ⟨uh, e1⟩ℓg − ⟨ug, e1⟩ℓh ≡ 0 mod Re1

for all g, h ∈ ΓΣ. If for one g ∈ ΓΣ, the component ⟨ug, e1⟩ ≠ 0, then ℓg ̸= 0 by Lemma 5.3, and ℓh
must be linearly dependent with ℓg for all h ∈ ΓΣ. If n ≥ 4, then the latter conclusion contradicts

Lemma 5.2. □

The action of ΓΣ on Minn−1,1 is affine and properly discontinous. Viewing U as a subgroup of
the affine group of Minn−1,1, there is a connected algebraic hull H < U which acts properly on
Minn−1,1 and contains ΓΣ as a cocompact lattice (see [7, Thm 1.4]). In fact, H acts freely on
Minn−1,1 as well [7, Lem 1.9]. By the proposition above, H is in fact contained in kerD if n ≥ 4,
so it acts freely and properly on each hyperplane in the foliation H̄ in this case.

Lemma 5.8. For H the algebraic hull of ΓΣ in Aff Minn−1,1, there are nontrivial translations

in H, that is, kerL ∩H ̸= 1.

Proof. Suppose that kerL ∩ ΓΣ = 1. By Lemma 5.1 and because L(U) ∼= Rn−2, the group

ΓΣ
∼= Zn−1. Thus the algebraic hull H ∼= Rn−1 and it intersects the kernel of L nontrivially.

If kerL ∩ ΓΣ ̸= 1, then evidently H also has nontrivial intersection. □

We establish some basic structural features ofH. Since L(ΓΣ) spans L(U) by Lemma 5.2, the linear
projection of the algebraic hull L(H) equals L(U). For h /∈ kerL, the translational component uh
is given by a 1-cocycle L(H) → Rn−1,1 = kerL; by Proposition 5.7, this cocycle has values in e⊥1 .



Because L(H) acts trivially on V = e⊥1 /Re1, composing Lh 7→ uh with projection to V yields a
homomorphism. Recall the identification of L(U) with V via ℓg from (7). Define

θ ∈ End(V ) θ : ℓh 7→ ūh = uh mod Re1

Proposition 5.9. Assume that ΓΣ < kerD and let H be the algebraic hull, with associated

θ ∈ End(V ) as above. If θ has a real eigenvalue, then H does not act properly on Minn−1,1;

more precisely, if r is a real eigenvalue, then H acts with noncompact stabilizers on the affine

hyperplane defined by ⟨x, e1⟩ = r.

Proof. Let ℓ ∈ V be an eigenvector of θ with eigenvalue r. Because H projects onto L(U), there
is an element h ∈ H with ℓh = ℓ. By definition, θ(ℓh) = rℓh ≡ uh mod Re1. Given x ∈ Minn−1,1,

equation (7) says

h(x) = Lh(x) + uh ≡ x− ⟨x, e1⟩ℓh + uh

Thus h, and the 1-parameter subgroup of H containing h, act trivially modulo Re1 on the affine

hyperplane defined by ⟨x, e1⟩ = r . The translations Re1 belong to H, as well, by Lemma 5.8.

Therefore any vector in this hyperplane has a noncompact stabilizer, proving nonproperness. □

5.3. The global picture. As above, H is the algebraic hull of ΓΣ in U .

Proposition 5.10. Suppose that n = 3. Then Γ̂Σ does not act properly on M̃ .

From this proposition we conclude there are no 3-dimensional examples for which im δ̄ meets
L(p0) but not ∆̄.

Proof. Let S be a connected component of L(p0)\∆ in the image of δ, as above. LetMin−(p̃i) have

S in its closure, so that by Proposition 5.6, there is Ωi mapping diffeomorphically to Min−(p̃i).

Let ℓ = Re3 ⊂ Min2,1. Note that, under the Minkowski chart Min2,1 → Min(p0) the closure ℓ in

Ein2,1 is a photon not meeting ∆̄. The corresponding closure ℓ in Ẽin
2,1

\∆ is compact, contained

in Min−(p̃i) ∪ S. It is therefore the diffeomorphic image of a compact photon C in M̃ .

Fix a generater ℓ of e⊥1 /Re1 and write ℓg = sgℓ for each g ∈ H. We can write ug ≡ agℓ + bge3
mod Re1. Then, whenever sg ̸= 0, we can take t = ag/sg to obtain

g(te3) = Lg(te3) + ug ≡ te3 − tsgℓ+ agℓ+ bge3 ≡ (t+ bg)e3 mod Re1

Because H projects onto L(U), there is an unbounded set of h ∈ H with sh ̸= 0. On the other

hand, by Lemmas 5.8 and 5.3, the translations by Re1 are in H. Therefore, there is an unbounded

subset of h ∈ H for which h.ℓ̄ ∩ ℓ̄ ̸= ∅. As ΓΣ is a lattice in H, there are infinitely many γ ∈ ΓΣ

and a compact subset D ⊂ H such that γ.K ∩K ̸= ∅ for K = D.ℓ ⊂ Min−(p̃i) ∪ S. Then there

are a compact subset K̂ ⊂ M̃ and infinitely many γ̂ ∈ Γ̂Σ such that γ̂.K̂ ∩ K̂ ̸= ∅. □

Proposition 5.11. The developing map δ is a diffeomorphism of M̃ with Ẽin
n−1,1

\∆.

This lemma will be used in the proof.

Lemma 5.12. The developing map δ induces a local homeomorphism between the leaf space

(Ẽin
n−1,1

\∆)/H ∼= ∆ and the corresponding leaf space in M̃ . In fact, the induced map on leaf

spaces is a diffeomorphism to its image, which is an open interval in ∆.



Proof. Let p ∈ M̃ and let W be a neighborhood of p mapping diffeomorphically under δ to its

image in Ẽin
n−1,1

. Shrink W as necessary so that δ(W ) admits a transversal submanifold T to

H through δ(p) mapping diffeomorphically to its image T in the leaf space of Ẽin
n−1,1

\∆.

Let τ be the corresponding transversal to the foliation in W , so that δ restricted to τ is a

diffeomorphism to T . Let τ̄ be the image of τ in the leaf space of M̃ . There is a map τ̄ → T̄

which is well-defined because δ sends leaves in M̃ into leaves in Ẽin
n−1,1

\∆. There is moreover

an inverse map T̄ → τ̄ which is easily seen to be continuous.

To conclude, we verify that the map τ̄ → T̄ is continuous. An open subset Ū ⊂ T̄ is diffeomorphic

to a relatively open subset U ⊂ T . There is moreover an H-saturated open subset Ũ such that

Ũ ∩ T = U . Now

(δ|W )−1(U) = (δ|W )−1(Ũ ∩ T ) = δ−1(Ũ) ∩ τ
The projection of the set on the left-hand side is the inverse image of Ū in τ̄ . The expression on

the right-hand side exhibits it as an open subset of τ̄ .

Now that we have shown that the map on leaf spaces is a local homeomorphism, it follows that

the leaf space in M̃ is a one-dimensional manifold, and the map between leaf spaces is a local

diffeomorphism. The image in the leaf space of Ẽin
n−1,1

\∆ is open and connected, thus an open

interval. The leaf space in M̃ is therefore diffeomorphic to R and maps diffeomorphically to its

image. □

We now prove Proposition 5.11.

Proof. The image of the developing map δ is an open, contiguous union of Minkowski charts

Min(p̃i) and their interstitial light cone components Sj . By Lemma 5.12, δ factors through a

map on leaf spaces which is a diffeomorphism to an open interval I ⊂ ∆ ∼= R. The fibers of the

composition M̃ → I are the leaves of Ĥ, which is thus a simple foliation of M̃ . By Proposition

5.5, it follows that M̃ is diffeomorphic to Rn and maps diffeomorphically under δ to its image.

Therefore Γ̂ maps isomorphically under h to its image Γ < Ũ .

It remains to show the image of δ is all of Ẽin
n−1,1

\∆. Suppose that I is a finite interval in R.

Then it contains Si for finitely many i. A finite index subgroup of Γ stabilizes each light cone

component; let one of them be S. For Σ = δ−1(S), the group Γ̂Σ is isomorphic to Stab(S) and has

finite index in Γ̂. Then cd Γ = cd ΓΣ = n− 1 by Lemma 5.1. This contradicts Γ̂ acting properly

discontinuously and cocompactly on M̃ ∼= Rn. □

A consequence of the above result is that Γ/ΓΣ is nontrivial. This group acts on ∆ ∼= R co-

compactly. We can assume it also acts properly by Proposition 5.10: once n ≥ 4, Γ̂Σ preserves
each leaf of the Ĥ-foliation and acts cocompactly on it. Thus Γ is generated by ΓΣ and another

element of the form αiDgD, where iD ∈ Z and gD ∈ Ũ0 normalizes ΓΣ.

Lemma 5.13. The projection ḡD of gD to U belongs to kerD.

Proof. Equation (6) gives for h ∈ Γ̄Σ,

ḡDhḡ
−1
D = [ḡD, h]h = Lh + LD(uh)− (Lh − Id)uD



The result is in Γ̄Σ with image under L equal Lh. The translational part is

LD(uh)− (Lh − Id)uD ≡ uh + ⟨uD, e1⟩ℓh mod Re1

which must equal ūh because kerL ∩ Γ̄Σ < Re1. Therefore ⟨uD, e1⟩ = 0 and gD ∈ kerD.

□

We summarize the results obtained thus far, under the standing assumptions of this section: The

developing map is a diffeomorphism to Ẽin
n−1,1

\∆. The dimension of M is n ≥ 4. The group

Γ̂ has a normal subgroup Γ̂Σ which maps isomorphically under q ◦ h to its image Γ̄Σ, which has
algebraic hull contained in kerD. Any element of Γ\ΓΣ is of the form αig with ḡ = πEin(g) ∈ kerD
and i ̸= 0. The algebraic hull H of Γ̄Σ contains the center of U and is encoded by a linear
endophism θ ∈ End(V ) with no real eigenvalues; in particular n− 2 = 2k for some k ∈ N.

5.4. Heisenberg examples and conclusion. The first result of this section underlies the con-
struction of actions whenever the conditions summarized at the end of the previous section are
fulfilled. Then we give the classification for this case.

Proposition 5.14. Let n = 2(k + 1). Let z1, z̄1, . . . , zk, z̄k ∈ C\R and let θ ∈ GL(2k,R) be any

element with these eigenvalues. Define H < AffMinn−1,1 to be the connected group generated by

Z(U) ∪ {Lh + uh : uh = θ(ℓh) ∈ Rn−2 ∼= e⊥1 ∩ e⊥n , Lh ∈ L(U)}

Then H acts simply transitively on L(p0)\∆̄ and on Hr = {x ∈ Minn−1,1 : ⟨x, e1⟩ = r} for each

r ∈ R.

Proof. Fix r ∈ R and let x+ ren ∈ Hr where x ∈ e⊥1 . An element h ∈ H acts by

h(x+ ren) ≡ ren + x+ uh − rℓh mod Re1

The result is congruent to x+ren only if uh ≡ rℓh. By the construction of H, the latter condition

implies uh ≡ ℓh ≡ 0 and h ∈ Z(U). Thus the stabilizer in H of x + ren is trivial. Moreover, for

each r ∈ R, the set of ūh − rℓh = (θ − r)ℓh spans V . The action is simply transitive on Hr.

Recall the parametrization of L(p0)\∆̄ by R × Rn−2 of (4). Assuming uh ∈ e⊥1 , the action of

Lh + uh maps (t, x) to

(t+ ⟨ūh, x⟩+ ⟨uh, en⟩, x− ℓh)

The stablizer of (t, x) has ℓh = 0 = ūh which means h ∈ Z(U). The stabilizer also has ⟨uh, en⟩ = 0,

which means h is trivial. It is also evident from the above formula that H acts transitively on

R×Rn−2 ∼= L(p0)\∆̄. □

From such an H-action, we can easily construct geometries on compact M2k+2 satisfying the
assumptions of this section.

Theorem 5.15. If the image of δ̄ does not met ∆̄ but does meet L(p0), then n is even, and δ

is a diffeomorphism onto Ẽin
n−1,1

\∆. For a nilpotent group H as in Proposition 5.14 and a

lattice Γ′ < H < Ũ0, the holonomy is a nilpotent extension Γ = ⟨αig⟩ ⋉ Γ′, for some i > 0 and

g ∈ ker(D ◦ q) < Ũ0. In this case, M = (Ẽin
n−1,1

\∆)/Γ is a nilmanifold of degree at most 3,

which fibers over S1 with degree-2 nilmanifold fibers.



Proof. Let ΓΣ be as defined in §5.1, and letH be its algebraic hull in U . By Proposition 5.10 n ̸= 3.

By Proposition 5.7 and Lemmas 5.3 and 5.8 , H < kerD and Z(U) < H, so H is determined

by an endomorphism θ of Rn−2 as in §5.2. By Proposition 5.9, θ has no real eigenvalues, which

forces n − 2, hence n, to be even. We conclude that H must be as in Proposition 5.14. It is of

nilpotence degree 2.

Proposition 5.11 establishes that δ is a diffeomorphism onto Ẽin
n−1,1

\∆.

The conclusions of Proposition 5.14 allow us to identify the fibration ρ∆ : Einn−1,1 \∆ → ∆ with

a principal H-bundle. The image of H under the isomorphism U → Ũ0 will also be denoted H.

Then Ẽin
n−1,1

\∆ ∼= M̃ is a principal H-bundle over ∆ ∼= R.

By construction, ΓΣ is a cocompact lattice in H. Let Γ′ be the image of ΓΣ in Ũ0. As observed

after Proposition 5.11, Γ/Γ′ is generated by an element of the form αig with i ̸= 0 and g in the

normalizer in Ũ0 of Γ′; we may assume i > 0. Since Ũ splits as a product Z × Ũ0, there is a

splitting Γ = ⟨αig⟩⋉ Γ′. The remaining conclusions follow. □

6. Conclusion of classification, including essential examples

The last case in our classfication reduces to a class of manifolds that have been well studied.

Theorem 6.1. If the image of δ̄ does not meet L(p0), then M is a complete (O(n − 1, 1) ⋉
Rn−1,1,Minn−1,1)-manifold. It is N/Γ for N < O(n− 1, 1)⋉Rn−1,1 a nilpotent group of degree

at most 3 acting simply transitively on Minn−1,1, and Γ a cocompact lattice in N .

Proof. The hypothesis implies that δ̄ maps into Min(p0). The U-action on here is by affine

isometries. As q(Γ) < U , the pair (δ̄, q ◦ h) defines an (O(n− 1, 1)⋉Rn−1,1,Minn−1,1)-structure

on M . Y. Carrière proved that any such structure on a closed manifold is complete—that is, δ̄ is

a diffeomorphism of M̃ onto Minn−1,1 [2].

Now h is an isomorphism to Γ, and M ∼= Minn−1,1 /Γ. The algebraic hull of Γ is a unipotent

subgroup of O(n − 1, 1) ⋉ Rn−1,1 acting simply transitively on Minn−1,1. These were classified

by F. Grünewald and G. Margulis in [11, Thm 1.8]. They are all nilpotent groups of degree at

most 3. □

6.1. Proof of Theorem 1.4. Recall that the flow {τ s} is in the center of U . That means it
always descends to a conformal flow on M , which we will denote {τ̄ s}, in our setting of unipotent
holonomy.

Proposition 6.2. For M as in cases (1) or (2) of Theorem 1.2, the conformal flow {τ̄ s} is

essential. For M as in cases (3) or (4), it is inessential.

Proof. In cases (1) or (2), let I ⊂ ∆ be a nontrivial, open interval contained in the image of δ.

The inverse image ρ−1
∆ (I) ⊂ Ẽin

n−1,1
\∆ is open. For any volume ν on δ(M̃), the volume ν(I) = 0

while ν(ρ−1
∆ (I) ∩ δ(M̃)) ̸= 0. In fact, for any compact set K ⊂ ρ−1

∆ (I) with nonempty interior,

ν(K) ̸= 0. Now τ t(K) tends uniformly to a subset of I ast t→ ∞, which implies that τ does not

preserve any volume on δ(M). In particular, it does not preserve a Γ-invariant volume lifted from

M . Therefore {τ̄ s} does not preserve any volume on M , so it must be essential.



In case (3), H is not abelian. The lattice Γ′ = ΓΣ having H as algebraic hull is therefore not

abelian, so its commutator subgroup intersects Z(U) = {τ s} nontrivially. The {τ̄ s}-flow on M

factors through the quotient by this intersection, which is S1. It is therefore not essential.

Finally, {τ s} < U acts on Minn−1,1 by a lightlike translation, which is isometric. In case (4),

Γ < U , and U is isometric on Minn−1,1, so the flow {τ̄ s} is isometric on M . □

In light of Theorem 1.2 and Proposition 6.2, it remains only to prove that M as in cases (3) or
(4) does not admit an essential conformal flow.

In case (4), any conformal flow on M lifts on M̃ ∼= Minn−1,1 to ConfMinn−1,1 ∼= CO(n− 1, 1)⋉
Rn−1,1. Any non-isometric flow in this group is a homothety. But a homothety cannot descend
to a closed manifold. Thus there is no essential conformal flow in this case.

In case (3), any conformal flow of δ(M̃) that descends to M belongs to the identity component of
the normalizer of Γ and to the stabilizer of ∆. Because Γ is discrete, such a flow belongs in fact to
C0(Γ), the identity component of the centralizer of Γ. Now Γ = ⟨αig⟩⋉ Γ′, so C0(Γ) < C0(Γ′) =
C0(H), as H is the Zariski closure of Γ. We descend to Einn−1,1 and analyze the centralizer of
H intersect the stabilizer of ∆̄ in G. Let n = 2k + 2.

The stabilizer of ∆̄ inG corresponds to the stabilizer P of span{e0, e1}, and has Levi decomposition

P ∼= (GL(2,R)×O(n))⋉Heis2n−1

The kernel of D intersect U is precisely Heis2n−3. It contains H, and their centers coincide; we
will denote this central subgroup by Z. The usual generators of Heis2n−3 are {xj , yj , τ : [xj , yj ] =
τ, j = 1, . . . , n − 2}. These can be chosen with yj ∈ kerL for all j, so that we can view {xj}
as a basis for L(U) and {yj} as a basis for V = e⊥1 /Re1. The isomorphism L(U) ∼= V of (7)
corresponds in this basis to xj 7→ yj for all j.

Since C0(H) must act trivially on Z, its projection to GL(2,R) has image in SL(2,R). Now

we consider the centralizer in SL(2,R) of H/Z < Heis2n−3/Z ∼= R2(n−2) = R4k. The latter
representation is ⊕2k

j=1Ej , where each Ej = span{xj , yj} is a copy of the standard representation.

Recall thatH/Z is the graph of an isomorphism θ : span{xj} → span{yj} with no real eigenvalues,
as in Proposition 5.14. If {gt} < SL(2,R) is a noncompact 1-parameter subgroup centralizing
H, it leaves invariant the graph of θ, which we will denote W . Since W ∩ span{yj} = 0, each
W ∩Ej is of dimension at most 1. Let v± denote the eigenvectors of {gt}, possibly equal; denote
by v±j the corresponding vectors in Ej for each j. Invariance implies that W equals the sum

of its intersections with Rv±j . Any nontrivial intersection is generated by xj + αyj for some
α ∈ R, which would correspond to a real eigenvalue α of θ, a contradiction. We conclude that
the centralizer of H in SL(2,R) is compact.

Now we consider the intersection of C0(H) with the unipotent radical Heis2k−3
∼= kerD ∩ U . It

follows from H projecting onto L(U) (Lemma 5.2) that this centralizer equals Z, which is {τ s}.
By Proposition 6.2, there is no essential conformal flow in this case, and the proof is complete.
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11. F. Grünewald and G. Margulis, Transitive and quasitransitive actions of affine groups preserving a generalized

lorentz-structure, J. Geom. Phys. 5 (1988), no. 4, 493–531.

12. N. H. Kuiper, Locally projective spaces of dimension one, Michigan Math. J. 2 (1953), no. 2, 95 – 97.

13. J. Lelong-Ferrand, Transformations conformes et quasiconformes des variétés riemanniennes; application à la
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