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1. Introduction

We will explore the geometry of the conformal compactification of Minkowski (n+
1)–space inside of Rn,2. We shall call this conformal compactification Einn,1, or

the Einstein universe, and its universal cover will be denoted Ẽin
n,1

. The Einstein
universe is a homogeneous space G/P , where G = PO(n, 2), and P is a parabolic
subgroup. When n = 3, then G is locally isomorphic to Sp(4,R).

The origin of the terminology “Einstein universe” is that A. Einstein himself
considered as a paradigmatic universe the product S3×R endowed with the Lorentz
metric ds20 − dt2, where ds20 is the usual constant curvature Riemannian metric on
S3. The conformal transformations preserve the class of lightlike geodesics and
provide a more flexible geometry than that given by the metric tensor.

Our motivation is to understand conformally flat Lorentz manifolds and the
Lorentzian analog of Kleinian groups. Such manifolds are locally homogeneous
geometric structures modeled on Ein2,1.

The Einstein universe Einn,1 is the conformal compactification of Minkowski
space En,1 in the same sense that the n-sphere

Sn = E
n ∪ {∞}

conformally compactifies Euclidean space En; in particular, a Lorentzian analog of
the following theorem holds (see [11]):

Theorem 1.0.1 (Liouville’s theorem). Suppose n ≥ 3. Then every conformal

map U
f−→ En defined on a nonempty connected subdomain U ⊂ En extends to a

conformal automorphism f̄ of Sn. Furthermore f̄ lies in the group PO(n + 1, 1)
generated by inversions in hyperspheres and Euclidean isometries.

Our viewpoint involves various geometric objects in Einstein space: points
are organized into 1-dimensional submanifolds which we call photons, as they are
lightlike geodesics. Photons in turn form various subvarieties, such as lightcones
and hyperspheres. For example, a lightcone is the union of all photons through a
given point. Hyperspheres fall into two types, depending on the signature of the
induced conformal metric. Einstein hyperspheres are Lorentzian, and are models of
Einn−1,1, while spacelike hyperspheres are models of Sn with conformal Euclidean
geometry.

The Einstein universe Einn,1 can be constructed by projectivizing the nullcone
in the inner product space Rn+1,2 defined by a symmetric bilinear form of type (n+
1, 2). Thus the points of Einn,1 are null lines in Rn+1,2, and photons correspond to
isotropic 2-planes. Linear hyperplanes H in Rn+1,2 determine lightcones, Einstein
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hyperspheres, and spacelike hyperspheres, respectively, depending on whether the
restriction of the bilinear form to H is degenerate, type (n, 2), or Lorentzian,
respectively.

Section 4 discusses causality in Einstein space. Section 5 is specific to dimen-
sion 3, where the conformal Lorentz group is locally isomorphic to the group of
linear symplectomorphisms of R4. This establishes a close relationship between
the symplectic geometry of R4 (and hence the contact geometry of RP

3) and the
conformal Lorentzian geometry of Ein2,1. Section 6 reinterprets these synthetic
geometries in terms of the structure theory of Lie algebras. Section 7 discusses the
dynamical theory of discrete subgroups of Ein2,1 due to Frances [13], and begun by
Kulkarni [19]. Section 8 discusses the crooked planes , discovered by Drumm [8], in
the context of Ein2,1; their closures, called crooked surfaces are studied and shown
to be Klein bottles invariant under the Cartan subgroup of SO(3, 2). The paper
concludes with a brief description of discrete groups of conformal transformations
and some open questions.

Much of this work was motivated by the thesis of Charles Frances [11], which
contains many constructions and examples, his paper [13] on Lorentzian Kleinian
groups, and his note [11] on compactifying crooked planes. We are grateful to
Charles Frances and Anna Wienhard for many useful discussions.

We are also grateful to the many institutions where we have been able to
meet to discuss the mathematics in this paper. In particular, we are grateful for
the hospitality provided by the Banff International Research Station [5] where
all of us were able to meet for a workshop in November 2004, the workshop in
Oostende, Belgium in May 2005 on “Discrete groups and geometric structures,”
the miniconference in Lorentzian geometry at the E.N.S. Lyon in July 2005, the
special semester at the Newton Institute in Cambridge in Fall 2005, the special
semester at the Erwin Schrödinger Institute in Fall 2005, and a seminar at the
University of Maryland in summer 2006, when the writing began.

2. Synthetic geometry of Einn,1

In this section we develop the basic synthetic geometry of Einstein space, or the
Einstein universe, starting with the geometry of Minkowski space En,1.

2.1. Lorentzian vector spaces. We consider real inner product spaces,
that is, vector spaces V over R with a nondegenerate symmetric bilinear form 〈, 〉.
A nonsingular symmetric n×n-matrix B defines a symmetric bilinear form on Rn

by the rule:

〈u, v〉B := u†Bv.
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where u† denotes the transpose of the vector u. We shall denote by Rp,q a real
inner product space whose inner product is of type (p, q). For example, if

u =




u1

...
up

up+1

...
up+q




, v =




v1
...
vp

vp+1

...
vp+q




,

then
〈u, v〉 := u1v1 + · · · + upvp − up+1vp+1 − · · · − up+qvp+q

defines a type (p, q) inner product, induced by the matrix Ip ⊕− Iq on Rp+q. The
group of linear automorphisms of Rp,q is O(p, q).

If B is positive definite—that is, q = 0—then we say that the inner product
space (V, 〈, 〉) is Euclidean. If q = 1, then (V, 〈, 〉) is Lorentzian. We may omit
reference to the bilinear form if it is clear from context.

If V is Lorentzian, and v ∈ V , then v is:

• timelike if 〈v, v〉 < 0;

• lightlike (or null or isotropic) if 〈v, v〉 = 0;

• causal if 〈v, v〉 ≤ 0;

• spacelike if 〈v, v〉 > 0.

The nullcone N(V ) in V consists of all null vectors.
If W ⊂ V , then define its orthogonal complement:

W⊥ := {v ∈ V | 〈v, w〉 = 0 ∀ w ∈W}.

The hyperplane v⊥ is null (respectively, timelike, spacelike) if v is null (respectively
spacelike, timelike).

In the sequel, according to the object of study, we will consider several sym-
metric n × n-matrices and the associated type (p, q) symmetric bilinear forms.
For different bilinear forms, different subgroups of O(p, q) are more apparent. For
example:

• Using the diagonal matrix
Ip ⊕ − Iq

invariance under the maximal compact subgroup

O(p) × O(q) ⊂ O(p, q)

is more apparent.
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• Under the bilinear form defined by the matrix

Ip−q ⊕
q⊕

−1/2 ·
[
0 1
1 0

]

(if p ≥ q), invariance under the Cartan subgroup

{Ip−q} ×
q∏

O(1, 1)

is more apparent.

• Another bilinear form which we use in the last two sections is:

Ip−1 ⊕− Iq−1 ⊕− 1/2 ·
[
0 1
1 0

]

which is useful in extending subgroups of O(p− 1, q − 1) to O(p, q).

2.2. Minkowski space. Euclidean space En is the model space for Euclidean
geometry, and can be characterized up to isometry as a simply connected, geodesi-
cally complete, flat Riemannian manifold. For us, it will be simpler to describe
it as an affine space whose underlying vector space of translations is a Euclidean
inner product space Rn. That means En comes equipped with a simply transitive
vector space of translations

p 7→ p+ v

where p ∈ En is a point and v ∈ Rn is a vector representing a parallel displace-
ment. Under this simply transitive Rn-action, each tangent space Tp(E

n) naturally
identifies with the vector space Rn. The Euclidean inner product on Rn defines
a positive definite symmetric bilinear form on each tangent space—that is, a Rie-
mannian metric.

Minkowski space E
n,1 is the Lorentzian analog. It is characterized up to isome-

try as a simply connected, geodesically complete, flat Lorentzian manifold. Equiv-
alently, it is an affine space whose underlying vector space of translations is Rn,1.

The geodesics in En,1 are paths of the form

R
γ−→ E

n,1

t 7−→ p0 + tv

where p0 ∈ En,1 is a point and v ∈ Rn,1 is a vector. A path γ as above is
timelike, lightlike, or spacelike, if the velocity v is timelike, lightlike, or spacelike,
respectively.

Let p ∈ En,1. The affine lightcone Laff(p) at p is defined as the union of all
lightlike geodesics through p:

Laff(p) := {p+ v ∈ E
n,1 | 〈v, v〉 = 0}.
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Equivalently Laff(p) = p + N where N ⊂ Rn,1 denotes the nullcone in Rn,1. The
hypersurface Laff(p) is ruled by lightlike geodesics; it is singular only at {p}. The
Lorentz form on E

n,1 restricts to a degenerate metric on Laff(p) \ {p}.
A lightlike geodesic ℓ ⊂ En,1 lies in a unique null affine hyperplane. (We denote

this ℓ⊥, slightly abusing notation.) That is, writing ℓ = p + Rv, where v ∈ Rn,1

is a lightlike vector, the null hyperplane p+ v⊥ is independent of the choices of p
and v used to define ℓ.

The de Sitter hypersphere of radius r centered at p is defined as

Sr(p) := {p+ v ∈ E
n,1 | 〈v, v〉 = r2}.

The Lorentz metric on En,1 restricts to a Lorentz metric on Sr(p) having constant
sectional curvature 1/r2. It is geodesically complete and homeomorphic to Sn−1×
R. It is a model for de Sitter space dSn−1,1.

As in Euclidean space, a homothety (centered at x0) is any map conjugate by
a translation to scalar multiplication:

E
n,1 −→ E

n,1

x 7−→ x0 + r(x − x0).

A Minkowski similarity transformation is a composition of an isometry of En,1

with a homothety:

f : x 7−→ rA(x) + b.

where A ∈ O(n, 1), r > 0 and b ∈ Rn,1 defines a translation. Denote the group of
similarity transformations of En,1 by Sim(En,1).

2.3. Einstein space. Einstein space Einn,1 is the projectivized nullcone of
R

n+1,2. The nullcone is

Nn+1,2 := {v ∈ R
n+1,2 | 〈v, v〉 = 0}

and the (n+ 1)-dimensional Einstein universe Einn,1 is the image of Nn+1,2 −{0}
under projectivization:

R
n+1,2 − {0} P−→ RP

n+2.

In the sequel, for notational convenience, we will denote P as a map from Rn+1,2,
implicitly assuming that the origin 0 is removed from any subset of Rn+1,2 on
which we apply P.

The double covering Êin
n,1

is defined as the quotient of the nullcone Nn+1,2

by the action by positive scalar multiplications. For many purposes the double
covering may be more useful than Einn,1, itself. We will also consider the universal

covering Ẽin
n,1

in §4.
Writing the bilinear form on R

n+1,2 as In+1 ⊕− I2, that is,

〈v, v〉 = v2
1 + · · · + v2

n+1 − v2
n+2 − v2

n+3,
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the nullcone is defined by

v2
1 + · · · + v2

n+1 = v2
n+2 + v2

n+3.

This common value is always nonnegative, and if it is zero, then v = 0 and v does

not correspond to a point in Einn,1. Dividing by the positive number
√
v2

n+2 + v2
n+3

we may assume that

v2
1 + · · · + v2

n+1 = v2
n+2 + v2

n+3 = 1

which describes the product Sn × S1. Thus

Êin
n,1 ≈ Sn × S1.

Scalar multiplication by −1 acts by the antipodal map on both the Sn and the
S1-factor. On the S1-factor the antipodal map is a translation of order two, so the
quotient

Einn,1 = Êin
n,1
/{±1}

is homeomorphic to the mapping torus of the antipodal map on Sn. When n is

even, Einn,1 is nonorientable and Êin
n,1

is an orientable double covering. If n is
odd, then Einn,1 is orientable.

The objects in the synthetic geometry of Einn,1 are the following collections of
points in Einn,1:

• Photons are projectivizations of totally isotropic 2-planes. We denote the
space of photons by Phon,1. A photon enjoys the natural structure of a real
projective line: each photon φ ∈ Phon,1 admits projective parametrizations,
which are diffeomorphisms of φ with RP

1 such that if g is an automorphism
of Einn,1 preserving φ, then g|φ corresponds to a projective transformation
of RP

1. The projective parametrizations are unique up to post-composition
with transformations in PGL(2,R).

• Lightcones are singular hypersurfaces. Given any point p ∈ Einn,1, the light-
cone L(p) with vertex p is the union of all photons containing p:

L(p) :=
⋃

{φ ∈ Phon,1 | p ∈ φ}.

The lightcone L(p) can be equivalently defined as the projectivization of the
orthogonal complement p⊥ ∩ Nn+1,2. The only singular point on L(p) is p,
and L(p) \ {p} is homeomorphic to Sn−1 × R.

• The Minkowski patch Min(p) determined by an element p of Einn,1 is the
complement of L(p) and has the natural structure of Minkowski space E

n,1,
as will be explained in §3 below. In the double cover, a point p̂ determines
two Minkowski patches:

Min+(p̂) := {q̂ ∈ Êin
n,1 | 〈p, q〉 > 0 ∀p, q ∈ R

n+1,2 representing p̂, q̂}

Min−(p̂) := {q̂ ∈ Êin
n,1 | 〈p, q〉 < 0 ∀p, q ∈ R

n+1,2 representing p̂, q̂}.



The (2 + 1)-Einstein universe 9

• There are two different types of hyperspheres.

– Einstein hyperspheres are closures in Einn,1 of de Sitter hyperspheres
Sr(p) in Minkowski patches as defined in §2.2. Equivalently, they are
projectivizations of v⊥ ∩ Nn+1,2 for spacelike vectors v.

– Spacelike hyperspheres are one-point compactifications of spacelike hy-
perplanes like Rn in a Minkowski patch Rn,1 ⊂ Einn,1. Equivalently,
they are projectivizations of v⊥ ∩ Nn+1,2 for timelike vectors v.

• An anti-de Sitter space AdSn,1 is one component of the complement of an
Einstein hypersphere Einn−1,1 ⊂ Einn,1. It is homeomorphic to S1 ×Rn. Its
ideal boundary is Einn−1,1.

2.4. 2-dimensional case. Because of its special significance, we discuss in
detail the geometry of the 2-dimensional Einstein universe Ein1,1.

• Ein1,1 is diffeomorphic to a 2-torus.

• Each lightcone L(p) consists of two photons which intersect at p.

• Ein1,1 has two foliations F− and F+ by photons, and the lightcone L(p) is
the union of the leaves through p of the respective foliations.

• The leaf space of each foliation naturally identifies with RP
1, and the map-

ping
Ein1,1 −→ RP

1 × RP
1

is equivariant with respect to the isomorphism

O(2, 2)
∼=−→ PGL(2,R) × PGL(2,R).

Here is a useful model (compare Pratoussevitch [26]): The space Mat2(R) of 2× 2
real matrices with the bilinear form associated to the determinant gives an isomor-
phism of inner product spaces:

Mat2(R) −→ R
2,2

[
m11 m12

m21 m22

]
7−→




m11

m12

m21

m22




where R2,2 is given the bilinear form defined by

1

2




0 0 0 1
0 0 −1 0
0 −1 0 0
1 0 0 0


 .
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The group GL(2,R) × GL(2,R) acts on Mat2(R) by:

X
(A,B)−−−−→ AXB−1

and induces a local isomorphism

SL±(2,R) × SL±(2,R) −→ O(2, 2)

where

SL±(2,R) := {A ∈ GL(2,R) | det(A) = ±1}.
Here we will briefly introduce stems, which are pieces of crooked planes, as will

be discussed in §8 below. Let p0, p∞ ∈ Ein1,1 be two points not contained in a
common photon. Their lightcones intersect in two points p1 and p2, and the union

L(p0) ∪ L(p∞) ⊂ Ein1,1

comprises four photons intersecting in the four points p0, p∞, p1, p2, such that each
point lies on two photons and each photon contains two of these points. This stem
configuration of four points and four photons can be represented schematically as
in Figure 1 below.

1

2

34

Figure 1. Stem Configuration

The complement

Ein1,1 \
(
L(p0) ∪ L(p∞)

)

consists of four quadrilateral regions (see Figure 2). In §8 the union S of two
non-adjacent quadrilateral regions will be studied; this is the stem of a crooked
surface. Such a set is bounded by the four photons of L(p0) ∪ L(p∞).

2.5. 3-dimensional case. Here we present several observations particular
to the case of Ein2,1.

• We will see that Pho2,1 identifies naturally with a 3-dimensional real projec-
tive space (§5.5).

• A lightcone in Ein2,1 is homeomorphic to a pinched torus.
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Figure 2. Two lightcones in Ein1,1

• Suppose p 6= q. Define

C(p, q) := L(p) ∩ L(q).

If p and q are incident,—that is, they lie on a common photon—then C(p, q) is
the unique photon containing them. Otherwise C(p, q) is a submanifold that
we will call a spacelike circle. Spacelike circles are projectivized nullcones of
linear subspaces of R3,2 of type (2, 1). The closure of a spacelike geodesic in
E2,1 is a spacelike circle.

• A timelike circle is the projectivized nullcone of a linear subspace of R3,2 of
metric type (1, 2).

• Einstein hyperspheres in Ein2,1 are copies of Ein1,1. In addition to their two
rulings by photons, they have a foliation by spacelike circles.

• Lightcones may intersect Einstein hyperspheres in two different ways. These
correspond to intersections of degenerate linear hyperplanes in R3,2 with
linear hyperplanes of type (2, 2). Let u, v ∈ R3,2 be vectors such that u⊥

is degenerate, so u determines a lightcone L, and v⊥ has type (2, 2), so v
defines the Einstein hypersphere H . In terms of inner products,

〈u, u〉 = 0, 〈v, v〉 > 0.

If 〈u, v〉 6= 0, then u, v span a nondegenerate subspace of signature (1, 1). In
that case L∩H is a spacelike circle. If 〈u, v〉 = 0, then u, v span a degenerate
subspace and the intersection is a lightcone in H , which is a union of two
distinct but incident photons.

• Similarly, lightcones intersect spacelike hyperspheres in two different ways.
The generic intersection is a spacelike circle, and the non-generic intersection
is a single point, such as the intersection of L(0) with the spacelike plane z = 0
in R2,1.

• A pointed photon is a pair (p, φ) ∈ Ein2,1 ×Pho2,1 such that p ∈ φ. Such a
pair naturally extends to a triple

p ∈ φ ⊂ L(p)
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which corresponds to an isotropic flag, that is, a linear filtration of R3,2

0 ⊂ ℓp ⊂ Pφ ⊂ (ℓp)
⊥ ⊂ R

3,2,

where ℓp is the 1-dimensional linear subspace corresponding to p; Pφ is the
2-dimensional isotropic subspace corresponding to φ; and (ℓp)

⊥ is the orthog-
onal subspace of ℓp. These objects form a homogeneous space, an incidence
variety, denoted Flag2,1, of O(3, 2), which fibers both over Ein2,1 and Pho2,1.
The fiber of the fibration Flag2,1 −→ Ein2,1 over a point p is the collection
of all photons through p. The fiber of the fibration Flag2,1 −→ Pho2,1 over a
photon φ identifies with all the points of φ. Both fibrations are circle bundles.

3. Einn,1 as the conformal compactification of E
n,1

Now we shall describe the geometry of Einn,1 as the compactification of Minkowski
space E

n,1. We begin with the Euclidean analog.

3.1. The conformal Riemannian sphere. The standard conformal
compactification of Euclidean space En is topologically the one-point compacti-
fication, the n-dimensional sphere. The conformal Riemannian sphere Sn is the
projectivization P(Nn+1,1) of the nullcone of Rn+1,1.

For U ⊂ Sn an arbitrary open set, any local section

U
σ−→ R

n+1,1 \ {0}

of the restriction of the projectivization map to U determines a pullback of the
Lorentz metric on En+1,1 to a Riemannian metric gσ on U . This metric depends
on σ, but its conformal class is independent of σ. Every section is σ′ = fσ for
some non-vanishing function f : U → R. Then

gσ′ = f2gσ

so the pullbacks are conformally equivalent. Hence the metrics gσ altogether define
a canonical conformal structure on Sn.

The orthogonal group O(n+1, 1) leaves invariant the nullcone Nn+1,1 ⊂ Rn+1,1.
The projectivization

Sn = P(Nn+1,1)

is invariant under the projective orthogonal group PO(n + 1, 1), which is its con-
formal automorphism group.

Let

Sn σ−→ Nn+1,1 ⊆ R
n+1,1 \ {0}

be the section taking values in the unit Euclidean sphere. Then the metric gσ is
the usual O(n+ 1)-invariant spherical metric.
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Euclidean space En embeds in Sn via a spherical paraboloid in the nullcone
Nn+1,1. Namely consider the quadratic form on Rn+1,1 defined by

In ⊕ − 1/2 ·
[
0 1
1 0

]
=




In
0 −1/2

−1/2 0


 .

The map

E
n → Nn+1,1 ⊂ R

n+1,1

x 7−→




x
〈x, x〉

1


 (1)

composed with projection Nn+1,1 P−→ Sn is an embedding E of En into Sn, which
is conformal.

The Euclidean similarity transformation

fr,A,b : x 7−→ rAx + b

where r ∈ R+, A ∈ O(n), and b ∈ Rn, is represented by

Fr,A,b :=




In 0 b
2b† 1 〈b, b〉
0 0 1


 ·



A 0 0
0 r 0
0 0 r−1


 ∈ O(n+ 1, 1). (2)

That is, for every x ∈ E
n,

Fr,A,bE(x) = E
(
fr,A,b(x)

)
.

Inversion in the unit sphere 〈v, v〉 = 1 of En is represented by the element

In ⊕
[
0 1
1 0

]

which acts on En \ {0} by:

ι : x 7→ 1

〈x, x〉x.

The origin is mapped to the point (called ∞) having homogeneous coordinates



0n

1
0




where 0n ∈ Rn is the zero vector.
The map E−1 is a coordinate chart on the open set

E
n = Sn \ {∞}

and E−1 ◦ ι is a coordinate chart on the open set (En ∪ {∞}) \ {0} = Sn \ {0}.
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3.2. The conformal Lorentzian quadric. Consider now the inner
product space Rn+1,2. Here it will be convenient to use the inner product

〈u, v〉 := u1v1 + . . .+ unvn − un+1vn+1 −
1

2
un+2vn+3 −

1

2
un+3vn+2

= u†
(

In ⊕− I1 ⊕− 1/2 ·
[
0 1
1 0

])
v.

In analogy with the Riemannian case, consider the embedding E : En,1 → Einn,1

via a hyperbolic paraboloid defined by (1) as above, where the Lorentzian inner
product on En,1 is defined by Q = In ⊕− I1. The procedure used previously in the
Riemannian case naturally defines an O(n + 1, 2)-invariant conformal Lorentzian
structure on Einn,1, and the embedding we have just defined is conformal.

Minkowski similarities fr,A,b map into O(n+ 1, 2) as in the formula (2), where
r ∈ R+;A ∈ O(n+1, 1); b ∈ Rn,1; 〈, 〉 is the Lorentzian inner product on Rn,1; and
2b† is replaced by 2b†Q.

The conformal compactification of Euclidean space is the one-point compacti-
fication; the compactification of Minkowski space, however, is more complicated,
requiring the addition of more than a single point. Let p0 ∈ Einn,1 denote the
origin, corresponding to 


0n+1

0
1


 .

To see what lies at infinity, consider the Lorentzian inversion in the unit sphere

defined by the matrix In+1 ⊕
[
0 1
1 0

]
, which is given on En,1 by the formula

ι : x 7−→ 1

〈x, x〉x. (3)

Here the whole affine lightcone Laff(p0) is thrown to infinity. We distinguish the
points on ι(Laff(p0)):

• The improper point p∞ is the image ι(p0). It is represented in homogeneous
coordinates by 


0n+1

1
0


 .

• The generic point on ι
(
Laff(p0)

)
has homogeneous coordinates



v
1
0




where 0 6= v ∈ Rn,1; it equals ι
(
E(v)

)
.
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We have described all the points in

E
n,1 ∪ ι(En,1)

which are the points defined by vectors v ∈ Rn+1,2 with coordinates vn+2 6= 0 or
vn+3 6= 0. It remains to consider points having homogeneous coordinates



v
0
0




where necessarily 〈v, v〉 = 0. This equation describes the nullcone in Rn,1; its
projectivization is a spacelike sphere S∞, which we call the ideal sphere. When
n = 2, we call this the ideal circle and its elements ideal points. Each ideal point
is the endpoint of a unique null geodesic from the origin; the union of that null
geodesic with the ideal point is a photon through the origin. Every photon through
the origin arises in this way. The ideal sphere is fixed by the inversion ι.

The union of the ideal sphere S∞ with ι(Laff(p0)) is the lightcone L(p∞) of the
improper point. Photons in L(p∞) are called ideal photons. Minkowski space E

n,1

is thus the complement of a lightcone L(p∞) in Einn,1. This fact motivated the
earlier definition of a Minkowski patch Min(p) as the complement in Einn,1 of a
lightcone L(p).

Changing a Lorentzian metric by a non-constant scalar factor modifies timelike
and spacelike geodesics, but not images of null geodesics (see for example [3],
p. 307). Hence the notion of (non-parametrized) null geodesic is well-defined in a
conformal Lorentzian manifold. For Einn,1, the null geodesics are photons.

3.3. Involutions. When n is even, involutions in SO(n+1, 2) ∼= PO(n+1, 2)
correspond to nondegenerate splittings of Rn+1,2. For any involution in PO(3, 2),
the fixed point set in Ein2,1 must be one of the following:

• the empty set ∅;
• a spacelike hypersphere;

• a timelike circle;

• the union of a spacelike circle with two points;

• an Einstein hypersphere.

In the case that Fix(f) is disconnected and equals

{p1, p2} ∪ S

where p1, p2 ∈ Ein2,1, and S ⊂ Ein2,1 is a spacelike circle, then

S = L(p1) ∩ L(p2).

Conversely, given any two non-incident points p1, p2, there is a unique involution
fixing p1, p2 and the spacelike circle L(p1) ∩ L(p2).
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3.3.1. Inverting photons. Let p∞ be the improper point, as above. A photon
in Ein2,1 either lies on the ideal lightcone L(p∞), or it intersects the spacelike plane
S0 consisting of all

p =



x
y
z




for which z = 0. Suppose φ is a photon intersecting S0 in the point p0 with polar
coordinates

p0 =



r0 cos(ψ)
r0 sin(ψ)

0


 ∈ S0 ⊂ E

2,1.

Let v0 be the null vector

v0 =




cos(θ)
sin(θ)

1




and consider the parametrized lightlike geodesic

φ(t) := p0 + tv0

for t ∈ R. Then inversion ι maps φ(t) to

(ι ◦ φ)(t) = ι(p0) + t̃



− cos(θ − 2ψ)
sin(θ − 2ψ)

1




where

t̃ :=
t

r20 + 2r0 cos(θ − ψ)t
.

Observe that ι leaves invariant the spacelike plane S0 and acts by Euclidean inver-
sion on that plane.

3.3.2. Extending planes in E2,1 to Ein2,1.

• The closure of a null plane P in E2,1 is a lightcone and its frontier P̄ \ P is
an ideal photon. Conversely a lightcone with vertex on the ideal circle S∞ is
the closure of a null plane containing p0, while a lightcone with vertex on

L(p∞) \ (S∞ ∪ {p∞})

is the closure of a null plane not containing p0.

• The closure of a spacelike plane in E2,1 is a spacelike sphere and its frontier
is the improper point p∞.

• The closure of a timelike plane in E2,1 is an Einstein hypersphere and its
frontier is a union of two ideal photons (which intersect in p∞).
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• The closure of a timelike (respectively spacelike) geodesic in E2,1 is a timelike
(respectively spacelike) circle containing p∞, and p∞ is its frontier.

Consider the inversion on the lightcone of p0:

ι







t sin θ
t cos θ
t
0
1







=




t sin θ
t cos θ
t
1
0



.

The entire image of the light cone L(p0) lies outside the Minkowski patch E2,1.
Let us now look at the image of a timelike line in E2,1 under the inversion. For

example,

ι







0
0
t

−t2
1







=




0
0
t
1

−t2



∼




0
0

−1/t
−1/t2

1




=




0
0
s

−s2
1




where s = −1/t. That is, the inversion maps the timelike line minus the origin to
itself, albeit with a change in the parametrization.

4. Causal geometry

In §3.2 we observed that Einn,1 is naturally equipped with a conformal structure.

This structure lifts to the double cover Êin
n,1

. As in the Riemannian case in §3.1,

a global representative of the conformal structure on Êin
n,1

is the pullback by a

global section σ : Êin
n,1 → Rn+1,2 of the ambient quadratic form of Rn+1,2. The

section σ : Êin
n,1 → Rn+1,2 taking values in the set where

v2
1 + · · · + v2

n+1 = v2
n+2 + v2

n+3 = 1

exhibits a homeomorphism Êin
n,1 ∼= Sn × S1 as in §2.3; it is now apparent that

Êin
n,1

is conformally equivalent to Sn × S1 endowed with the Lorentz metric
ds20 − dθ2, where ds20 and dθ2 are the usual round metrics on the spheres Sn and
S1 of radius one.

In the following, elements of Sn×S1 are denoted by (ϕ, θ). In these coordinates,
we distinguish the timelike vector field η = ∂θ tangent to the fibers {∗} × S1.

4.1. Time orientation. First consider Minkowski space En,1 with underly-
ing vector space R

n,1 equipped with the inner product:

〈u, v〉 := u1v1 + · · · + unvn − un+1vn+1.
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A vector u in Rn,1 is causal if u2
n+1 ≥ u2

1 + . . . + u2
n. It is future-oriented (re-

spectively past-oriented) if the coordinate un+1 is positive (respectively negative);
equivalently, u is future-oriented if its inner product with

η0 =




0
...
0
1




is negative.
The key point is that the choice of the coordinate un+1—equivalently, of an

everywhere timelike vector field like η0—defines a decomposition of every affine
lightcone Laff(p) in three parts:

• {p};

• The future lightcone Laff
+ (p) of elements p + v where v is a future-oriented

null vector;

• The past lightcone Laff
− (p) of elements p + v where v is a past-oriented null

vector.

The above choice is equivalent to a continuous choice of one of the connected
components of the set of timelike vectors based at each x ∈ En,1; timelike vectors
in these components are designated future-oriented. In other words, η0 defines a
time orientation on En,1.

To import this notion to Êin
n,1

, replace η0 by the vector field η on Êin
n,1

. Then

a causal tangent vector v to Êin
n,1

is future-oriented (respectively past-oriented) if
the inner product 〈v, η〉 is negative (respectively positive).

We already observed in §2.3 that the antipodal map is (ϕ, θ) 7→ (−ϕ,−θ) on
Sn ×S1; in particular, it preserves the timelike vector field η, which then descends
to a well-defined vector field on Einn,1, so that Einn,1 is time oriented, for all
integers n.

Remark 4.1.1. The Einstein universe does not have a preferred Lorentz metric
in its conformal class. The definition above is nonetheless valid since it involves
only signs of inner products and hence is independent of the choice of metric in
the conformal class.

The group O(n + 1, 2) has four connected components. More precisely, let
SO(n + 1, 2) be the subgroup of O(n + 1, 2) formed by elements with determi-

nant 1; these are the orientation-preserving conformal transformations of Êin
n,1

.
Let O+(n + 1, 2) be the subgroup comprising the elements preserving the time

orientation of Êin
n,1

. The identity component of O(n+ 1, 2) is the intersection

SO+(n+ 1, 2) = SO(n+ 1, 2) ∩ O+(n+ 1, 2).
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Moreover, SO(n+ 1, 2) and O+(n+ 1, 2) each have two connected components.
The center of O(n + 1, 2) has order two and is generated by the antipodal

map, which belongs to SO(n + 1, 2) if and only if n is odd. Hence the center of
SO(n+ 1, 2) is trivial if n is even—in particular, when n = 2. On the other hand,
the antipodal map always preserves the time orientation.

The antipodal map is the only element of O(n+1, 2) acting trivially on Einn,1.
Hence the group of conformal transformations of Einn,1 is PO(n+1, 2), the quotient
of O(n+1, 2) by its center. When n is even, PO(n+1, 2) is isomorphic to SO(n+
1, 2).

4.2. Future and past. A C1-immersion

[0, 1]
c−→ E

1,n

is a causal curve (respectively a timelike curve) if the tangent vectors c′(t) are all
causal (respectively timelike). This notion extends to any conformally Lorentzian

space—in particular, to Einn,1, Êin
n,1

, or Ẽin
n,1

. Furthermore, a causal curve c
is future-oriented (respectively past-oriented) if all the tangent vectors c′(t) are
future-oriented (respectively past-oriented).

Let A be a subset of En,1, Einn,1, Êin
n,1
, or Ẽin

n,1
. The future I+(A) (respec-

tively the past I−(A)) of A is the set comprising endpoints c(1) of future-oriented
(respectively past-oriented) timelike curves with starting point c(0) in A. The
causal future J+(A) (respectively the causal past J−(A)) of A is the set comprising
endpoints c(1) of future-oriented (respectively past-oriented) causal curves with
starting point c(0) in A. Two points p, p′ are causally related if one belongs to the
causal future of the other: p′ ∈ J±(p). The notion of future and past in E

n,1 is
quite easy to understand: p′ belongs to the future I+(p) of p if and only if p′ − p
is a future-oriented timelike element of Rn,1.

Thanks to the conformal model, these notions are also quite easy to understand

in Einn,1, Êin
n,1
, or Ẽin

n,1
: let dn be the spherical distance on the homogeneous

Riemannian sphere Sn of radius 1. The universal covering Ẽin
n,1

is conformally
isometric to the Riemannian product Sn×R where the real line R is endowed with
the negative quadratic form −dθ2. Hence, the image of any causal, C1, immersed

curve in Ẽin
n,1 ≈ Sn × R is the graph of a map f : I → Sn where I is an interval

in R and where f is 1-Lipschitz —that is, for all θ, θ′ in R:

dn(f(θ), f(θ′)) ≤ |θ − θ′|.
Moreover, the causal curve is timelike if and only if the map f is contracting—that
is, satisfies

dn(f(θ), f(θ′)) < |θ − θ′|.

It follows that the future of an element (ϕ0, θ0) of Ẽin
n,1 ≈ Sn × R is:

I+(ϕ0, θ0) = {(ϕ, θ) | θ − θ0 > dn(ϕ,ϕ0)}
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and the causal future J+(p) of an element p of Ẽin
n,1

is the closure of the future
I+(p):

J+(ϕ0, θ0) = {(ϕ, θ) | θ − θ0 ≥ dn(ϕ,ϕ0)}.

As a corollary, the future I+(A) of a nonempty subset A of Einn,1 or Êin
n,1

is
the entire spacetime. In other words, the notion of past or future is relevant in

Ẽin
n,1

, but not in Einn,1 or Êin
n,1

.

There is, however, a relative notion of past and future still relevant in Êin
n,1

that will be useful later when considering crooked planes and surfaces: let p̂, p̂′

be two elements of Êin
n,1

such that p̂′ 6= ±p̂. First observe that the intersection
Min+(p̂) ∩ Min+(p̂′) is never empty. Let p∞ be any element of this intersection,

so Min+(p̂∞) contains p̂ and p̂′. The time orientation on Êin
n,1

induces a time
orientation on such a Minkowski patch Min+(p̂∞).

Fact 4.2.1. The points p̂′ and p̂ are causally related in Min+(p̂∞) if and only
if, for any lifts p, p′ of p̂, p̂′, respectively, to Rn+1,2, the inner product 〈p, p′〉 is
positive.

Hence, if p̂ and p̂′ are causally related in some Minkowski patch, then they
are causally related in any Minkowski patch containing both of them. Therefore,
(slightly abusing language) we use the following convention: two elements p̂, p̂′ of

Êin
n,1

are causally related if the inner product 〈p, p′〉 in Rn+1,2 is positive for any
lifts p, p′.

4.3. Geometry of the universal covering. The geometrical under-
standing of the embedding of Minkowski space in the Einstein universe can be a
challenge. In particular, the closure in Einn,1 of a subset of a Minkowski patch
may be not obvious, as we will see for crooked planes. This difficulty arises from
the nontrivial topology of Einn,1.

On the other hand, the topology of the universal covering Ẽin
n,1

is easy to
visualize; indeed, the map

Ẽin
n,1 ≈ Sn × R

S−→ R
n+1 \ {0}

S : (ϕ, θ) 7−→ exp(θ)ϕ

is an embedding. Therefore, Ẽin
n,1

can be considered as a subset of R
n+1—one

that is particularly easy to visualize when n = 2. Observe that the map S is

O(n+ 1)-equivariant for the natural actions on Ẽin
n,1

and Rn+1.
The antipodal map

(ϕ, θ) 7−→ (−ϕ,−θ)
lifts to the automorphism α of

Ẽin
n,1 ≈ Sn × R,
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defined by

(ϕ, θ)
α7−→ (−ϕ, θ + π).

In the coordinates Ẽin
n,1 ≈ Rn+1 \ {0} this lifting α is expressed by x → −λx,

where λ = exp(π).
Since null geodesics in Einn,1 are photons, the images by S of null geodesics of

Ẽin
n,1

are curves in Rn+1 \ {0} characterized by the following properties:

• They are contained in 2-dimensional linear subspaces;

• Each is a logarithmic spiral in the 2-plane containing it.

Hence, for n = 2, the lightcone of an element p of Ẽin
2,1

(that is, the union of
the null geodesics containing p) is a singular surface of revolution in R3 obtained
by rotating a spiral contained in a vertical 2-plane around an axis of the plane.

In particular, for every x in Ẽin
n,1 ≈ Rn+1 \ {0}, every null geodesic containing

x contains α(x) = −λx. The image α(x) = −λx is uniquely characterized by the
following properties, so that it can be called the first future-conjugate point to x:

• It belongs to the causal future J+(x);

• For any y ∈ J+(x) such that y belongs to all null geodesics containing x, we
have α(x) ∈ J−(y).

All these considerations allow us to visualize how Minkowski patches embed in

Rn+1 \ {0} (see Figure 3): let p̃ ∈ Ẽin
n,1

and p̂ be its projection to Êin
n,1

. The

Minkowski patch Min+(p̂) is the projection in Êin
n,1

of I+(p̃) \ J+(α(p̃)), which

can also be defined as I+(p̃) ∩ I−(α2(p̃)). The projection in Êin
n,1

of

Ẽin
n,1 \ (J+(p̃) ∪ J−(p̃))

is the Minkowski patch Min−(p̂), which is the set of points non-causally related to
p̂.

4.4. Improper points of Minkowski patches. We previously defined
the improper point p∞ associated to a Minkowski patch in Einn,1: it is the unique
point such that the Minkowski patch is Min(p∞).

In the double-covering Êin
n,1

, to every Minkowski patch are attached two im-
proper points:

• the spatial improper point, the unique element psp
∞ such that the given Minkowski

patch is Min−(psp
∞);

• the timelike improper point, the unique element pti
∞ such that the given

Minkowski patch is Min+(pti
∞).
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Min+(p̂)

p̂

α(p̂)

α
2(p̂)

Figure 3. A Minkowski patch in gEin
1,1

Let Min+(pti
∞) = Min−(psp

∞) be a Minkowski patch in Êin
n,1

. Let

R
γ−→ Min+(pti

∞) ≈ E
n,1

be a geodesic. Denote by Γ the image of γ, and by Γ̄ the closure in Êin
n,1

of Γ.

• If γ is spacelike, then
Γ̄ = Γ ∪ {psp

∞}.

• If γ is timelike, then
Γ̄ = Γ ∪ {pti

∞}.

• If γ is lightlike, then Γ̄ is a photon avoiding psp
∞ and pti

∞.

5. Four-dimensional real symplectic vector spaces

In spatial dimension n = 2, Einstein space Ein2,1 admits an alternate description
as the Lagrangian Grassmannian, the manifold Lag(V ) of Lagrangian 2-planes in
a real symplectic vector space V of dimension 4. There results a kind of duality
between the conformal Lorentzian geometry of Ein2,1 and the symplectic geometry
of R4. Photons correspond to linear pencils of Lagrangian 2-planes (that is, families
of Lagrangian subspaces passing through a given line). The corresponding local
isomorphism

Sp(4,R) −→ O(3, 2)
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manifests the isomorphism of root systems of type B2 (the odd-dimensional or-
thogonal Lie algebras) and C2 (the symplectic Lie algebras) of rank 2. We present
this correspondence below.

5.1. The inner product on the second exterior power. Begin
with a four-dimensional vector space V over R and choose a fixed generator

vol ∈ Λ4(V ).

The group of automorphisms of (V, vol) is the special linear group SL(V ).
The second exterior power Λ2(V ) has dimension 6. The action of SL(V ) on V

induces an action on Λ2(V ) which preserves the bilinear form

Λ2(V ) × Λ2(V )
B−→ R

defined by:
α1 ∧ α2 = −B(α1, α2) vol .

This bilinear form satisfies the following properties:

• B is symmetric;

• B is nondegenerate;

• B is split—that is, of type (3, 3).

(That B is split follows from the fact that any orientation-reversing linear auto-
morphism of V maps B to its negative.)

The resulting homomorphism

SL(4,R) −→ SO(3, 3) (4)

is a local isomorphism of Lie groups, with kernel {± I} and image the identity
component of SO(3, 3).

Consider a symplectic form ω on V—that is, a skew-symmetric nondegenerate
bilinear form on V . Since B is nondegenerate, ω defines a dual exterior bivector
ω∗ ∈ Λ2(V ) by

ω(v1, v2) = B(v1 ∧ v2, ω∗).

We will assume that
ω∗ ∧ ω∗ = 2 vol . (5)

Thus B(ω∗, ω∗) = −2 < 0, so that its symplectic complement

W0 := (ω∗)⊥ ⊂ Λ2(V )

is an inner product space of type (3, 2). Now the local isomorphism (4) restricts
to a local isomorphism

Sp(4,R) −→ SO(3, 2) (6)

with kernel {± I4} and image the identity component of SO(3, 2).
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5.2. Lagrangian subspaces and the Einstein universe. Let V ,
ω, B, ω∗, and W0 be as above. The projectivization of the null cone in W0 is
equivalent to Ein2,1. Points in Ein2,1 correspond to Lagrangian planes in V—
that is, 2-dimensional linear subspaces P ⊂ V such that the restriction ω|P ≡ 0.
Explicitly, if v1, v2 constitute a basis for P , then the line generated by the bivector

w = v1 ∧ v2 ∈ Λ2(V )

is independent of the choice of basis for P . Furthermore, w is null with respect to
B and orthogonal to ω∗, so w generates a null line in W0

∼= R3,2, and hence defines
a point in Ein2,1.

For the reverse correspondence, first note that a point of Ein2,1 ∼= P(N(W0))
is represented by a vector a ∈ W0 such that a ∧ a = 0. Elements a ∈ Λ2V with
a ∧ a = 0 are exactly the decomposable ones—that is, those that can be written
a = v1∧v2 for v1, v2 ∈ V . Then the condition a ⊥ ω∗ is equivalent by construction
to ω(v1, v2) = 0, so a represents a Lagrangian plane, span{v1, v2}, in V . Thus
Lagrangian 2-planes in V correspond to isotropic lines in W0

∼= R3,2.
For a point q ∈ Ein2,1, denote by Lq the corresponding Lagrangian plane in V .

5.2.1. Complete flags. A photon φ in Ein2,1 corresponds to a line ℓφ in V ,
where

ℓφ =
⋂

p∈φ

Lp.

A pointed photon (p, φ), as defined in §2.5, corresponds to a pair of linear subspaces

ℓφ ⊂ Lp (7)

where ℓφ ⊂ V is the line corresponding to φ and where Lp ⊂ V is the Lagrangian
plane of corresponding to p. Recall that the incidence relation p ∈ φ extends to

p ∈ φ ⊂ L(p),

corresponding to the complete linear flag

0 ⊂ ℓp ⊂ Pφ ⊂ (ℓp)
⊥ ⊂W0

where Pφ is the null plane projectivizing to φ. The linear inclusion (7) extends to
a linear flag

0 ⊂ ℓφ ⊂ Lp ⊂ (ℓφ)⊥ ⊂ V

where now (ℓφ)⊥ denotes the symplectic orthogonal of ℓφ. Clearly the lightcone
L(p) corresponds to the linear hyperplane (ℓφ)⊥ ⊂ V .

5.2.2. Pairs of Lagrangian planes. Distinct Lagrangian subspaces L1, L2 may
intersect in either a line or in 0. If L1 ∩ L2 6= 0, the corresponding points p1, p2 ∈
Ein2,1 are incident. Otherwise

V = L1 ⊕ L2
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and the linear involution of V

θ = IL1
⊕− IL2

is anti-symplectic :
ω(θ(v1), θ(v2)) = −ω(v1, v2).

The corresponding involution of Ein2,1 fixes the two points p1, p2 and the spacelike
circle L(p1) ∩ L(p2). It induces a time-reversing involution of Ein2,1.

5.3. Symplectic planes. Let P ⊂ V be a symplectic plane, that is, one for
which the restriction ω|P is nonzero (and hence nondegenerate). Its symplectic
complement P⊥ is also a symplectic plane, and

V = P ⊕ P⊥

is a symplectic direct sum decomposition.
Choose a basis {u1, u2} for P . We may assume that ω(u1, u2) = 1. Then

B(u1 ∧ u2, ω
∗) = 1

and
υP := 2u1 ∧ u2 + ω∗

lies in (ω∗)⊥ since B(ω∗, ω∗) = −2. Furthermore

B(υP , υP ) = B(2u1 ∧ u2, 2u1 ∧ u2) + 2 B(2u1 ∧ u2, ω
∗) + B(ω∗, ω∗)

= 0 + 4 − 2

= 2.

whence υP is a positive vector in W0
∼= R3,2. In particular P(υ⊥P ∩ N(W0)) is an

Einstein hypersphere.
The two symplectic involutions leaving P (and necessarily also P⊥) invariant

±
(
I |P ⊕− I |P⊥

)

induce maps fixing υP , and acting by −1 on (υP )⊥. The corresponding eigenspace
decomposition is R1,0 ⊕R2,2 and the corresponding conformal involution in Ein2,1

fixes an Einstein hypersphere.

5.4. Positive complex structures and the Siegel space. Not ev-
ery involution of Ein2,1 arises from a linear involution of V . Particularly important
are those which arise from compatible complex structures, defined as follows. A

complex structure on V is an automorphism V
J−→ V such that J ◦ J = − I. The

pair (V, J) then inherits the structure of a complex vector space for which V is
the underlying real vector space. The complex structure J is compatible with the
symplectic vector space (V, ω) when

ω(J x, J y) = ω(x, y).



26 Barbot, Charette, Drumm, Goldman, and Melnick

(In the language of complex differential geometry, the exterior 2-form ω has Hodge
type (1, 1) on the complex vector space (V, J).) Moreover

V × V −→ C

(v, w) 7−→ ω(v, Jw) + iω(v, w)

defines a Hermitian form on (V, J).
A compatible complex structure J on (V, ω) is positive if ω(v, J v) > 0 whenever

v 6= 0. Equivalently, the symmetric bilinear form defined by

v · w := ω(v, Jw)

is positive definite. This is in turn equivalent to the above Hermitian form being
positive definite.

The positive compatible complex structures on V are parametrized by the sym-
metric space of Sp(4,R). A convenient model is the Siegel upper-half space S2,
which can be realized as the domain of 2 × 2 complex symmetric matrices with
positive definite imaginary part (Siegel [29]).

A matrix M ∈ Sp(4,R) acts on a complex structure J by

J 7→M JM−1

and the stabilizer of any J is conjugate to U(2), the group of unitary transforma-
tions of C2. Let the symplectic structure ω be defined by the 2 × 2-block matrix

J :=

[
02 − I2
I2 02

]
.

This matrix also defines a complex structure. Write M as a block matrix with

M =

[
A B
C D

]

where the blocks A,B,C,D are 2 × 2 real matrices. Because M ∈ Sp(4,R),

M † JM = J . (8)

The condition that M preserves the complex structure J means that M commutes
with J, which together with (8), means that

M †M = I4,

that is, M ∈ O(4). Thus the stabilizer of the pair (ω, J) is Sp(4,R) ∩ O(4), which
identifies with the unitary group U(2) as follows.

If M commutes with J, then its block entries satisfy

B = −C, D = A.

Relabelling X = A and Y = C, then

M =

[
X −Y
Y X

]

corresponds to a complex matrix Z = X + iY . This matrix is symplectic if and
only if Z is unitary,

Z̄†Z = I2 .
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5.5. The contact projective structure on photons. The points of
a photon correspond to Lagrangian planes in V intersecting in a common line.
Therefore, photons correspond to linear 1-dimensional subspaces in V , and the
photon space Pho2,1 identifies with the projective space P(V ). This space has a
natural contact geometry defined below.

Recall that a contact structure on a manifold M2n+1 is a vector subbundle
E ⊂ TM of codimension one that is maximally non-integrable: E is locally the
kernel of a nonsingular 1-form α such that α ∧

(
dα

)n
is nondegenerate at every

point. This condition is independent of the 1-form α defining E, and is equivalent
to the condition that any two points in the same path-component can be joined by
a smooth curve with velocity field in E. The 1-form α is called a contact 1-form
defining E. For more details on contact geometry, see [23, 16, 30].

The restriction of dα to E is a nondegenerate exterior 2-form, making E into
a symplectic vector bundle. Such a vector bundle always admits a compatible
complex structure JE : E −→ E (an automorphism such that JE ◦ JE = − I),
which gives E the structure of a Hermitian vector bundle. The contact structure
we define on photon space P(R4) ∼= Pho2,1 will have such Hermitian structures
and contact 1-forms arising from compatible complex structures on the symplectic
vector space R4.

5.5.1. Construction of the contact structure. Let v ∈ V be nonzero, and
denote the corresponding line by [v] ∈ P(V ). The tangent space T[v]P(V ) naturally
identifies with Hom([v], V/[v]) ([v] ⊂ V denotes the 1-dimensional subspace of V ,
as well). If V1 ⊂ V is a hyperplane complementary to [v], then an affine patch for
P(V ) containing [v] is given by

Hom([v], V1)
AV1−−→ P(V )

φ 7−→ [v + φ(v)].

That is, AV1
(φ) is the graph of the linear map φ in V = [v]⊕V1. This affine patch

defines an isomorphism

T[v]P(V ) −→ Hom([v], V1) ∼= Hom([v], V/[v])

that is independent of the choice of V1. Now, since ω is skew-symmetric, symplectic
product with v defines a linear functional

V/[v]
αv−−→ R

u 7−→ ω(u, v).

The hyperplane field

[v] 7−→ {ϕ : αv ◦ ϕ = 0}

is a well-defined contact plane field on P(V ). It posseses a unique transverse
orientation; we denote a contact 1-form for this hyperplane field by α.
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5.5.2. The contact structure and polarity. The contact structure and the
projective geometry of P(V ) interact with each other in an interesting way. If
p ∈ P(V ), then the contact structure at p is a hyperplane Ep ⊂ TpP(V ). There is
a unique projective hyperplane H = H(p) tangent to Ep at p. Conversely, suppose
H ⊂ P(V ) is a projective hyperplane. The contact plane field is transverse to H
everywhere but one point, and that point p is the unique point for whichH = H(p).
This correspondence results from the correspondence between a line ℓ ⊂ V and its
symplectic orthogonal ℓ⊥ ⊂ V .

The above correspondence is an instance of a polarity in projective geometry.
A polarity of a projective space P(V ) is a projective isomorphism between P(V )
and its dual P(V )∗ := P(V ∗), arising from a nondegenerate bilinear form on V ,
which can be either symmetric or skew-symmetric.

Another correspondence is between the set of photons through a given point
p ∈ Ein2,1 and the set of 1-dimensional linear suspaces of the Lagrangian plane
Lp ⊂ V . The latter set projects to a projective line in P(V ) tangent to the contact
plane field, a contact projective line. All contact projective lines arise from points
in Ein2,1 in this way.

5.5.3. Relation with positive complex structures on R4. A compatible
positive complex structure J defines a contact vector field for the contact structure
as follows. Let Ω ⊂ P(V ) be a subdomain. For any nonzero v ∈ V , the map
v 7−→ J(v) defines an element of Hom([v], V/[v]), that is, a tangent vector in
T[v]P(V ). The resulting vector field ξJ satisfies α(ξJ ) > 0 for any 1-form α defining
the contact structure, since ω(v, J v) > 0 for nonzero v ∈ V . More generally, for
any smooth map J : Ω −→ S2, this construction defines a contact vector field.

5.6. The Maslov cycle. Given a 2n-dimensional symplectic vector space
V over R, the set Lag(V ) of Lagrangian subspaces of V is a compact homoge-
neous space. It identifies with U(n)/O(n), given a choice of a positive compatible
complex structure on V ∼= R2n. The fundamental group

π1

(
Lag(V )

) ∼= Z.

An explicit isomorphism is given by the Maslov index, which associates to a loop
γ in Lag(V ) an integer. (See McDuff-Salamon [23], §2.4 for a general discussion.)

Let W ∈ Lag(V ) be a Lagrangian subspace. The Maslov cycle MaslovW (V )
associated to W is the subset of Lag(V ) consisting of W ′ such that

W ∩W ′ 6= 0.

Although it is not a submanifold, MaslovW (V ) carries a natural co-orientation
(orientation of its conormal bundle) and defines a cycle whose homology class
generates HN−1(Lag(V ),Z) where

N =
n(n+ 1)

2
= dim

(
Lag(V )

)
.
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The Maslov index of a loop γ is the oriented intersection number of γ with the
Maslov cycle (after γ is homotoped to be transverse to MaslovW (V )). If p ∈ Ein2,1

corresponds to a Lagrangian subspace W ⊂ V , then the Maslov cycle MaslovW (V )
corresponds to the lightcone L(p). (We thank A. Wienhard for this observation.)

5.7. Summary. We now have a dictionary between the symplectic geometry
of R4

ω and the orthogonal geometry of R3,2:

Symplectic R4
ω and contact P(V ) Pseudo-Riemannian R3,2 and Ein2,1

Lagrangian planes L ⊂ R4
ω Points p ∈ Ein2,1

Contact projective lines in P(V ) Points p ∈ Ein2,1

Lines ℓ ⊂ R4
ω Photons φ

Hyperplanes ℓ⊥ ⊂ R4
ω Lightcones

Symplectic planes (splittings) in R4
ω Einstein hyperspheres

Linear symplectic automorphisms time-preserving conformal automorphisms
Linear anti-symplectic automorphisms time-reversing conformal automorphisms

Flags ℓ ⊂ L ⊂ ℓ⊥ in R4
ω Incident pairs p ∈ φ ⊂ L(p)

Positive compatible complex structures Free involutions of Ein2,1

Lagrangian splittings V = L1 ⊕ L2 Nonincident pairs of points
Lagrangian splittings V = L1 ⊕ L2 Spacelike circles

6. Lie theory of Pho2,1 and Ein2,1

This section treats the structure of the Lie algebra sp(4,R) and the isomorphism
with o(3, 2). We relate differential-geometric properties of the homogeneous spaces
Ein2,1 and Pho2,1 with the Lie algebra representations corresponding to the isotropy.
This section develops the structure theory (Cartan subalgebras, roots, parabolic
subalgebras) and relates these algebraic notions to the synthetic geometry of the
three parabolic homogenous spaces Ein2,1, Pho2,1 and Flag2,1. Finally, we discuss
the geometric significance of the Weyl group of Sp(4,R) and SO(2, 3).

6.1. Structure theory. Let V ∼= R
4, equipped with the symplectic form ω,

as above. We consider a symplectic basis e1, e2, e3, e4 in which ω is

J =




0 −1 0 0
1 0 0 0
0 0 0 −1
0 0 1 0




The Lie algebra g = sp(4,R) consists of all 4 × 4 real matrices M satisfying

M † J+ JM = 0,
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that is,

M =




a a12 r11 r12
a21 −a r21 r22
−r22 r12 b b12
r21 −r11 b21 −b


 (9)

where a, b, aij , bij , rij ∈ R.

6.1.1. Cartan subalgebras. A Cartan subalgebra a of sp(4,R) is the subalgebra
stabilizing the four coordinate lines Rei for i = 1, 2, 3, 4, and comprises the diagonal
matrices

H(a, b) :=




a 0 0 0
0 −a 0 0
0 0 b 0
0 0 0 −b




for a, b ∈ R. The calculation

[H,M ] =




0 (2a)a12 (a− b)r11 (a+ b)r12
(−2a)a21 0 (−a− b)r21 (−a+ b)r22
(a− b)r22 (−a− b)r12 0 (2b)b12
(a+ b)r21 (−a+ b)r11 (−2b)b21 0




implies that the eight linear functionals assigning to H(a, b) the values

2a,−2a, 2b,−2b, a− b, a+ b,−a− b,−a+ b

define the root system

∆ := {(2, 0), (−2, 0), (0, 2), (0,−2),

(1,−1), (1, 1), (−1,−1), (−1, 1)} ⊂ a∗

pictured below.

Figure 4. Root diagram of sp(4, R)
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6.1.2. Positive and negative roots. A vector v0 ∈ a such that λ(v0) 6= 0 for all
roots λ ∈ ∆ partitions ∆ into positive roots ∆+ and negative roots ∆− depending
on whether λ(v0) > 0 or λ(v0) < 0 respectively. For example,

v0 =

[
1
2

]

partitions ∆ into

∆+ = { (2, 0), (1, 1), (0, 2), (−1, 1) }
∆− = { (−2, 0), (−1,−1), (0,−2), (1,−1) }.

The positive roots
α := (2, 0), β := (−1, 1)

form a pair of simple positive roots in the sense that every λ ∈ ∆+ is a positive
integral linear combination of α and β. Explicitly:

∆+ = {α, α+ β, α + 2β, β}.

6.1.3. Root space decomposition. For any root λ ∈ ∆, define the root space

gλ := {X ∈ g | [H,X ] = λ(H)X}.

In g = sp(4,R), each root space is one-dimensional, and the elements Xλ ∈ gλ are
called root elements. The Lie algebra decomposes as a direct sum of vector spaces:

g = a ⊕
⊕

λ∈∆

gλ.

For more details, see Samelson [28].

6.2. Symplectic splittings. The basis vectors e1, e2 span a symplectic
plane P ⊂ V and e3, e4 span its symplectic complement P⊥ ⊂ V . These planes
define a symplectic direct sum decomposition

V = P ⊕ P⊥.

The subalgebra hP ⊂ sp(4,R) preserving P also preserves P⊥ and consists of
matrices of the form (9) that are block-diagonal:




a a12 0 0
a21 −a 0 0
0 0 b b12
0 0 b21 −b


 .

Thus

hP
∼= sp(2,R) ⊕ sp(2,R)
∼= sl(2,R) ⊕ sl(2,R).
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The Cartan subalgebra a of sp(4,R) is also a Cartan subalgebra of hP , but only
the four long roots

∆′ = {(±2, 0), (0,±2)} = {±α,±(α+ 2β)}

are roots of hP . In particular hP decomposes as

hP = a ⊕
⊕

λ∈∆′

gλ.

6.3. The Orthogonal Representation of sp(4, R). Let e1, . . . , e4
be a symplectic basis for V as above and

vol := e1 ∧ e2 ∧ e3 ∧ e4

a volume element for V . A convenient basis for Λ2V is:

f1 := e1 ∧ e3
f2 := e2 ∧ e3

f3 :=
1√
2
(e1 ∧ e2 − e3 ∧ e4)

f4 := e4 ∧ e1
f5 := e2 ∧ e4 (10)

for which the matrix 


0 0 0 0 1
0 0 0 1 0
0 0 1 0 0
0 1 0 0 0
1 0 0 0 0




defines the bilinear form B associated to this volume element.
The matrix M defined in (9) above maps to

M̃ =




a+ b a12 r12 −b12 0
a21 −a+ b r22 0 b12
r21 r11 0 −r22 −r12
−b21 0 −r11 a− b −a12

0 b21 −r21 −a21 −a− b




∈ so(3, 2). (11)

For a fixed symplectic plane P ⊂ V , such as the one spanned by e1 and e2,
denote by P ∧P⊥ the subspace of Λ2V of elements that can be written in the form∑

i vi∧wi, where vi ∈ P and wi ∈ P⊥ for all i. The restriction of the bilinear form
B to this subspace, which has basis {f1, f2, f4, f5}, is type (2, 2). Its stabilizer is

the image h̃P of hP in o(3, 2). Note that this image is isomorphic to

o(2, 2) ∼= sl(2,R) ⊕ sl(2,R).
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6.4. Parabolic subalgebras. The homogeneous spaces Ein2,1, Pho2,1 and
Flag2,1 identify with quotients G/P of G = Sp(4,R) where P ⊂ G is a proper
parabolic subgroup. When G is algebraic, then any parabolic subgroup P of G is
algebraic, and the quotient G/P is a compact projective variety. See Chapter 7 of
[18] for more details.

As usual, working with Lie algebras is more convenient. We denote the corre-
sponding parabolic subalgebras by p, and they are indexed by subsets S ⊂ Π− of
the set Π− := {−α,−β} of simple negative roots, as follows.

The Borel subalgebra or minimal parabolic subalgebra corresponds to S = ∅ and
is defined as

p∅ := pS = a ⊕
⊕

λ∈∆+

gλ.

In general, let S̃ be the set of finite sums of elements of S. The parabolic subalgebra
determined by S is

pS := p∅ ⊕
⊕

λ∈eS

gλ.

6.4.1. The Borel subalgebra and Flag2,1. Let p∅ be the Borel subalgebra
defined above. The corresponding Lie subgroup P∅ is the stabilizer of a unique
pointed photon, equivalently, an isotropic flag, in Flag2,1; thus Flag2,1 identifies
with the homogeneous space G/P∅. The subalgebra

u∅ :=
∑

λ∈∆+

gλ ⊂ sp(4,R)

is the Lie algebra of the unipotent radical of P∅ and is 3-step nilpotent. A realiza-
tion of the corresponding group is the group generated by the translations of E2,1

and a unipotent one-parameter subgroup of SO(2, 1).

6.4.2. The parabolic subgroup corresponding to Pho2,1. Now let S =
{−α}; the corresponding parabolic subalgebra pα is the stabilizer subalgebra of
a line in V , or, equivalently, of a point in P(V ). In o(3, 2) this parabolic is the
stabilizer of a null plane in R3,2, or, equivalently, of a photon in Ein2,1.

6.4.3. The parabolic subgroup corresponding to Ein2,1. Now let S =
{−β}; the corresponding parabolic subalgebra pβ is the stabilizer subalgebra of
a Lagrangian plane in V , or, equivalently, a contact projective line in P(V ). In
o(3, 2), this parabolic is the stabilizer of a null line in R3,2, or, equivalently, of a
point in Ein2,1.

6.5. Weyl groups. The Weyl group W of Sp(4,R) is isomorphic to a dihe-
dral group of order 8 (see Figure 4). It acts by permutations on elements of the
quadruples in P(V ) corresponding to a basis of V .
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Let A be the connected subgroup of Sp(4,R), with Lie algebra a. In the sym-
plectic basis e1, . . . , e4, it consists of matrices of the form




a1

a−1
1

a2

a−1
2


 a1, a2 > 0.

The semigroup A+ ⊂ A with a2 > a1 > 1 corresponds to an open Weyl chamber in
a. For i = 1, 2, 3, 4, let Hi be the image in P(V ) of the hyperplane spanned by ej

for j 6= i. The point [e3] ∈ P(V ) is an attracting fixed point for all sequences in A+,
and [e4] is a repelling fixed point: Any unbounded an ∈ A+ converges uniformly
on compact subsets of P(V )\H3 to the constant map [e3], while a−1

n converges to
[e4] uniformly on compact subsets of P(V )\H2. On H3\(H3 ∩H1), an unbounded
sequence {an} converges to [e1], while on H4\(H4∩H2), the inverses a−1

n converge
to [e2].

We will call the point [e1] a codimension-one attracting fixed point for sequences
in A+ and [e2] a codimension-one repelling fixed point. Every Weyl chamber has
associated to it a dynamical quadruple like ([e3], [e4], [e1], [e2]), consisting of an
attracting fixed point, a repelling fixed point, a codimension-one attracting fixed
point, and a codimension-one repelling fixed point.

Conversely, given a symplectic basis v1, . . . , v4, the intersection of the stabilizers
in Sp(4,R) of the lines Rvi is a Cartan subgroup A. The elements a ∈ A such that
([v1], . . . , [v4]) is a dynamical quadruple for the sequence an form a semigroup A+

that is an open Weyl chamber in A.
The Weyl group acts as a group of permutations of such a quadruple. These

permutations must preserve a stem configuration as in Figure 1, where now two
points are connected by an edge if the corresponding lines in V are in a common
Lagrangian plane, or, equivalently, the two points of P(V ) span a line tangent
to the contact structure. The permissible permutations are those preserving the
partition {v1, v2}|{v3, v4}.

In O(3, 2), the Weyl group consists of permutations of four points p1, . . . , p4 of
Ein2,1 in a stem configuration that preserve the configuration. A Weyl chamber
again corresponds to a dynamical quadruple (p1, . . . , p4) of fixed points, where now
sequences an ∈ A+ converge to the constant map p1 on the complement of L(p2)
and to p3 on L(p2)\(L(p4) ∩ L(p2)); the inverse sequence converges to p2 on the
complement of L(p1) and to p4 on L(p1)\(L(p1) ∩ L(p3)).

7. Three kinds of dynamics

In this section, we present the ways sequences in Sp(4,R) can diverge to infinity
in terms of projective singular limits. In [13], Frances defines a trichotomy for
sequences diverging to infinity in O(3, 2): they have bounded, mixed, or balanced
distortion. He introduces limit sets for such sequences and finds maximal domains
of proper discontinuity for certain subgroups of O(3, 2). We translate Frances’
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trichotomy to Sp(4,R), along with the associated limit sets and maximal domains
of properness.

7.1. Projective singular limits. Let E be a finite-dimensional vector
space, and let (gn)n∈N be a sequence of elements of GL(E). This sequence induces
a sequence (ḡn)n∈N of projective transformations of P(E). Let ‖ · ‖ be an auxiliary
Euclidean norm on E and let ‖·‖∞ be the associated operator norm on the space of
endomorphisms End(E). The division of gn by its norm ‖gn‖∞ does not modify the
projective transformation ḡn. Hence we can assume that gn belongs to the ‖ · ‖∞-
unit sphere of End(E). This sphere is compact, so (gn)n∈N admits accumulation
points. Up to a subsequence, we can assume that (gn)n∈N converges to an element
g∞ of the ‖ · ‖∞-unit sphere. Let I be the image of g∞, and let L be the kernel of
g∞. Let

ḡ∞ : P(E) \ P(L) → P(I) ⊂ P(E)

be the induced map.

Proposition 7.1.1. For any compact K ⊂ P(E) \ P(L), the restriction of the
sequence (ḡn)(n∈N) on K converges uniformly to the restriction on K of ḡ∞.

Corollary 7.1.2. Let Γ be a discrete subgroup of PGL(E). Let Ω be the open
subset of P(E) formed by points admitting a neighborhood U such that, for any
sequence (gn) in Γ with accumulation point g∞ having image I and kernel L,

U ∩ P(L) = U ∩ P(I) = ∅.

Then Γ acts properly discontinuously on Ω.

In fact, the condition U ∩ P(L) = ∅ is sufficient to define Ω (as is U ∩ P(I) = ∅).
To see this, note that if gn → ∞ with

gn/‖gn‖∞ −→ g∞

g−1
n /‖g−1

n ‖∞ −→ g−∞,

then
g∞ ◦ g−∞ = g−∞ ◦ g∞ = 0.

Hence
Im(g∞) ⊆ Ker(g−∞) and Im(g−∞) ⊆ Ker(g∞).

7.2. Cartan’s decomposition G = KAK. When (gn)n∈N is a se-
quence in a semisimple Lie group G, a very convenient way to identify the ac-
cumulation points ḡ∞ is to use the KAK-decomposition in G: first select the
Euclidean norm ‖ · ‖ so that it is preserved by the maximal compact subgroup K
of G. Decompose every gn in the form knank

′
n, where kn and k′n belong to K, and

an belongs to a fixed Cartan subgroup. We can furthermore require that an is the
image by the exponential of an element of the closure of a Weyl chamber. Up to a
subsequence, kn and k′n admit limits k∞ and k′∞, respectively. Composition on the
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right or on the left by an element of K does not change the operator norm, so gn

has ‖ · ‖∞-norm 1 if and only if an has ‖ · ‖∞-norm 1. Let a∞ be an accumulation
point of (an)n∈N. Then

g∞ = k∞a∞k
′
∞.

The kernel of g∞ is the image by (k′∞)−1 of the kernel of a∞, and the image of
g∞ is the image by k∞ of the image of a∞. Hence, in order to find the singular
projective limit ḡ∞, the main task is to find the limit a∞, and this problem is
particularly easy when the rank of G is small.

7.2.1. Sequences in Sp(4, R). The image by the exponential map of a Weyl
chamber in sp(4,R) is the semigroup A+ ⊂ A of matrices (see §6.5):

A(α1, α2) =




exp(α1)
exp(−α1)

exp(α2)
exp(−α2)


 α2 > α1 > 0.

The operator norm of A(α1, α2) is exp(α2). We therefore can distinguish three

kinds of dynamical behaviour for a sequence (A(α
(n)
1 , α

(n)
2 ))n∈N:

• no distortion: when α
(n)
1 and α

(n)
2 remain bounded,

• bounded distortion: when α
(n)
1 and α

(n)
2 are unbounded, but the difference

α
(n)
2 − α

(n)
1 is bounded,

• unbounded distortion: when the sequences α
(n)
1 and α

(n)
2 − α

(n)
1 are un-

bounded.

This distinction extends to any sequence (gn)n∈N in Sp(4,R). Assume that the
sequence (gn/‖gn‖∞)n∈N converges to a limit g∞. Then:

• For no distortion, the limit g∞ is not singular—the sequence (gn)n∈N con-
verges in Sp(4,R).

• For bounded distortion, the kernel L and the image I are 2-dimensional.
More precisely, they are Lagrangian subspaces of V . The singular projective
transformation ḡ∞ is defined in the complement of a projective line and takes
values in a projective line; these projective lines are both tangent everywhere
to the contact structure.

• For unbounded distortion, the singular projective transformation ḡ∞ is de-
fined in the complement of a projective hyperplane and admits only one
value.
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7.2.2. Sequences in SO+(3, 2). The Weyl chamber of SO+(3, 2) is simply the
image of the Weyl chamber of sp(4,R) by the differential of the homomorphism

Sp(4,R) → SO+(3, 2)

defined in §6.2. More precisely, the image of an element A(α1, α2) of A+ is
A′(a1, a2) where

a1 = α1 + α2, a2 = α2 − α1

and:

A′(a1, a2) =




exp(a1)
exp(a2)

1
exp(−a2)

exp(−a1)




a1 > a2 > 0.

The KAK decomposition of Sp(4,R) above corresponds under the homomor-
phism to aKAK decomposition of SO+(3, 2). Reasoning as in the previous section,
we distinguish three cases:

• no distortion: when a
(n)
1 and a

(n)
2 remain bounded,

• balanced distortion: when a
(n)
1 and a

(n)
2 are unbounded, but the difference

a
(n)
1 − a

(n)
2 is bounded,

• unbalanced distortion: when the sequences a
(n)
1 and a

(n)
1 − a

(n)
2 are un-

bounded.

The dynamical analysis is similar, but we restrict to the closed subset Ein2,1 of
P(R3,2):

• No distortion corresponds to sequences (gn)n∈N converging in SO+(3, 2).

• For balanced distortion, the intersection between P(L) and Ein2,1, and the
intersection between P(I) and Ein2,1 are both photons. Hence the restric-
tion of the singular projective transformation ḡ∞ to Ein2,1 is defined in the
complement of a photon and takes value in a photon.

• For unbalanced distortion, the singular projective transformation ḡ∞ is de-
fined in the complement of a lightcone and admits only one value.

7.3. Maximal domains of properness. Most of the time, applying
directly Proposition 7.1.1 and Corollary 7.1.2 to a discrete subgroup Γ of Sp(4,R)
or SO+(3, 2) in order to find domains where the action of Γ is proper is far from
optimal.

Through the morphism Sp(4,R) → SO+(3, 2), a sequence in Sp(4,R) can also
be considered as a sequence in SO(3, 2). Observe that our terminology is coherent:
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a sequence has no distortion in Sp(4,R) if and only if it has no distortion in
SO+(3, 2). Observe also that since

a1 = α1 + α2,

a2 = α2 − α1,

a sequence with bounded distortion in Sp(4,R) is unbalanced in SO+(3, 2), and
a sequence with balanced distortion in SO+(3, 2) is unbounded in Sp(4,R). In
summary, we distinguish three different kinds of non-converging dynamics, covering
all the possibilities:

Definition 7.3.1. A sequence (gn)n∈N of elements of Sp(4,R) escaping from any
compact subset in Sp(4,R) has:

• bounded distortion if the coefficient a
(n)
2 = α

(n)
2 − α

(n)
1 is bounded,

• balanced distortion if the coefficient α
(n)
2 = (a

(n)
1 + a

(n)
2 )/2 is bounded,

• mixed distortion if all the coefficients a
(n)
1 , a

(n)
2 , α

(n)
1 , α

(n)
2 are unbounded.

7.3.1. Action on Ein2,1. The dynamical analysis can be refined in the mixed
distortion case. In [13], C. Frances proved:

Proposition 7.3.2. Let (gn)n∈N be a sequence of elements of SO+(3, 2) with mixed
distortion, such that the sequence (gn/‖gn‖∞)n∈N converges to an endomorphism
g∞. Then there are photons ∆− and ∆+ in Ein2,1 such that, for any sequence
(pn)n∈N in Ein2,1 converging to an element of Ein2,1 \∆−, all the accumulation
points of (gn(pn))n∈N belong to ∆+.

As a corollary (§4.1 in [13]):

Corollary 7.3.3. Let Γ be a discrete subgroup of SO+(3, 2). Let Ω0 be the union
of all open domains U in Ein2,1 such that, for any accumulation point g∞, with
kernel L and image I, of a sequence (gn/‖gn‖∞)n∈N with gn ∈ SO+(3, 2):

• When (gn)n∈N has balanced distortion, U is disjoint from the photons P(L)∩
Ein2,1 and P(I) ∩ Ein2,1;

• When (gn)n∈N has bounded distortion, U is disjoint from the lightcone P(L)∩
Ein2,1;

• When (gn)n∈N has mixed distortion, U is disjoint from the photons ∆− and
∆+.

Then the action of Γ on Ω0 is properly discontinuous.

Observe that the domain Ω0 is in general bigger than the domain Ω appearing in
Corollary 7.1.2. An interesting case is that in which Ω0 is obtained by removing
only photons:
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Proposition 7.3.4 (Frances [13]). A discrete subgroup Γ of SO+(3, 2) does not
contain sequences with bounded distortion if and only if its action on P(R3,2)\Ein2,1

is properly discontinuous.

Frances calls such a subgroup a of the first kind. The following suggests that the
domain Ω0 is optimal.

Proposition 7.3.5 (Frances [13]). Let Γ be a discrete, Zariski dense subgroup of
SO+(3, 2) which does not contain sequences with bounded distortion. Then Ω0 is
the unique maximal open subset of Ein2,1 on which Γ acts properly.

7.3.2. Action on P(V ). A similar analysis should be done when Γ is considered
a discrete subgroup of Sp(4,R) instead of SO+(3, 2). The following proposition is
analogous to Proposition 7.3.2:

Proposition 7.3.6. Let (gn)n∈N be a sequence of elements of Sp(V ) with mixed
distortion, such that the sequence (gn/‖gn‖∞)n∈N converges to an endomorphism
g∞ of V . Then there are contact projective lines ∆− and ∆+ in P(V ) such that,
for any sequence

(pn)n∈N ∈ P(V )

converging to an element of P(V )\∆−, all the accumulation points of (gn(pn))n∈N

belong to ∆+.

We can then define a subset Ω1 of P(V ) as the interior of the subset obtained
after removing limit contact projective lines associated to subsequences of Γ with
bounded or mixed distortion, and removing projective hyperplanes associated to
subsequences with balanced distortion. Then it is easy to prove that the action of
Γ on Ω1 is properly discontinuous.

An interesting case is that in which we remove only projective lines, and no
hypersurfaces—the case in which Γ has no subsequence with balanced distortion.
Frances calls such Γ groups of the second kind. The following questions arise from
comparison with Propositions 7.3.5 and 7.3.4:

Question: Can groups of the second kind be defined as groups acting properly on
some associated space?

Question: Is Ω1 the unique maximal open subset of P(V ) on which the action of
Γ is proper, at least if Γ is Zariski dense?

7.3.3. Action on the flag manifold. Now consider the action of Sp(4,R) on
the flag manifold Flag2,1. Let v, w ∈ V be such that ω(v, w) = 0, so v and w span
a Lagrangian plane. Let

Flag2,1 ρ1−→ Pho2,1

Flag2,1 ρ2−→ Ein2,1

be the natural projections. Let gn be a sequence in Sp(4,R) diverging to infinity
with mixed distortion. We invite the reader to verify the following statements:
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• There are a flag q+ ∈ Flag2,1 and points [v] ∈ P(V ) and z ∈ Ein2,1 such that,
on the complement of

ρ−1
1 ([v⊥]) ∪ ρ−1

2 (L(z))

the sequence gn converges uniformly to the constant map q+.

• There are contact projective lines α+,α− in P(V ) and photons β+,β− in
Ein2,1 such that, on the complement of

ρ−1
1 (α−) ∪ ρ−1

2 (β−)

all accumulation points of gn lie in

ρ−1
1 (α+) ∩ ρ−1

2 (β+).

This intersection is homeomorphic to a wedge of two circles.

8. Crooked surfaces

Crooked planes were introduced by Drumm [8, 9, 10] to investigate discrete groups
of Lorentzian transformations which act freely and properly on E2,1. He used
crooked planes to construct fundamental polyhedra for such actions; they play a
role analogous to equidistant surfaces bounding Dirichlet fundamental domains in
Hadamard manifolds. This section discusses the conformal compactification of a
crooked plane and its automorphisms.

8.1. Crooked planes in Minkowski space. For a detailed description
of crooked planes, see Drumm-Goldman [10]. We quickly summarize the basic
results here.

Consider E2,1 with the Lorentz metric from the inner product I2⊕−I1 on R2,1.
A crooked plane C is a surface in E2,1 that divides E2,1 into two cells, called crooked
half-spaces. It is a piecewise linear surface composed of four 2-dimensional faces,
joined along four rays, which all meet at a point p, called the vertex. The four rays
have endpoint p, and form two lightlike geodesics, which we denote ℓ1 and ℓ2. Two
of the faces are null half-planes W1 and W2, bounded by ℓ1 and ℓ2 respectively,
which we call wings. The two remaining faces consist of the intersection between
J±(p) and the timelike plane P containing ℓ1 and ℓ2; their union is the stem of
C. The timelike plane P is the orthogonal complement of a unique spacelike line
P⊥(p) containing p, called the spine of C.

To define a crooked plane, we first define the wings, stem, and spine. A lightlike
geodesic ℓ = p+ Rv lies in a unique null plane ℓ⊥ (§2.2). The ambient orientation
of R

2,1 distinguishes a component of ℓ⊥ \ ℓ as follows. Let u ∈ R
2,1 be a timelike

vector such that 〈u, v〉 < 0. Then each component of ℓ⊥ \ ℓ defined by

W+(ℓ) :=
{
p+ w ∈ ℓ⊥ | det(u, v, w) > 0

}

W−(ℓ) :=
{
p+ w ∈ ℓ⊥ | det(u, v, w) < 0

}
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is independent of the choices above. In particular, every orientation-preserving
isometry f of E2,1 maps

W+(ℓ) −→ W+(f(ℓ))

W−(ℓ) −→ W−(f(ℓ))

and every orientation-reversing isometry f maps

W+(ℓ) −→ W−(f(ℓ))

W−(ℓ) −→ W+(f(ℓ)).

Given two lightlike geodesics ℓ1, ℓ2 containing p, the stem is defined as

S(ℓ1, ℓ2) := J±(p) ∩ (p+ span{ℓ1 − p, ℓ2 − p}).

The spine is

σ = p+ (S(ℓ1, ℓ2) − p)⊥.

Compare Drumm-Goldman [10].
The positively-oriented crooked plane with vertex p and stem S(ℓ1, ℓ2) is the

union

W+(ℓ1) ∪ S(ℓ1, ℓ2) ∪W+(ℓ2).

Similarly, the negatively-oriented crooked plane with vertex p and stem S(ℓ1, ℓ2) is

W−(ℓ1) ∪ S(ℓ1, ℓ2) ∪W−(ℓ2).

Given an orientation on E2,1, a positively-oriented crooked plane is determined by
its vertex and its spine. Conversely, every point p and spacelike line σ containing
p determines a unique positively- or negatively-oriented crooked plane.

A crooked plane C is homeomorphic to R2, and the complement E2,1\C consists
of two components, each homeomorphic to R3. The components of the complement
of a crooked plane are called open crooked half-spaces and their closures closed
crooked half-spaces. The spine of C is the unique spacelike line contained in C.

8.2. An example. Here is an example of a crooked plane with vertex the
origin and spine the x-axis:

p =



0
0
0


 , σ = R



1
0
0


 .

The lightlike geodesics are

ℓ1 = R




0
−1
1


 , ℓ2 = R



0
1
1


 ,
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the stem is 






0
y
z


 : y2 − z2 ≤ 0





and the wings are

W1 =







x
y
−y


 : x ≥ 0, y ∈ R





W2 =







x
y
y


 : x ≤ 0, y ∈ R



 .

The identity component of Isom(E2,1) acts transitively on the space of pairs of
vertices and unit spacelike vectors, so it is transitive on positively-oriented and
negatively-oriented crooked planes. An orientation-reversing isometry exchanges
positively- and negatively-oriented crooked planes, so Isom(E2,1) acts transitively
on the set of all crooked planes.

8.3. Topology of a crooked surface. The closures of crooked planes in
Minkowski patches are crooked surfaces. These were studied in Frances [12]. In
this section we describe the topology of a crooked surface.

Let C ⊂ E2,1 be a crooked plane.

Theorem 8.3.1. The closure C ∈ Ein2,1 is a topological submanifold homeomor-

phic to a Klein bottle. The lift of C to the double covering Êin
2,1

is the oriented
double covering of C and is homeomorphic to a torus.

Proof. Since the isometry group of Minkowski space acts transitively on crooked
planes, it suffices to consider the single crooked plane C defined in §8.2.

Recall the stratification of Ein2,1 from §3.2. Write the nullcone N3,2 of R3,2 as




X
Y
Z
U
V




where X2 + Y 2 − Z2 − UV = 0.

The homogeneous coordinates of points in the stem S(C) satisfy

X = 0, Y 2 − Z2 ≤ 0, V 6= 0

and thus the closure of the stem S(C) is defined by (homogeneous) inequalities

X = 0, Y 2 − Z2 ≤ 0.
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The two lightlike geodesics

ℓ1 = R




0
−1
1


 , ℓ2 = R



0
1
1




defining S(C) extend to photons φ1, φ2 with ideal points represented in homoge-
neous coordinates

p1 =




0
−1
1
0
0



, p2 =




0
1
1
0
0



.

The closures of the corresponding wings W1,W2 are described in homogeneous
coordinates by:

W1 =








X
−Y
Y
U
V




: X2 − UV = 0, XV ≥ 0





W2 =








X
Y
Y
U
V




: X2 − UV = 0, XV ≤ 0




.

The closure of each wing intersects the ideal lightcone L(p∞) (described by V = 0)
in the photons:

ψ1 =








0
−Y
Y
U
0




: Y, U ∈ R





ψ2 =








0
Y
Y
U
0




: Y, U ∈ R




.

Thus the crooked surface C decomposes into the following strata:

• four points in a stem configuration: the vertex p0, the improper point p∞,
and the two ideal points p1 and p2;
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• eight line segments, the components of

φ1 \ {p0, p1}
φ2 \ {p0, p2}
ψ1 \ {p∞, p1}
ψ2 \ {p∞, p2};

• two null-half planes, the interiors of the wings W1,W2;

• the two components of the interior of the stem S.

Recall that the inversion in the unit sphere ι = I3 ⊕
[
0 1
1 0

]
fixes p1 and p2, and

interchanges p0 and p∞. Moreover ι interchanges φi with ψi, i = 1, 2. Finally ι
leaves invariant the interior of each Wi and interchanges the two components of
the interior of S.

The original crooked plane equals

{p0} ∪ φ1 \ {p1} ∪ φ2 \ {p2} ∪ int(W1) ∪ int(W2) ∪ int(S)

and is homeomorphic to R2. The homeomorphism is depicted schematically in
Figure 5. The interiors of W1,W2, and S correspond to the four quadrants in R2.
The wing Wi is bounded by the two segments of φi, whereas each component of
S is bounded by one segment of φ1 and one segment of φ2. These four segments
correspond to the four coordinate rays in R2.

Now we can see that C is a topological manifold: points in int(W1), int(W2),
or int(S) have coordinate neighborhoods in these faces. Interior points of the
segments have two half-disc neighborhoods, one from a wing and one from the
stem. The vertex p0 has four quarter-disc neighborhoods, one from each wing, and
one from each component of the stem. (See Figure 5.)

φ 1

W1
φ
1

W2

φ
2

φ
2

S

     S 
p0

Figure 5. Flattening a crooked plane around its vertex

Coordinate charts for the improper point p∞ and points in ψi \ {p∞, pi} are
obtained by composing the above charts with the inversion ι. It remains to find
coordinate charts near the ideal points p1, p2. Consider first the case of p1. The
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linear functionals on R3,2 defined by

T = Y − Z

W = Y + Z

are null since the defining quadratic form factors:

X2 + Y 2 − Z2 − UV = X2 + TW − UV.

Working in the affine patch defined by T 6= 0 with inhomogeneous coordinates

ξ :=
X

T

η :=
Y

T

ω :=
W

T

υ :=
U

T

ν :=
V

T

the nullcone is defined by:

ξ2 + ω − υν = 0

whence

ω = −ξ2 + υν

and (ξ, υ, ν) ∈ R3 is a coordinate chart for this patch on Ein2,1.
In these coordinates, p1 is the origin (0, 0, 0), φ1 is the line ξ = υ = 0, and ψ1 is

the line ξ = ν = 0. The wing W2 misses this patch, but both S and W1 intersect
it. In these coordinates S is defined by

ξ = 0, ω ≤ 0

and W1 is defined by

ξ ≤ 0, ω = 0.

Since on W1

υν = ξ2 ≥ 0

this portion of W1 in this patch has two components

υ, ν < 0

υ, ν > 0

and the projection (υ, ν) defines a coordinate chart for a neighborhood of p1.
(Compare Figure 6.)
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1

W1
φ
1

W

φS

     S 

1

ψ

ψ

1

1

1p

Figure 6. Flattening a crooked surface around an ideal point p1

The case of p2 is completely analogous. It follows that C is a closed surface
with cell decomposition with four 0-cells, eight 1-cells and four 2-cells. Therefore

χ(C) = 4 − 8 + 4 = 0

and C is homeomorphic to either a torus or a Klein bottle.
To see that C is nonorientable, consider a photon, for example φ1. Parallel

translate the null geodesic φ1 \ {p1} to a null geodesic ℓ lying on the wing W1 and
disjoint from φ1 \ {p1}. Its closure ℓ̄ = ℓ ∪ {p1} is a photon on W1 ⊂ C which
intersects φ1 transversely with intersection number 1. Thus the self-intersection
number

φ1 · φ1 = 1

so φ1 ⊂ C is an orientation-reversing loop. Thus C is nonorientable, and homeo-
morphic to a Klein bottle.

Next we describe the stratification of a crooked surface in the double covering

Êin
2,1

. Recall from §4.4 that a Minkowski patch in Êin
2,1

has both a spatial
and a timelike improper point. Let C be a crooked plane of E2,1, embedded in
a Minkowski patch Min+(p∞), so p∞ = pti

∞, the timelike improper point of this
patch. Denote by psp

∞ the spatial improper point.

The closure C of C in Êin
2,1

decomposes into the following strata:

• seven points: p0, p
ti
∞, p

sp
∞, p

±
1 , p

±
2 ;

• twelve photon segments:

φ±i , connecting p0 to p±i

α±
i , connecting pti

∞ to p±i
β±

i , connecting psp
∞ to p±i ;

• two null half-planes, the interiors of W1 and W2. The wing Wi is bounded
by the curves φ±i and β±

i ;

• the two components of the interior of the stem S. The stem is bounded by
the curves φ±i and α±

i , for i = 1, 2.
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The saturation of C by the antipodal map on Êin
2,1

is the lift of a crooked surface
from Ein2,1. The interested reader can verify that it is homeomorphic to a torus.

8.4. Automorphisms of a crooked surface. Let C be the positively-
oriented crooked plane of Section 8.2, and C the associated crooked surface in
Ein2,1. First, C is invariant by all positive homotheties centered at the origin,
because each of the wings and the stem are. Second, it is invariant by the 1-
dimensional group of linear hyperbolic isometries of Minkowski space preserving
the lightlike lines bounding the stem. The subgroup A, which can be viewed as the
subgroup of SO(3, 2) acting by positive homotheties and positive linear hyperbolic
isometries of Minkowski space, then preserves C, and hence C. The element

s0 =




1
−1

−1
1

1




is a reflection in the spine, and also preserves C. Note that s0 is time-reversing.
Then we have

Z2 ⋉A ∼= Z2 ⋉ (R∗
>0)

2 ⊂ Aut(C).

Next let ℓ1, ℓ2 be the two lightlike geodesics bounding the stem (alternatively
bounding the wings) of C. As above, the inversion ι leaves invariant C \ (ℓ1 ∪ ℓ2).
In fact, the element

s1 =




−1
−1

−1
1

1




is an automorphism of C. The involution

s2 =




−1
1

−1
1

1




also preserves C and exchanges the ideal points p1 and p2. The involutions s0, s1,
and s2 pairwise commute, and each product is also an involution, so we have

G := Z
3
2 ⋉ (R∗

>0)
2 ⊂ Aut(C)

To any crooked surface can be associated a quadruple of points in a stem con-
figuration. The stabilizer of a stem configuration in SO(3, 2) ∼= PO(3, 2) is N(A),
the normalizer of a Cartan subgroup A. Suppose that the points (p0, p1, p2, p∞)
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are associated to C. As above, a neighborhood of p0 in C is not diffeomorphic to a
neighborhood of p1 in C, so any automorphism must in fact belong to the subgroup
N ′(A) preserving each pair {p0, p∞} and {p1, p2}. Each g ∈ N ′(A) either preserves
C or carries it to its opposite, the closure of the negatively-oriented crooked plane
having the same vertex and spine as C. Now it is not hard to verify that the full
automorphism group of C in SO(3, 2) is G.

9. Construction of discrete groups

A complete flat Lorentzian manifold is a quotient En,1/Γ, where Γ acts freely
and properly discontinuously on En,1. When n = 2, Fried and Goldman [15]
showed that unless Γ is solvable, projection on O(2, 1) is necessarily injective and,
furthermore, this linear part is a discrete subgroup Γ0 ⊂ O(2, 1)[1, 6, 24].

In this section we identify E2,1 with its usual embedding in Ein2,1, so that we
consider such Γ as discrete subgroups of SO(3, 2). We will look at the resulting
actions on Einstein space, as well as on photon space. At the end of the section,
we list some open questions.

9.1. Spine reflections. In §8.4, we described the automorphism group of a
crooked surface. We recall some of the basic facts about the reflection in the spine
of a crooked surface, which is discussed in §3.3 and §5.2.2, and which is denoted s0
in the example above. Take the inner product on R3,2 to be given by the matrix

I2 ⊕− I1 ⊕
(
−1

2

) [
0 1
1 0

]

and identify E2,1 with its usual embedding in the Minkowski patch determined
by the improper point p∞. Let C be the crooked plane determined by the stem
configuration (p0, p1, p2, p∞) as in §8.2, with

p1 =




0
−1
1
0
0




and p2 =




0
1
1
0
0



.

Then s0 is an orientation-preserving, time-reversing involution having fixed set

Fix(s0) = {p1, p2} ∪
(
L(p1) ∩ L(p2)

)
.

In the Minkowski patch, 〈s0〉 interchanges the two components of the complement
of C.

If a set of crooked planes in E2,1 is pairwise disjoint, then the group generated by
reflections in their spines acts properly discontinuously on the entire space [7, 8, 10].
Thus spine reflections associated to disjoint crooked planes give rise to discrete
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subgroups of SO(3, 2). We will outline a way to construct such groups; see [4], for
details.

Let S1, S2 ⊂ Ein2,1 be a pair of spacelike circles that intersect in a point;
conjugating if necessary, we may assume that this point is p∞. Each circle Si,
i = 1, 2, is the projectivized nullcone of a subspace Vi ⊂ R3,2 of type (2,1); V1 +V2

can be written as the direct sum

Rv1 ⊕ Rv2 ⊕W,

where v1, v2 are spacelike vectors and W = V1 ∩ V2 is of type (1,1). We call
{S1, S2} an ultraparallel pair if v⊥1 ∩ v⊥2 is spacelike. Alternatively, we can define
the pair to be ultraparallel if they are parallel to vectors u1, u2 ∈ R2,1 such that
u⊥1 ∩ u⊥2 is a spacelike line in E2,1.

Let S1, S2 be an ultraparallel pair of spacelike circles in Ein2,1. Denote by ι1
and ι2 the spine reflections fixing the respective circles. (Note that ι1 and ι2 are
conjugate to s0, since SO(3, 2) acts transitively on crooked surfaces.) Identifying
the subgroup of SO(3, 2) fixing p0 and p∞ with the group of Lorentzian linear
similarities

Sim(E2,1) = R+ · O(2, 1),

then γ = ι2 ◦ ι1 has hyperbolic linear part—that is, it has three, distinct real
eigenvalues. The proof of this fact and the following proposition may be found, for
instance, in [4].

Proposition 9.1.1. Let S1 and S2 be an ultraparallel pair of spacelike circles as
above. Then S1 and S2 are the spines of a pair of disjoint crooked planes, bounding
a fundamental domain for 〈γ〉 in E2,1.

Note that while 〈γ〉 acts freely and properly discontinuously on E2,1, it fixes
p∞ as well as two points on the ideal circle.

Next, let Si, i = 1, 2, 3 be a triple of pairwise ultraparallel spacelike circles,
all intersecting in p∞, and let Γ = 〈ι1, ι2, ι3〉 be the associated group of spine
reflections. Then Γ contains an index-two free group generated by hyperbolic
isometries of E

2,1 (see [4]). Conversely, we have the following generalization of a
well-known theorem in hyperbolic geometry.

Theorem 9.1.2. [4] Let Γ = 〈γ1, γ2, γ3 | γ1γ2γ3 = Id〉 be a subgroup of isometries
of E2,1, where each γ has hyperbolic linear part and such that their invariant lines
are pairwise ultraparallel. Then there exist spine reflections ιi, i = 1, 2, 3, such
that γ1 = ι1ι2, γ2 = ι2ι3 and γ3 = ι3ι1.

Note that Γ as above is discrete. Indeed, viewed as a group of affine isometries
of E2,1, its linear part G ≤ O(2, 1) acts on the hyperbolic plane and is generated by
reflections in three ultraparallel lines. As mentioned before, if the spacelike circles
are spines of pairwise disjoint crooked planes, then Γ acts properly discontinuously
on the Minkowski patch. Applying this strategy, we obtain that the set of all
properly discontinuous groups Γ, with linear part generated by three ultraparallel
reflections, is non-empty and open [4].
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Here is an example. For i = 1, 2, 3, let Vi ⊂ R3,2 be the (2, 1)-subspace

Vi =








aui + cpi

a〈ui, pi〉 + b+ c〈pi, pi〉
c


 | a, b, c ∈ R



 ,

where

u1 =
[√

2 0 1
]†

u2 =
[
−

√
2

2

√
6

2 1
]†

u3 =
[
−

√
2

2 −
√

6
2 1

]†

p1 =
[
0

√
2 1

]†
p2 =

[
−

√
6

2 −
√

2
2 1

]†
p3 =

[√
6

2 −
√

2
2 1

]†
.

Then the projectivized nullcone of Vi is a spacelike circle—in fact, it corresponds
to the spacelike geodesic in E2,1 passing through pi and parallel to ui. The crooked
planes with vertex pi and spine p + Rui, respectively, are pairwise disjoint (one
shows this using inequalities found in [10]).

9.2. Actions on photon space. Still in the same Minkowski patch as
above, let G be a finitely generated discrete subgroup of O(2, 1) that is free and
purely hyperbolic—that is, every nontrivial element is hyperbolic. Considered as a
group of isometries of the hyperbolic plane, G is a convex cocompact free group.
By Barbot [2],

Theorem 9.2.1. Let Γ be a subgroup of isometries of E2,1 with convex cocompact
linear part. Then there is a pair of non-empty, Γ-invariant, open, convex sets
Ω± ⊂ E2,1 such that

• The action of Γ on Ω± is free and proper;

• The quotient spaces Ω±/Γ are globally hyperbolic;

• Each Ω± is maximal among connected open domains satisfying these two
properties;

• The only open domains satisfying all three properties above are Ω±.

The notion of global hyperbolicity is central in General Relativity, see for ex-
ample [3]. The global hyperbolicity of Ω±/Γ implies that it is homeomorphic to
the product (H2/G)× R. It also implies that no element of Γ preserves a null ray
in Ω±.

Let Γ be as in Theorem 9.2.1 and consider its action, for instance, on Ω+. Since
Ω+/Γ is globally hyperbolic, it admits a Cauchy hypersurface, a spacelike surface
S0 which meets every complete causal curve and with complement consisting of
two connected components. The universal covering S̃0 is Γ-invariant. The subset
Pho2,1

0 ⊂ Pho2,1 comprising photons which intersect S̃0 is open.
We claim that Γ acts freely and properly on Pho2,1

0 . Indeed, let K ≤ Pho2,1
0

be a compact set. Then K is contained in a product of compact subsets K1 ×K2,
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where K1 ⊂ S̃0 and K2 ⊂ S1, the set of photon directions. The action of Γ restricts
to a Riemannian action on S̃0. Thus the set

{γ ∈ Γ | γ(K1) ∩K1 6= ∅}

is finite. As S̃0 is spacelike, it follows that {γ ∈ Γ | γ(K) ∩ K 6= ∅} is finite
too. Finally, global hyperbolicity of Ω+/Γ implies that no photon intersecting Ω+

is invariant under the action of any element of Γ.

Corollary 9.2.2. There exists a non-empty open subset of Pho2,1 on which Γ acts
freely and properly discontinuously.

9.3. Some questions. So far we have considered groups of transformations
of Ein2,1 and Pho2,1 arising from discrete groups of Minkowski isometries. Specifi-
cally, we have focused on groups generated by spine reflections associated to space-
like circles intersecting in a point.

Question: Describe the action on Ein2,1 of a group generated by spine reflections
corresponding to non-intersecting spacelike circles. In particular, determine the
possible dynamics of such an action.

A related question is:
Question: What does a crooked surface look like when its spine does not pass

through p∞, or the lightcone at infinity altogether? Describe the action of the
associated group of spine reflections.

More generally, we may wish to consider other involutions in the automorphism
group of a crooked surface.

Question: Describe the action on Ein2,1 of a group generated by involutions,
in terms of their associated crooked surfaces.

As for the action on photon space, here is a companion question to those asked
in §7:

Question: Given a group generated by involutions, what is the maximal open
subset of Pho2,1 on which the group acts properly discontinuously?
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