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Abstract

We prove analogues for Cartan geometries of Gromov’s major the-

orems on automorphisms of rigid geometric structures. The starting

point is a Frobenius theorem, which says that infinitesimal automor-

phisms of sufficiently high order integrate to local automorphisms.

Consequences include a stratification theorem describing the config-

uration of orbits for local Killing fields in a compact real-analytic Car-

tan geometry, and an open-dense theorem in the smooth case, which

says that if there is a dense orbit, then there is an open, dense, lo-

cally homogeneus subset. Combining the Frobenius theorem with the

embedding theorem of Bader, Frances, and the author gives a repre-

sentation theorem that relates the fundamental group of the manifold

with the automorphism group.

1 Introduction

The classical result on local orbits in geometric manifolds is Singer’s homo-

geneity theorem for Riemannian manifolds [1]: given a Riemannian manifold

M , there exists k, depending on dimM , such that if every x, y ∈M are re-

lated by an infinitesimal isometry of order k, thenM is locally homogeneous.

An infinitesimal isometry of order k is a linear isometry from TxM to TyM

that pulls back the curvature tensor at y and its covariant derivatives up

to order k to those at x. An open subset U ⊆ M of a geometric manifold
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is locally homogeneous if for every x, x′ ∈ U , there is a local automorphism

f in U with f(x) = x′. Such a local automorphism is a diffeomorphism

from a neighborhood V of x in U to a neighborhood of x′ in U , with f an

isomorphism between the geometric structures restricted to V and f(V ).

Gromov extended Singer’s theorem to manifolds with rigid geometric struc-

tures of algebraic type in [2, 1.6.G]. He also proved the celebrated open-dense

theorem ([2, 3.3.A]) and a stratification for orbits of local automorphisms

of such structures on compact real-analytic manifolds (see [2, 3.4] and [3,

3.2.A]). The open-dense theorem says that if M is a smooth manifold with

smooth rigid geometric structure of algebraic type, and if there is an orbit

for local automorphisms that is dense inM , thenM contains an open, dense,

locally homogeneous subset. A crucial ingredient for Gromov’s theorems is

his difficult Frobenius theorem, which says that infinitesimal isometries of

sufficiently high order can be integrated to local isometries near any point

on a real-analytic manifold, and near regular points in the smooth case.

Infinitesimal isometries in this context are a suitable generalization of the

definition in the previous paragraph.

This article treats Cartan geometries, a notion of geometric structure less

flexible than Gromov’s rigid geometric structures, but still including es-

sentially all classical geometric structures with finite-dimensional automor-

phism groups, such as pseudo-Riemannian metrics, conformal pseudo-Riemannian

structures in dimension at least 3, and a broad class of CR structures. The

author does not know whether every Cartan geometry determines a rigid ge-

ometric structure à la Gromov, but strongly suspects not. The central result

is a Frobenius theorem for Cartan geometries (3.11, 6.3), which is consider-

ably easier in this setting, and is in fact broadly modeled on the paper [4]

of Nomizu from 1960 treating Riemannian isometries (see also [5]).

From the Frobenius theorem we obtain the stratification and open-dense

theorems as in [2] for local Killing fields of Cartan geometries (4.1, 6.4). The

embedding theorem for automorphism groups of Cartan geometries proved

in [6], combined with the Frobenius theorem, gives rise to centralizer and

π1-representation theorems for real-analytic Cartan geometries (5.4, 5.9),

which can be formulated for actions that do not necessarily preserve a finite

volume.

A Cartan geometry infinitesimally models a manifold on a homogeneous
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space.

Definition 1.1. Let G be a Lie group with Lie algebra g, and P < G a

closed subgroup with Lie algebra p. A Cartan geometry on a manifold M

modeled on the pair (g, P ) is a triple (M,B, ω) where π : B → M is a

principal P -bundle over M , and ω is a g-valued 1-form on B satisfying

1. ωb : TbB → g is a linear isomorphism for all b ∈ B

2. for all X ∈ p, if X‡ is the fundamental vector field on B corresponding

to X, then ωb(X
‡) = X at all b ∈ B.

3. R∗
gω = Ad g−1 ◦ ω for all g ∈ P

Definition 1.2. Let (M,B, ω) be a Cartan geometry. An automorphism of

(M,B, ω) is a diffeomorphism f of M that lifts to a bundle automorphism

f̃ of B satisfying f̃∗ω = ω. The group of all such automorphisms will be

denoted, somewhat abusively, by Aut M below.

An important fact that will be used throughout the sequel is that Aut M ,

when lifted to B, acts freely. In fact, a local automorphism f defined on

U ⊂ M is determined by f̃(b) for any b ∈ π−1(U); similarly, a local Killing

field X defined on U ⊂ M lifts to X̃ on π−1(U) and is determined by

X̃(b) for any b ∈ π−1(U). This freeness follows from the fact that (local)

automorphisms preserve a framing on B, so act freely and properly (see [7,

I.3.2]).

Examples.

Riemannian and pseudo-Riemannian metrics. The canonical Cartan ge-

ometry associated to a Riemannian metric on Mn is modeled on the pair

(isom(Rn),O(n)), where isom(Rn) is the Lie algebra of Isom(Rn) ∼= O(n)⋉
Rn. The bundle of orthonormal frames on M is the principal O(n)-bundle

B. The Levi-Civita connection gives an o(n)-valued 1-form ν on B with the

appropriate O(n)-eqivariance. The Cartan connection ω is the sum of ν and

the n tautological 1-forms on B.

Now if M carries a pseudo-Riemannian metric of type (p, q), where p +

q = n, then there is again a Levi-Civita connection. The model pair is

(isom(Rp,q),O(p, q)), and B is the analogous bundle of normalized frames,

in which the metric takes the standard form. Again, ω is the sum of the

Levi-Civita connection with the tautological 1-forms.
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The automorphisms of the resulting (M,B,ω) are exactly the isometries of

the metric.

Conformal structures. A conformal Riemannian structure on Mn, n ≥ 3,

yields a canonical Cartan geometry modeled on the round sphere Sn, as a

homogeneous space corresponding to the pair (o(1, n + 1), P ), where P <

O(1, n + 1) ∼= Conf Sn is the stabilizer of a point of Sn. It is a parabolic

subgroup isomorphic to (R∗×SO(n))⋉Rn. The bundle B is a subset of the

second-order frame bundle of M , comprising 2-jets of local diffeomorphisms

from Rn to M that are conformal to order 2 at the origin. The existence of

a canonical form ω on B was proved by Cartan.

More generally, if M has a type-(p, q) conformal structure, p + q ≥ 3, then

there is a canonical Cartan geometry modeled on the pseudo-Riemannian

generalization of the round sphere, namely the Einstein space Einp,q. The

Lie algebra of Conf Einp,q is o(p + 1, q + 1), and the stabilizer of a point is

a maximal parabolic P ∼= CO(p, q)⋉Rp,q.

The automorphisms of the resulting (M,B, ω) are the conformal transfor-

mations of M .

Nondegenerate CR-structures. These structures model real hypersurfaces in

complex manifolds. A nondegenerate strictly pseudoconvex CR structure

on a (2m − 1)-dimensional manifold M is the data of a contact subbundle

E ⊂ TM equipped with an almost-complex structure J and a conformal

class of positive definite Hermitian metrics. Such a structure is equivalent

to a canonical Cartan geometry modeled on SU(1,m)/P , where P is the

parabolic subgroup stabilizing an isotropic complex line in C1,m. This ho-

mogeneous space is the boundary of complex hyperbolic space CHm.

More generally, if p + q = m − 1, then a nondegenerate CR structure of

type (p, q) is as above, but with the conformal class of Hermitian metrics

of signature (p, q). One of these structures is equivalent to a canonical

Cartan geometry modeled on SU(p+1, q+1)/P , where P is again a maximal

parabolic subgroup stabilizing a null line in the standard representation on

Cm+1.

The equivalence problem for strictly pseudo-convex CR-structures was first

solved by E. Cartan in dimension 3, and in the general case in [8], [9], [10].

Let (M,B, ω) be a Cartan geometry modeled on G/P . We will make the
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following standard assumptions on G/P :

1. G is connected.

2. P contains no nontrivial normal subgroup of G. (Suppose that N ◁
G were such a subgroup. Then let G′ = G/N and P ′ = P/N . If

(M,B, ω) is a Cartan geometry modeled on (g, P ), then ω descends

to a g′-valued 1-form ω′ on B′ = B/N , giving a Cartan geometry

(M,B/N, ω′) modeled on G′/P ′.)

3. P is an analytic subgroup of G.

In section 5 we will further assume that AdgP is an algebraic subgroup of

Aut g. In this case, the Cartan geometry (M,B, ω) is said to be algebraic

type.

Acknowledgements: I thank David Fisher for helpful conversations about

this project, and Ben McKay for bringing to my attention an error in a pre-

vious version of this article. I also thank Charles Frances, Gregory Margulis,

and Amir Mohammadi for illuminating conversations on related topics. I

am grateful to the referees for their helpful comments.

2 Baker-Campbell-Hausdorff formula

The main proposition of this section, proposition 2.1, asserts that the usual

BCH formula holds to any finite order with ω-constant vector fields on B

in place of left-invariant vector fields. When (M,B, ω) is real-analytic, this

formula gives the Taylor series at each point of B for the flow along two

successive ω-constant vector fields, in terms of the exponential coordinates.

For X,Y ∈ g, define

α : g× g → g

α : (X,Y ) 7→ loge(expeX · expe Y )

where expe is the group exponential map g ∼= TeG→ G, and loge the inverse

of expe. The exponential map of G can be considered a function G×g → G,

with

exp(g,X) = expgX = g · expeX
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It is the flow for time 1 with initial value g along the left-invariant vector

field corresponding to X. Note that

expeX · expe Y = exp(exp(e,X), Y )

For any k ∈ N, there exist functions a1, . . . , ak, and R of (X,Y ) such that

α(tX, tY ) = ta1(X,Y ) + · · ·+ tk

k!
ak(X,Y ) + tkR(tX, tY )

where

lim
t→0

R(tX, tY ) = 0

These functions are given by the BCH formula, and they are rational mul-

tiples of iterated brackets of X and Y . For example,

a1(X,Y ) = X + Y

a2(X,Y ) = [X,Y ]

and

a3(X,Y ) =
1

2
([X, [X,Y ]] + [Y, [Y,X]])

For any Lie algebra u, not necessarily finite-dimensional, with a linear in-

jection ρ : g → u, the functions ak define obvious functions ak : ρ(g) → u,

evaluated by taking iterated brackets in u.

In the bundle B of the Cartan geometry, denote by exp the exponential map

B×g → B, defined on a neighborhood of B×{0} and by logb the inverse of

expb, defined on a neighborhood of b. For any b ∈ B, define, for sufficiently

small X,Y ∈ g

ζb(X,Y ) = logb(exp(exp(b,X), Y ))

As above, there exist functions z1, . . . , zk, corresponding to the time deriva-

tives of ζb(tX, tY ) up to order k, and a remainder function.

Proposition 2.1. Let G be a Lie group with Lie algebra g and (M,B, ω)

a Cartan geometry modeled on (g, P ). Let ak and zk be the coefficients of

tk/k! in the respective order-k Taylor approximations of the above functions

α and ζb. Then

zk(X,Y ) = ωb(ak(X̃, Ỹ ))

where X̃ and Ỹ are the ω-constant vector fields on B corresponding to X

and Y , respectively.
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Proof: Fix X,Y ∈ g, and let Z(t) = ζb(tX, tY ). The following lemmas

give two different ways to compute, for an arbitrary Ck function φ on B and

b ∈ B, the derivative

dk

dtk

∣∣∣∣∣
0

φ(exp(b, Z(t)))

Lemma 2.2. (compare [11, I.1.88]) For X ∈ g, b ∈ B, and φ ∈ Ck(B),

dk

dtk

∣∣∣∣∣
0

φ(exp(b, tX)) = X̃k.φ
∣∣∣
b

Proof: For k = 1,

d

dt

∣∣∣∣
0

φ(exp(b, tX)) = φ∗b((expb)∗(X)) = X̃.φ
∣∣∣
b

Now let n ≥ 1 and suppose that the formula holds for all k ≤ n. Then

X̃n+1.φ
∣∣∣
b

= X̃.X̃n.φ
∣∣∣
b

=
d

dt

∣∣∣∣
0

(X̃n.φ)(exp(b, tX))

=
d

dt

∣∣∣∣
0

dn

dsn

∣∣∣∣
0

φ(exp(exp(b, tX), sX))

=
d

dt

∣∣∣∣
0

dn

dsn

∣∣∣∣
0

φ(exp(b, (t+ s)X))

=
dn+1

dun+1

∣∣∣∣
0

φ(exp(b, uX))

where u = t+ s. ♢

Corollary 2.3. For X,Y ∈ g,

dk

dtk

∣∣∣∣∣
0

φ(exp(exp(b, tX), tY )) =
∑

m+n=k

k!

m!n!
X̃n.Ỹ m.φ

∣∣∣
b

Proof: By two applications of lemma 2.2,

X̃n.Ỹ m.φ
∣∣∣
b

=
dn

dsn

∣∣∣∣
0

(Ỹ m.φ)(exp(b, sX))

=
dn

dsn

∣∣∣∣
0

dm

dtm

∣∣∣∣
0

φ(exp(exp(b, sX), tY ))

The desired formula follows. ♢

7



Lemma 2.4. Let Z(t) be a curve in g with Z(0) = 0, b ∈ B, and φ ∈ Ck(B).

Then

dk

dtk

∣∣∣∣∣
0

φ(expb Z(t)) =
dk

dtk

∣∣∣∣∣
0

[
k∑

n=0

1

n!
[tZ̃0 + · · ·+ tkZ̃k]

n.φ
∣∣∣
b

]
where

Z(t) = tZ1 + · · ·+ tkZk

is the kth Taylor polynomial for Z, and Z̃i is the ω-constant vector field on

B with value Zi.

Proof: Taylor’s formula for Lie groups, which also applies in the total

space of a Cartan geometry, says that for X in a bounded neighborhood of

0 in g,

φ(expb(X)) =

k∑
n=0

1

n!
(X̃n.φ)(b) +Rk(X)

where, in any norm on g, there is Ck such that |Rk(X)| ≤ Ck|X|k+1 (see

[11, I.1.88]).

To compute the derivative dk

dtk

∣∣∣
0
φ(expb Z(t)), one can substitute the kth

Taylor polynomial for Z in the Taylor formula above and ignore the remain-

der term. ♢

Now

exp(exp(b, tX), tY ) = exp(b, ζb(tX, tY )) = expb(Z(t))

for Z(t) = ζb(tX, tY ). Note that Zk = zk(X,Y )/k!. Corollary 2.3 gives

dk

dtk

∣∣∣∣∣
0

φ(expb Z(t)) =
∑

m+n=k

k!

m!n!
X̃n.Ỹ m.φ

∣∣∣
b

On the other hand, lemma 2.4 gives for the same derivative

dk

dtk

∣∣∣∣∣
0

φ(expb Z(t)) =
dk

dtk

∣∣∣∣∣
0

[
k∑

n=0

1

n!
[tZ̃1 + · · ·+ tkZ̃k]

n.φ
∣∣∣
b

]

With these two formulas, the coefficients zk(X,Y ) = k!Zk can be recursively

computed in terms of products of X̃ and Ỹ . Of course, these formulas

hold in the group G with the usual exponential map, so they yield the

same expressions, actually involving brackets of X̃ and Ỹ , for ak(X,Y ) and

zk(X,Y ). ♢
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3 Frobenius theorem

Throughout this section, (M,B, ω) is a Cartan geometry modeled on (g, P ).

Soon we will impose the assumption that (M,B, ω) is Cω.

The exponential map of (M,B,ω) satisfies the following P -equivariance re-

lation, which is an easy consequence of part 3 of definition 1.1:

exp(bp−1, X) = exp(b, (Ad p−1)X)p−1

The curvature of a Cartan geometry is a g-valued 2-form on B defined by

Ω(X,Y ) = dω(X,Y ) + [ω(X), ω(Y )]

If X ∈ p, then Ω(X,Y ) vanishes [12, 5.3.10]. Let

V = (∧2(g/p)∗)⊗ g

The form ω gives an identification TB ∼= B × g, under which the curvature

corresponds to a function K : B → V

K : b 7→ (ω−1
b ◦ σ)∗Ωb

where σ is any linear section g/p → g.

The group P acts on V linearly by

(p.φ)(u, v) = (Ad p ◦ φ)((Ad p−1)u, (Ad p−1)v)

where Ad is the quotient representation of Ad P on g/p. The curvature

map is P -equivariant [12, 5.3.23]:

K(bp−1) = p.K(b)

For m ∈ N, define the ω-derivative of order m of K

DmK : B → Hom(⊗mg, V )

DmK(b) : X1 ⊗ · · · ⊗Xm 7→ (X̃1 . . . X̃m.K)(b)

where, as above, X̃ is the ω-constant vector field on B with value X. Note

that DmK(b) is not a symmetric homomorphism, because the ω-constant

vector fields X̃ do not come from coordinates on B. Neither can it be

interpreted as a tensor on B, because DmK(b) is not linear over the ring

of functions C∞(B). It does suffice, however, to determine the m-jet jmb K,

because any vector field on B is a C∞(B)-linear combination of ω-constant

vector fields.
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Proposition 3.1. The ω-derivative is P -equivariant for each m ≥ 0:

DmK(bp−1) = p ◦DmK(b) ◦Ad mp−1

where Ad m is the tensor representation on ⊗mg of Ad P .

Proof: The assertion holds for m = 0 by the equivariance of K cited

above. Suppose it holds for all m ≤ r. Then for any X1, . . . , Xr+1 ∈ g,

(X̃1 . . . X̃r+1.K)(bp−1) =
d

dt

∣∣∣∣
0

(X̃2 . . . X̃r+1.K)(exp(bp−1, tX1))

=
d

dt

∣∣∣∣
0

(X̃2 . . . X̃r+1.K)(exp(b, (Ad p−1)tX1)p
−1)

=
d

dt

∣∣∣∣
0

p ◦ (DrK(exp(b, (Ad p−1)tX1))((Ad p−1)X2, . . . , (Ad p−1)Xr+1))

= p ◦ (Dr+1K(b)((Ad p−1)X1, . . . , (Ad p
−1)Xr+1))

so by induction it is true for all m ≥ 0. ♢

Definition 3.2. For m ≥ 1, two points b, b′ of B are m-related if

DrK(b) = DrK(b′)

for all 1 ≤ r ≤ m. They are ∞-related if they are m-related for all m.

For φ ∈ Hom(⊗rg, V ) and X ∈ g, the contraction φ⌞X ∈ Hom(⊗r−1g, V ) is

given by

(φ⌞X)(X1, . . . , Xr−1) = φ(X,X1, . . . , Xr−1)

Definition 3.3. For m ≥ 1, the Killing generators of order m at b ∈ B,

denoted Killm(b), comprise all A ∈ g such that, for all 1 ≤ r ≤ m, the

contraction

DrK(b)⌞A = 0 ∈ Hom(⊗r−1g, V )

The Killing generators at b ∈ B are

Kill∞(b) =
∩
m

Killm(b)

Note that Killm(b) is a subspace of g for all m ∈ N ∪ {∞}. Moreover,

Killm(bp−1) = (Ad p)(Killm(b))
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Then define

km(x) = dimKillm(b) k(x) = dimKill∞(b)

for any b ∈ π−1(x). Note that for each m, the function km(x) is lower

semicontinuous—that is, each x ∈ B has a neighborhood U with km(y) ≤
km(x) for all y ∈ U . The same is true for k(x).

The goal is to show that m-related points, for m sufficiently large, are ac-

tually related by local automorphisms, and that Killing generators of suffi-

ciently high order give rise to local Killing fields.

Definition 3.4. A local automorphism between points b and b′ of B is a

diffeomorphism f from a neighborhood of b to a neighborhood of b′ such that

f∗ω = ω. A local automorphism between x and x′ in M is a diffeomor-

phism from a neighborhood U of x to a neighborhood U ′ of x′ inducing an

isomorphism of the Cartan geometries (U, π−1(U), ω) and (U ′, π−1(U ′), ω).

Definition 3.5. A local Killing field near b ∈ B is a vector field Ã defined on

a neighborhood of b such that the flow along Ã, where it is defined, preserves

ω. A local Killing field near x ∈M is a vector field A near x such that the

flow φt
A along A, if it is defined on a neighborhood U×(−ϵ, ϵ) of (x, 0), gives

an isomorphism of the restricted Cartan geometry on U with the restricted

Cartan geometry on φt
A(U) for all t ∈ (−ϵ, ϵ).

Note that a local automorphism between x, x′ ∈ M lifts to a local auto-

morphism from any b ∈ π−1(x) to some b′ ∈ π−1(x′). Similarly, a local

Killing field near x ∈ M lifts to a local Killing field near any b ∈ π−1(x).

Local automorphisms and Killing fields on B also descend toM ; further, the

resulting correspondences are bijective, as the next two propositions show.

Proposition 3.6. Let f be a nontrivial local automorphism between points b

and b′ of B. Then f descends to a nontrivial local automorphism f̄ between

π(b) and π(b′) in M .

Proof: Denote by P 0 the identity component of P . In order to ensure that

f commutes with P , we assume it is defined on a connected neighborhood

U of b with U ∩ UP ⊆ UP 0. The P 0-action is generated by flows along the

ω-constant vector fields X‡ with X ∈ p. Because f∗ preserves all ω-constant

vector fields, it commutes with the P 0-action. Now there is a well-defined
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extension of f to UP with f(qp) = f(q)p for any q ∈ B, p ∈ P . Note that

the extended f still preserves ω: if q ∈ U , p ∈ P , then

ωf(qp) ◦ f∗qp = ωf(q)p ◦ (Rp)∗ ◦ f∗q ◦ (Rp)
−1
∗

= (Ad p−1) ◦ ωf(q) ◦ f∗q ◦ (Rp)
−1
∗

= (Ad p−1) ◦ ωq ◦ (Rp)
−1
∗

= ωqp

Now f descends to a diffeomorphism f̄ on π(U) ⊂ M , and this diffeomor-

phism is a local automorphism carrying π(b) to π(b′).

Suppose that f̄ were the identity on π(U). Then f would have the form

f(b) = b · (ρ ◦ π)(b)

for ρ : π(U) → P . Let N be the subgroup of P generated by the image of

ρ. We will show N is a normal subgroup of G contained in P , contradicting

the global assumptions on G and P .

On one hand, f∗ω = ω, while also

(f∗ω)b = (Ad ◦ ρ ◦ π)(b)−1 ◦ ωb + (ρ ◦ π)∗

(see [12, 3.4.12]). Then for any Y ∈ g and x ∈ π(U),

Y = ((Ad ◦ ρ)(x))−1Y + (ρ ◦ π)∗Y

So (Ad g)(Y ) − Y ∈ n, the Lie algebra of N , for all g ∈ N . Since G is

connected, it follows that hgh−1 ∈ N for all h ∈ G, g ∈ N . ♢

Similarly, because local Killing fields in B commute with ω-constant vector

fields, they commute with the P 0-action and descend toM . The local Killing

fields near b ∈ B or x ∈M are finite-dimensional vector spaces, and will be

denoted Killloc(b) and Killloc(x), respectively. Let

l(x) = dimKillloc(x)

Proposition 3.7. For x = π(b),

Killloc(b) ∼= Killloc(x)

Moreover, each x ∈ M has a neighborhood Ux such that l(y) ≥ l(x) for all

y ∈ Ux.
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Proof: It was observed above that a local Killing field near x lifts to a

unique local Killing field near any b ∈ π−1(x), and it is clear that this map

is linear. It was also noted above that local Killing fields on B descend to

M . This map is linear, and it is injective by an argument essentially the

same as that in the proof of proposition 3.6 above. The desired isomorphism

follows.

To prove the second statement of the proposition, take a countable nested

sequence of neighborhoods Ui of x with ∩iUi = {x}. Let Killloci (x) be the

subspace of local Killing fields defined on Ui. Because Killloci (x) ⊆ Killloci+1(x)

and ∪iKillloci (x) = Killloc(x), these subspaces eventually stabilize to the

finite-dimensional space Killloc(x). Set Ux = Ui once Killloci (x) = Killloc(x).

For any y ∈ Ux, every A ∈ Killloc(x) determines an element of Killloc(y). If

A ∈ Killloc(x) has trivial germ at y, then the lift Ã to B has trivial germ at

any b ∈ π−1(y), in which case it is trivial everywhere it is defined. Thus the

map Killloc(x) → Killloc(y) is injective for all y ∈ Ux, so l(y) ≥ l(x). ♢

Proposition 3.8. Let (M,B,ω) be real-analytic. For any compact subset

L ⊂ B, there exists m = m(L) such that whenever b, b′ ∈ L are m-related,

then there is a unique local automorphism sending b to b′.

Proof: For each m ≥ 1, denote by Rm the Cω subset of B ×B consisting

of pairs (b, b′) with DmK(b) = DmK(b′). Note that Rm+1 ⊆ Rm. By

the Noetherian property of analytic sets, there exists m = m(L) such that

Rk ∩ (L× L) = Rm ∩ (L× L) for all k ≥ m.

Now let b, b′ ∈ L be m-related, so they are in fact ∞-related. Recall that an

automorphism is determined by the image of one point, so an automorphism

carrying b to b′ is unique. Define a map f from an exponential neighborhood

of b to a neighborhood of b′ by

f(expb Y ) = expb′ Y

Note that f(b) = b′ and (f∗ω)b = ωb. For Y ∈ g, denote by Ỹ the corre-

sponding ω-constant vector feld on B. Now f is a local automorphism if for

all X,Y ∈ g and sufficiently small t,

f∗(Ỹ (exp(b, tX))) = Ỹ (exp(b′, tX))

This equation is equivalent to

d

ds

∣∣∣∣
0

logb′ ◦f(φs
Ỹ
φt
X̃
b) =

d

ds

∣∣∣∣
0

logb′(φ
s
Ỹ
φt
X̃
b′)

13



Because M is Cω, it suffices to show that for all k ≥ 0,

dk

dtk

∣∣∣∣∣
0

d

ds

∣∣∣∣
0

logb′ ◦f(φs
Ỹ
φt
X̃
b) =

dk

dtk

∣∣∣∣∣
0

d

ds

∣∣∣∣
0

logb′(φ
s
Ỹ
φt
X̃
b′) (1)

By the BCH formula (proposition 2.1), the right-hand side is

dk

dtk

∣∣∣∣∣
0

d

ds

∣∣∣∣
0

1

(k + 1)!
ωb′(ak+1(tX̃, sỸ ))

Each ak+1(tX, sY ) is a sum of (k + 1)-fold brackets of X and Y with co-

efficients tisk+1−i/ci, where i is the multiplicity of X, and ci an integer.

Then
dk

dtk

∣∣∣∣∣
0

d

ds

∣∣∣∣
0

ak+1(tX, sY ) =
k!

ck
[X, . . . ,X, Y ]

and the right-hand side of equation (1) is

1

(k + 1) · ck
ωb′ [X̃, . . . , X̃, Ỹ ]

where X̃ appears k times in the iterated bracket.

The left-hand side can be written

dk

dtk

∣∣∣∣∣
0

d

ds

∣∣∣∣
0

(logb′ ◦f ◦ expb) ◦ logb(φs
Ỹ
φt
X̃
b) =

dk

dtk

∣∣∣∣∣
0

d

ds

∣∣∣∣
0

logb(φ
s
Ỹ
φt
X̃
b)

which, by the BCH formula again, equals

1

(k + 1) · ck
ωb[X̃, . . . , X̃, Ỹ ]

So it remains to show that these brackets are the same when b and b′ are

∞-related. The following lemma completes the proof. ♢

Lemma 3.9. Let

∆k(b) = [X, . . . ,X, Y ]− ωb[X̃, . . . , X̃, Ỹ ]

where X occurs k times in each iterated bracket. Then ∆k obeys the recursive

formula for all k ≥ 1

∆k+1(b) = Kb(X, [X, . . . ,X, Y ]−∆k(b))− (X̃.∆k)(b) + [X,∆k(b)]

14



If b and b′ are ∞-related, then

(X̃r.∆k)(b) = (X̃r.∆k)(b
′) for all r ≥ 0

If A is a Killing generator at b, then

(Ã.X̃r.∆k)(b) = 0 for all r ≥ 0

Proof: We begin with the recursive formula for ∆k when k = 1:

∆1(b) = [X,Y ]− ωb[X̃, Ỹ ]

= Kb(X,Y )

For any r ≥ 0 and ∞-related b and b′,

(X̃r.∆1)(b) = (X̃r.K)b(X,Y )

= (DrKb(X, . . . ,X))(X,Y )

= (DrKb′(X, . . . ,X))(X,Y )

= (X̃r.∆1)(b
′)

where X occurs r times in (X, . . . ,X).

Similarly, if A is a Killing generator at b, then

(Ã.X̃r.∆1)(b) = ((Dr+1Kb⌞A)(X, . . . ,X))(X,Y ) = 0

Next suppose the recursive formula for ∆k holds up to step k. At the next

step,

∆k+1(b) = [X, [X, . . . ,X, Y ]]− ωb[X̃, [X̃, . . . , X̃, Ỹ ]]

= [X, [X, . . . ,X, Y ]]− ωb[X̃, ˜[X, . . . ,X, Y ]] + ωb[X̃, ω
−1 ◦∆k]

= Kb(X, [X, . . . ,X, Y ]) + ωb[X̃, ω
−1 ◦∆k]

= Kb(X, [X, . . . ,X, Y ])−Kb(X,∆k(b)) + (X̃.∆k)(b) + [X,∆k(b)]

= Kb(X, [X, . . . ,X, Y ]−∆k(b)) + (X̃.∆k)(b) + [X,∆k(b)]

as desired.

Suppose (X̃r.∆k)(b) = (X̃r.∆k)(b
′) for all r ≥ 0. Compute

(X̃r.∆k+1)(b) = X̃r.(K(X, [X, . . . ,X, Y ]−∆k))(b)

+ (X̃r+1.∆k)(b) + [X, (X̃r.∆k)(b)]
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Compute inductively

X̃r.(K(X, [X, . . . ,X, Y ]−∆k))(b) = (X̃r.K)b(X, [X, . . . ,X, Y ]−∆k(b))

−
r∑

i=1

(X̃r−i.K)b(X, (X̃
i.∆k)(b))

By the induction hypothesis on X̃i.∆k, and because b and b′ are ∞-related,

each term in the above sum is the same at b as at b′. Therefore

X̃r.(K(X, [X, . . . ,X, Y ]−∆k))(b) = X̃r.(K(X, [X, . . . ,X, Y ]−∆k))(b
′)

and

(X̃r.∆k+1)(b) = X̃r.(K(X, [X, . . . ,X, Y ]−∆k))(b
′)

+ (X̃r+1.∆k)(b
′) + [X, (X̃r.∆k)(b

′)]

= (X̃r.∆k+1)(b
′)

We leave to the reader the verification that if (Ã.X̃r.∆k)(b) = 0 for all r ≥ 0

and A is a Killing generator at b, then

(Ã.X̃r.∆k+1)(b) = 0 for all r ≥ 0

♢

Here is the analogue of proposition 3.8 relating Killing generators and local

Killing fields.

Proposition 3.10. Suppose that (M,B,ω) is real-analytic. Then for all

b ∈ B, there exists m = m(b) such that each Killing generator of order m at

b determines a unique local Killing field near b.

Proof: The subspaces Killm(b) eventually stabilize, so there is m =

m(b) such that Killr(b) = Kill∞(b) for all r ≥ m. Let A ∈ Kill∞(b), so

DrK(b)⌞A = 0 for all r ≥ 1.

Let Ã(b) = ω−1
b A. Now define Ã near b by flowing along ω-constant vector

fields: let

Ã(φt
Ỹ
b) = φt

Ỹ ∗(Ã(b))

This vector field is well-defined in an exponential neighborhood of b. Further,

for all Y ∈ g, the bracket [Ã, Ỹ ](b) = 0.
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To show that [Ã, Ỹ ] = 0 in a neighborhood of b for all Y ∈ g, it suffices to

show

(logb)∗

(
[Ã, Ỹ ](exp(b, tX))

)
= 0

for all X ∈ g and t sufficiently small. Because M is Cω, it suffices to show

dk

dtk

∣∣∣∣∣
0

(logb)∗

(
[Ã, Ỹ ](exp(b, tX))

)
= 0

for all k ≥ 0.

As in the proof of 3.8 above, this equation follows from the BCH formula

and lemma 3.9. The reader is invited to refer to the proof of theorem 6.3 and

to complete the present proof. As in 3.8, uniqueness follows from freeness

of automorphisms on B. ♢

Theorem 3.11. Let (M,B, ω) be a compact Cω Cartan geometry modeled

on (g, P ). There exists m ∈ N such that any Killing generator at any b ∈ B

of order m gives rise to a unique local Killing field around b.

Proof: Recall that Killm(bp−1) = (Ad p)(Killm(b)). Then proposition

3.10 above, together with proposition 3.7, implies that for all x ∈ M , there

exists m(x) such that any Killing generator of order m(x) at any b ∈ π−1(x)

determines a unique local Killing field near x in M .

Let Ux be the neighborhood given by proposition 3.7, on which all local

Killing fields near x can be defined. Shrink Ux if necessary so that km(x)(y) ≤
km(x)(x) for all y ∈ Ux. We wish to show that m(y) = m(x). First,

l(x) ≤ l(y) ≤ km(x)(y) ≤ km(x)(x)

But l(x) = km(x)(x), so l(y) = km(x)(y). A local Killing field Ã near b ∈
π−1(y) is determined by the value ω(Ã(b)), so Killloc(b) maps injectively to

Killm(b) for any m. If these spaces have the same dimension for m = m(x),

then this map is an isomorphism—in other words, every Killing generator

of order m(x) at any b ∈ π−1(y) gives rise to a local Killing field near y, and

m(y) = m(x).

Now take Ux1 , . . . , Uxn a finite subcover of the covering of M by the neigh-

borhoods Ux. Set m = maxi m(xi). ♢

It is well-known that for any Cω manifold B equipped with a Cω framing, a

local Killing field for the framing near any b0 ∈ B can be extended uniquely

17



along curves emanating from b0 (see [13]). The same is then true in the base

of a Cω Cartan geometry M , because any local Killing field near x0 ∈ M

has a unique lift to B, and local Killing fields in B project to local Killing

fields in M . If two local Killing fields of M have the same germ at a point,

then they coincide on their common domain of definition. It follows that

if M is simply connected, then extending a local Killing field along curves

from some x0 gives rise to a well-defined global Killing field on M . Then we

have the following corollary.

Corollary 3.12. Let (M,B, ω) be a compact, simply connected Cω Cartan

geometry. There exists m ∈ N such that for all b ∈ B, every Killing gener-

ator at b of order m gives rise to a unique global Killing field on M , which

in turn gives rise to a 1-parameter flow of automorphisms of M .

4 Stratification theorem in the analytic case

The Killloc-relation is the equivalence relation on M with x ∼ y if y can

be reached from x by flowing along a finite sequence of local Killing fields.

The Killloc-orbits are the equivalence classes for the Killloc-relation. The

next result describes the configuration of these orbits in M ; it is a version

of Gromov’s stratification theorem for compact Cω Cartan geometries.

The Rosenlicht stratification theorem says that when an algebraic group P

acts algebraically on a variety W , then there exists a P -invariant filtration

U0 ∪ · · · ∪ Uk =W

such that Ui is Zariski open and dense in ∪j≥iUj and the quotient Ui → Ui/P

is a submersion onto a smooth algebraic variety (see [14], [2, 2.2]).

Let W = Hom(⊗mg, V ), and define Φ : B → W to be the P -equivariant

map sending b to the ω-derivative DmK(b). When (M,B, ω) is algebraic

type, the Rosenlicht stratification of W gives rise to a Killloc-stratification

of M . Recall that a simple foliation on a manifold V is one in which the

leaves are the fibers of a submersion from V to another manifold U .

Theorem 4.1. Let (M,B, ω) be a Cω Cartan geometry of algebraic type

modeled on (g, P ). Suppose that M is compact. Then there exists a stratifi-

cation by Killloc-invariant sets

V0 ∪ · · · ∪ Vk =M
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such that each Vi is open and dense in ∪j≥iVj, and the Killloc-orbits in Vi

are leaves of a simple foliation.

Proof: Let m be given by theorem 3.11, so that every Killing generator of

order m on B gives rise to a local Killing field onM . Take Vi = π(Φ−1(Ui)),

where Ui are the pieces of the Rosenlicht stratification for the P -action on

the Zariski closure of Φ(B) inW = Hom(⊗mg, V ). Then ∪Vi =M and each

Vi is open in ∪j≥iVj . Since Φ is analytic and each ∪j≥iUj is Zariski closed,

∪j>iVj is an analytic subset of ∪j≥iVj . Therefore, Vi is also dense in ∪j≥iVj .

The map Φ descends to Φ̄ : M → W/P . Each quotient Ui/P = Xi is a

smooth variety. There is the following commutative diagram.

B
Φ→ W

↓ ↓

M
Φ̄→ W/P

∪ ∪
Vi → Xi

The fibers of the submersion Vi → Xi are analytic submanifolds, and the

components of the fibers of Φ̄ foliate Vi. Let X ′
i be the leaf space of this

foliation. The map X ′
i → Xi is a local homeomorphism, so X ′

i admits the

structure of a smooth manifold for which the quotient map Vi → X ′
i is a

submersion.

Now it remains to show that the leaves of these foliations—that is, the

components of the fibers of Φ̄—are Killloc-orbits. Let F = Φ−1(w) ⊂ B for

w ∈ W . Note that F 7→ π(F) is a principal bundle, with fiber P (w), the

stabilizer in P of w. For w̄ the projection of w in W/P , each component of

Φ̄−1(w̄) in M is the image under π of a component of F.

If each component C of F is a Killloc-orbit in B, then each component π(C)

is a Killloc-orbit in M . The tangent space TbC = ω−1
b (Killm(b)) for all b ∈ C.

On the other hand,

ω−1
b (Killm(b)) = {X(b) : X ∈ Killloc(b)}

Thus the Killloc-orbit of b is contained in C. A point b ∈ C has a neigh-

borhood Nb ⊂ C such that any b′ ∈ Nb equals φ1
Y b for some Y ∈ Killloc(b).

Then given a ∈ C, connect b to a by a path and cover this path with finitely
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many such neighborhoods to reach a from b by flowing along finitely many

local Killing fields. ♢

5 Gromov representation

Let (M,B, ω) be a compact Cω Cartan geometry of algebraic type mod-

eled on (g, P ). The Frobenius theorem gives local Killing fields from Killing

generators of sufficiently high order. A slight extension of the main the-

orem of [6] gives Killing generators of sufficiently high order in p from big

groupsH < Aut M . This latter theorem is a version of Zimmer’s embedding

theorem—see [15], [2, 5.2.A]—in the setting of Cartan geometries.

Combining local Killing fields that arise from the embedding theorem with

certain Killing fields from H gives rise to local Killing fields that centralize

h in theorem 5.4 (compare [2, 5.2.A2], [16, 4.3]). Local Killing fields that

centralize h lift to the universal cover of M and extend to global Killing

fields. The fundamental group Γ of M preserves this centralizer c, and the

representation of Γ on c is related to the adjoint representation of H in

theorem 5.9, a version of Gromov’s representation theorem [2, 6.2.D1]. In

our centralizer theorem, the group H < Aut M is not assumed to preserve

a finite volume. In neither the centralizer nor the representation theorem

is it assumed simple; see [17] for some related statements on existence of

Gromov representations for simple H without a finite invariant measure, in

the setting of Gromov’s rigid geometric structures.

5.1 Embedding theorem

If H is a Lie subgroup of Aut M , then the Lie algebra h can be viewed as an

algebra of global Killing fields on B. If b ∈ B and X is a nontrivial Killing

field on B, the evaluation X(b) ̸= 0. There are therefore for each b ∈ B

linear injections ιb : h → g defined by

ιb(X) = ωb(X)

The embedding theorem relates the adjoint representation of H on h with

the representation of a certain subgroup of P on ιb(h). The key ingredient

in the proof of the embedding theorem is the Borel density theorem. It
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essentially says that a finite measure on a variety that is invariant by an

algebraic action of a group S is supported on S-fixed points. One must take

care, however, that S has no nontrivial compact quotients.

Definition 5.1. Let H be a Lie group. A Lie subgroup S < H is discom-

pact if the Zariski closure Zar(AdhS) has no nontrivial compact algebraic

quotients.

The following statement is a consequence of the Borel density theorem and

appears in [6, 3.2].

Theorem 5.2. (see [18, 2.6] and [19, 3.11]) Let ψ : S → Aut W for

S a locally compact group and W an algebraic variety, and assume that

Zar(ψ(S)) has no nontrivial compact algebraic quotients. Suppose S acts

continuously on a topological space M preserving a finite Borel measure µ.

Assume ϕ : M → W is an S-equivariant measurable map. Then ϕ(x) is

fixed by Zar(ψ(S)) for µ-almost-every x ∈M .

Now we can state the embedding theorem that will be needed.

Theorem 5.3. Let (M,B, ω) be a Cartan geometry of algebraic type modeled

on (g, P ). Let H < Aut M be a Lie group and S < H a discompact subgroup

preserving a probability measure µ on M . Denote by S̄ the Zariski closure

of AdhS. For any m ≥ 0, there exists Λ ⊂ B with µ(M \ π(Λ)) = 0, such

that to every b ∈ Λ corresponds an algebraic subgroup Šb < AdgP with

1. Šb(ιb(h)) = ιb(h)

2. the representation of Šb on ιb(h) is equivalent to S̄ on h

3. Šb fixes DrK(b) for all 0 ≤ r ≤ m

The proof is the same as in [6], except that we apply theorem 5.2 to strata

in the P -quotient of the variety

W̃ = Mon(h, g)× V × · · · ×Hom(⊗mg, V )

where Mon(h, g) consists of the injective linear transformations from h to g.

The variety W̃ is the target of the P -equivariant map

ϕ̃(b) = (ιb,K(b), . . . , DmK(b))
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The action of S̄ on W̃ is by

g(ρ, φ0, . . . , φm) = (ρ ◦ g−1, φ0, . . . , φm)

The action of p ∈ P on Mon(h, g) is by post-composition with Ad p. Then

p acts on the first factor of W̃ by this action, and on the remaining factors

by the actions defined in section 3 above: for φ ∈ Hom(⊗mg, V ),

p.φ = p ◦ φ ◦Ad mp−1

Note ϕ̃ is P -equivariant.

Let ϕ :M → W̃/P be the map induced by ϕ̃; it is S-equivariant. By theorem

5.2, for µ-almost-every x, the point ϕ(x) is fixed by S̄. Let x be a such a

point, and let b ∈ π−1(x). Then define

Šb = {p ∈ AdgP : p.ϕ̃(b) = g.ϕ̃(b) for some g ∈ S̄}

Then Šb satisfies the conditions (1)-(3) of theorem 5.3.

5.2 Centralizer theorem

The group Šb gives rise, via the Frobenius theorem, to elements of the stabi-

lizer of π(b), which in turn give local Killing fields commuting with h. Denote

by M̃ the universal cover of M and by q the covering map. Denote by c the

Lie algebra of global Killing fields on M̃ commuting with the algebra h of

Killing fields lifted from the H-action on M . Let s be the Lie algebra of S.

Given a point y of a manifold N and an algebra u of vector fields, denote

by u(y) the subspace of TyN consisting of values at y of elements of u.

Theorem 5.4. Let (M,B,ω) be a compact Cω Cartan geometry of algebraic

type. Let H < Aut M be a Lie group and S < H a discompact subgroup

preserving a probability measure µ on M . Then for µ-almost-every x ∈ M ,

for every x̃ ∈ q−1(x), the subspace s(x̃) ⊂ c(x̃).

Proof: The ideas of the proof are the same as Zimmer’s [16]. Let m be

given by theorem 3.11, so that any Killing generator of order m at any b ∈ B

gives rise to a unique local Killing field. Let x belong to the full-measure

set Λ as in the embedding theorem 5.3, and let b ∈ π−1(x). Denote by š the
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Lie algebra of Šb, and by ρb the Lie algebra homomorphism of š onto s̄, the

Lie algebra of S̄. For any X ∈ š and 0 ≤ r ≤ m,

DrK(b)⌞X = (X‡.Dr−1K)(b) = −X.(Dr−1K(b)) = 0

by P -equivariance of Dr−1K. Therefore š ⊂ Killm(b). Now the Frobenius

theorem guarantees, for each X ∈ š, a local Killing field X∗ near b with

ωb(X
∗) = X. Because X∗(b) is tangent to the fiber over x, the local Killing

field near x induced by X∗ fixes x.

Let Y ∈ h, viewed as a Killing field on B. Compute

dω(X∗, Y ) = X∗.ω(Y )− (LY ω)(X
∗)

= X∗.ω(Y )

= (LX∗ω)(Y ) + ω[X∗, Y ]

= ω[X∗, Y ]

On the other hand, since ωb(X
∗) ∈ p, the curvature Ωb(X

∗, Y ) = 0, so

ωb[X
∗, Y ] = dωb(X

∗, Y )

= [ωb(X
∗), ωb(Y )] = [X, ιb(Y )]

= ιb((ρbX)(Y )) = ωb((ρbX)(Y ))

Both [X∗, Y ] and (ρbX)(Y ) are local Killing fields. They are determined by

their values at any point of B, so they must be equal. We conclude that for

all Y ∈ h,

[X∗, Y ] = (ρbX)(Y )

Now, given X ∈ s and x ∈ M satisfying the conclusion of the embedding

theorem, choose any b ∈ π−1(x) and let Y ∗ be the local Killing field on M

fixing x with (ρb ◦ ωb)(Y
∗) = adhX. Then define Xc = X − Y ∗. It is a local

Killing field near x satisfying

• Xc(x) = X(x)− Y ∗(x) = X(x)

• for all W ∈ h,

[Xc,W ] = [X − Y ∗,W ] = [X,W ]− ((ρb ◦ ωb)(Y
∗))(W ) = 0

Now Xc lifts to a local Killing field near any x̃ ∈ M̃ . Because M̃ is real-

analytic and simply connected, there is a unique global extension of Xc to

M̃ , which will also be denoted Xc. Now Xc ∈ c, and Xc(x̃) = X(x̃). Such

an Xc exists for any X ∈ s, so the theorem is proved. ♢
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5.3 Gromov representation

We first review Zimmer’s notion of the algebraic hull of a measurable cocycle.

Two references on this subject are [20] and [21].

Definition 5.5. Let S be a locally compact group acting on a topological

space M preserving an ergodic probability measure µ. Let L be a topolog-

ical group. An L-valued measurable cocycle for the S-action on M is a

measurable map α : S ×M → L satisfying

α(gh, x) = α(g, hx)α(h, x)

for all g, h ∈ S and almost-every x ∈M .

Definition 5.6. Let S be a locally compact group acting by automorphisms

of a V -vector bundle E over a topological space M . Suppose that S preserves

an ergodic probability measure µ on M . A measurable trivialization of E is

a measurable map t : E →M × V of the form t(x, v) = (x, txv), where tx is

a linear isomorphism Ex → V for almost-every x.

A measurable trivialization t gives rise to a GL(V )-valued measurable cocy-

cle αt where

t(g(x, v)) = (gx, α(g, x)(txv))

Definition 5.7. Let S,M, µ, V, and E be as in the previous definition. The

algebraic hull of the S-action is the minimal algebraic subgroup L < GL(V )

for which there exists a measurable trivialization t of E with αt(S×M) ⊆ L.

The algebraic hull is well defined up to conjugacy in GL(V ); this is a con-

sequence of the Borel density theorem. See [20].

We will need the following fundamental facts about the algebraic hull. A

virtual epimorphism of algebraic groups is a homomorphism σ : L1 → L2

for which σ(L1) is a Zariski dense subgroup of L2 of finite index.

Proposition 5.8. Let S,M, µ, V, and E be as above.

1. Let M̃ be the universal cover of M , Γ ∼= π1(M), and S̃ the connected

group of lifts of S to M̃ . Let ρ : Γ → GL(V ) be a representation and let

E = M̃ ×ρ V . Then S̃ acts by automorphisms of E, and the algebraic

hull is contained in Zar(ρ(Γ)).
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2. Let E0 be an S-invariant subbundle of E. There is a virtual epimor-

phism from the algebraic hull of S on E to the algebraic hull of S on

E0.

3. Let E0 be as above, and let E′ = E/E0. There is a virtual epimorphism

from the algebraic hull of S on E to the algebraic hull of S on E′.

4. Suppose there is a trivialization t of E in which αt(g, x) = ρ(g) for

ρ : S → GL(V ) a homomorphism. Then the algebraic hull of the

S-action is Zar(ρ(S)).

Proof: For (1), note that S̃ commutes with Γ, so the S̃-action on M̃ × V

by g(x̃, v) = (gx̃, v) commutes with the Γ-action on the product. Then the

S̃-action on M̃ × V descends to E. The rest is proposition 3.4 of [16], or

exercise 6.5.3 of [21]; it involves straightforward arguments with measurable

cocycles.

Items (2), (3), and (4) are straightforward; they appear as propositions 3.3

and 3.5 of [16]. See also lemma 6.5.4 of [21]. ♢

Let S < Aut M be as above. Denote by sx the Lie algebra of the stabi-

lizer in S of x ∈ M . Suppose that sx is an ideal s0 ◁ s. Then denote by

J(S, x) = Zar(Ād S), where Ād is the representation of S on s/s0 obtained

as a quotient of the adjoint representation.

Theorem 5.9. Let (M,B,ω) be a compact Cω Cartan geometry of alge-

braic type. Let S < Aut M be discompact, and suppose that S preserves a

probability measure µ on M . Then for µ-almost-every x ∈ M , sx ◁ s, and

there is a representation ρ of π1(M) ∼= Γ for which Zar(ρ(Γ)) contains a

subgroup with a virtual epimorphism to J(S, x).

Proof: By decomposing µ into ergodic components if necessary, we may

assume that µ is ergodic.

We first present the standard argument due to Zimmer that almost every

stabilizer is an ideal. Let Gr k(s) denote the Grassmannian of k-dimensional

subspaces of s, and define

ψ : M → Gr s =
dim s∪
k=0

Grks

x 7→ sx
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The group S acts on W = Gr s via Ad S, and Zar(Ad S) has no compact

algebraic quotients by the discompactness assumption. The map ψ is S-

equivariant. The Borel density theorem 5.2 thus applies, and for µ-almost-

every x, the stabilizer sx is Ad S-fixed—in other words, it is an ideal s0.

Now suppose sx = s0◁s and in addition that x satisfies the conclusion of the

centralizer theorem 5.4, so s(x̃) ⊂ c(x̃) for every x̃ ∈ q−1(x). Because the

Killing fields of s on M̃ are lifted from M , they commute with Γ. Therefore

the centralizer c is normalized by Γ. Let ρ be the representation of Γ on c.

By proposition 5.8 (1), the algebraic hull of S̃ on E = M̃×ρ c is contained in

Zar(ρ(Γ)). Note that in fact the S̃-action on E factors through S, because

any element of S̃ ∩ Γ = ker(S̃ → S) centralizes c.

Denote by TO the tangent bundle to S-orbits in M

TO = {(x, Y (x)) : x ∈M, Y ∈ s}

There is an obvious measurable trivialization t : TO → M × s/s0 in which

the cocycle for the S-action is α(g, x) = Ād g. Then by proposition 5.8 (4),

the algebraic hull of S on TO equals J(S, x).

The evaluation map ϵ : M̃ × c → TM̃ with ϵ(x̃, Y ) = Y (x̃) descends to an

S-equivariant map ϵ̄ : E → TM . The kernel E0 is an S-invariant subset of

E, in which each fiber (E0)x is a vector subspace of Ex. The dimension of

(E0)x is S-invariant, so we may consider E0 a subbundle of E. The algebraic

hull of S on E virtually surjects onto the algebraic hull of S on E′ = E/E0

by proposition 5.8 (3).

The map ϵ factors through an isomorphism almost-everywhere from E′ =

E/E0 to an S-invariant subbundle ϵ̄(E) of TM , so the algebraic hulls on

these two are isomorphic. But ϵ̄(E) also contains the S-invariant subbundle

TO, so the algebraic hull of S on ϵ̄(E) virtually surjects onto the algebraic

hull of S on TO by proposition 5.8 (2).

We conclude that the algebraic hull of S on E, which is contained in Zar(ρ(Γ)),

virtually surjects onto J(S, x), as desired. ♢

Corollary 5.10. Let S < Aut M be semisimple with no compact local fac-

tors. Suppose that S preserves a finite volume form on M . Then there is

a representation ρ of π1(M) ∼= Γ for which Zar(ρ(Γ)) contains a subgroup

with a virtual epimorphism to Zar(Ad S).
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Proof: Let µ be the finite measure determined by the S-invariant volume

form on M . There are only finitely-many nontrivial ideals of s. For each

nonzero ideal sx, the fixed set has empty interior (see [6, 7.1]). The S-action

is thus locally free—that is, sx = 0—almost everywhere. Then J(S, x) =

Zar(Ad S). Since also S is discompact, the corollary follows from theorem

5.9. ♢

6 Frobenius and open-dense results in smooth case

The analytic Frobenius theorem says that a Killing generator at any x ∈
M gives rise to a local Killing field. In this section we show that Killing

generators of smooth Cartan geometries still give rise to local Killing fields

on an open dense subset of M , consisting of the regular points. Recall that

k(x), for x ∈M is the dimension of Kill∞(b) for any b ∈ π−1(x).

Definition 6.1. Let (M,B, ω) be a C∞ Cartan geometry. The regular

points of M are those x ∈M for which k(x) is locally constant.

Because k(x) is lower semicontinuous, the regular points are an open, dense

subset of M .

Proposition 6.2. Suppose that, for X ∈ g, the curve γ(t) = exp(b, tX)

consists of regular points for all t ∈ [−1, 1]. Then there exists m such that

Killm(γ(t)) = Kill∞(γ(t)) for all t ∈ [−1, 1]. Moreover, for any b ∈ B and

A ∈ Kill∞(b),

ωγ(t)(φ
t
X̃∗A) ∈ Kill∞(γ(t))

for all t ∈ [−1, 1].

Proof: Let m(b) be such that kr(b) = k(b) for all r ≥ m(b). For all t

sufficiently small,

k(γ(t)) ≤ km(b)(γ(t)) ≤ km(b)(b) = k(b)

The regularity assumption means k(γ(t)) = k(b), so km(b)(γ(t)) = k(γ(t))

for all t sufficiently small. Now repeating the argument along the compact

curve γ shows that km(b)(γ(t)) = k(γ(t)) for all t ∈ [−1, 1], and Killr(γ(t)) =

Kill∞(γ(t)) for all r ≥ m(b).
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Let as above V = ∧2(g/p)∗ ⊗ g, and for r ∈ N, let

Wr =

r⊕
i=0

Hom(⊗ig, V )

where we set ⊗0g = R. For X ∈ g and (K0, . . . ,Kr) ∈ Wr, write

(K0, . . . ,Kr)⌞X = (K1⌞X, . . . ,Kr⌞X) ∈ Wr−1

Now denote as usual by K the curvature function B → V . For b ∈ B, let

DrK(b) = (K(b), . . . , DrK(b)) ∈ Wr

and

Cr
b : g → Wr−1

X 7→ DrK(b)⌞X

The kernel of Cr
b is Killr(b). By the discussion in the previous paragraph,

kerC
m(b)
γ(t) = kerC

m(b)+1
γ(t) for all t. Therefore, the functionals on g appearing

in the decomposition of C
m(b)+1
γ(t) in terms of a basis of Wm(b) are linear

combinations of the functionals appearing in any decomposition of C
m(b)
γ(t) in

terms of any basis of Wm(b)−1.

Denote ωγ(t)(φ
t
X̃∗
A) = A(t) and by Ã the corresponding vector field along

γ. Then, for each 1 ≤ r ≤ m(b),

d

dt
(DrK(γ(t))⌞A(t)) =

(
X̃.Ã.Dr−1K

)
(γ(t))

=
(
Ã.X̃.Dr−1K

)
(γ(t))

=
(
Dr+1K(γ(t))⌞A(t)

)
⌞X

using that [X̃, Ã] = 0. There results a system of ODEs

d

dt
Cr
γ(t)(A(t)) = Cr+1

γ(t)(A(t))⌞X

as r ranges from 1 to m(b). At t = 0, all Cr
γ(0)(A(0)) = 0. Then

Cr
γ(t)(A(t)) = DrK(γ(t))⌞A(t) ≡ 0

is the unique solution for all 1 ≤ r ≤ m(b) + 1, and A(t) ∈ Killm(b)(γ(t)) =

Kill∞(γ(t)) for all t. ♢
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Theorem 6.3. Let (M,B, ω) be a C∞ Cartan geometry and let U ⊆ M

be the set of regular points. For each component U0 ⊆ U , there exists m =

m(U0) such that every Killing generator of order m at any b ∈ π−1(U0) gives

rise to a unique local Killing field near π(b).

Proof: Let b ∈ U0, and let m be such that Killm(b) = Kill∞(b). Then

by proposition 6.2, for all b′ ∈ U0, there is also Killm(b′) = Kill∞(b′). So it

suffices to show that any Killing generator at a point lying over the regular

set determines a local Killing field.

Let A ∈ Kill∞(b) for b ∈ π−1(U). As in the proof of proposition 3.10, we de-

fine a vector field Ã in an exponential neighborhood of b by Ã(exp(b, tX)) =

φt
X̃∗
A. By proposition 6.2, ω(Ã) is a Killing generator everywhere it is

defined.

To show that Ã descends to a local Killing field near π(b), it suffices to show

it is a local Killing field near b. Then we must show that for any Y,X ∈ g

and sufficiently small T , the bracket

[Ã, Ỹ ](exp(b, TX)) = 0

We will show that, in the chart logb, this field satisfies the ODE

d

dt
logb∗

(
[Ã, Ỹ ](exp(b, tX))

)
= 0

Because the initial value at t = 0 is zero, this will imply vanishing for all t.

Let b(T ) = exp(b, TX) and ΨT = (logb ◦ expb(T ))∗. Then

d

dt

∣∣∣∣
T

logb∗

(
[Ã, Ỹ ](exp(b, tX))

)
=

d

dt

∣∣∣∣
0

logb∗

(
[Ã, Ỹ ](exp(b, (T + t)X))

)
=

d

dt

∣∣∣∣
0

[
(ΨT ◦ logb(T )∗)

(
[Ã, Ỹ ](exp(b(T ), tX))

)]
So it suffices to show that for each T ,

d

dt

∣∣∣∣
0

logb(T )∗

(
[Ã, Ỹ ](exp(b(T ), tX))

)
= 0

Now

logb(T )∗

(
[Ã, Ỹ ](exp(b(T ), tX))

)
=

d

ds

∣∣∣∣
0

logb(T )∗

(
φs
Ỹ ∗(Ã(φ

t
X̃
b(T )))− Ã(φs

Ỹ
φt
X̃
b(T ))

)
=

d

ds

∣∣∣∣
0

logb(T )∗

(
φs
Ỹ ∗φ

t
X̃∗(Ã(b(T )))− φ1

Z̃(t,s)∗(Ã(b(T )))
)
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where

Z(t, s) = (logb(T ) ◦φs
Ỹ
◦ φt

X̃
)(b(T )) = ζb(T )(tX, sY )

as in the BCH formula. Write ÃT = Ã(b(T )). Now

logb(T )∗

(
φs
Ỹ ∗φ

t
X̃∗(ÃT )− φ1

Z̃(t,s)∗(ÃT )
)
= (2)

d

du

∣∣∣∣
0

[
(logb(T ) ◦φs

Ỹ
◦ φt

X̃
)(φu

Ã
b(T ))

]
− (logb(T ) ◦φ1

Z̃(t,s)
)∗(ÃT ) (3)

Let c(u) = φu
Ã
b(T ). The first term of (3) can be written

d

du

∣∣∣∣
0

[(
(logb(T ) ◦ expc(u)) ◦ (logc(u) ◦φs

Ỹ
◦ φt

X̃
)
)
(c(u))

]
(4)

=

[
d

du

∣∣∣∣
0

(logb(T ) ◦ expc(u))
]
(Z0(t, s)) +

d

du

∣∣∣∣
0

Zu(t, s) (5)

where Z0(t, s) = Z(t, s), and

Zu(t, s) = (logc(u) ◦φs
Ỹ
◦ φt

X̃
)(c(u)) = ζc(u)(tX, sY )

Now the first term of (5) is[
d

du

∣∣∣∣
0

(logb(T ) ◦ expc(u))
]
(Z0(t, s)) =

d

du

∣∣∣∣
0

(logb(T ) ◦φ1
Z̃0(t,s)

◦ φu
Ã
)(b(T ))

= (logb(T ) ◦φ1
Z̃0(t,s)

)∗(ÃT )

Thus the first term of (5) cancels with the second term of (3), and we are

left to show

d

dt

∣∣∣∣
0

d

ds

∣∣∣∣
0

d

du

∣∣∣∣
0

Zu(t, s) =
d

dt

∣∣∣∣
0

d

ds

∣∣∣∣
0

d

du

∣∣∣∣
0

ζc(u)(tX, sY ) = 0

We have

d

dt

∣∣∣∣
0

d

ds

∣∣∣∣
0

d

du

∣∣∣∣
0

ζc(u)(tX, sY ) =
d

du

∣∣∣∣
0

(
d

dt

∣∣∣∣
0

d

ds

∣∣∣∣
0

ζφu
Ã
b(T )(tX, sY )

)
=

d

du

∣∣∣∣
0

(
1

2
ωφu

Ã
b(T )[X̃, Ỹ ]

)
=

1

2

d

du

∣∣∣∣
0

(
[X,Y ]−Kφu

Ã
b(T )(X,Y )

)
= −1

2
(Ã.K)b(T )(X,Y )

= 0

because Ã(b(T )) is a Killing generator. ♢
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Theorem 6.4. Let (M,B, ω) be a C∞ Cartan geometry of algebraic type.

Suppose that M contains a dense Killloc-orbit. Then M contains an open,

dense, locally homogeneous subset.

Proof: Let O ⊂ M be a dense Killloc-orbit. Because the regular set U

is open and Killloc-invariant, it contains O. Because O is connected, U has

only one component. Let m be such that for all b ∈ π−1(U), any Killing

generator of order m at b gives rise to a local Killing field near π(b) (such

m exists by 6.3).

The map Φ : B → Hom(⊗mg, V ) gives rise to a stratification as in theorem

4.1

V1 ∪ · · · ∪ Vk =M

such that Φ̄ is a smooth map of each Vi onto a smooth variety. Because V1

is open and Killloc-invariant, it contains O. Therefore, V1 ∩ U is open and

dense. The same argument as for theorem 4.1 shows that components of

fibers of Φ̄ in V1 ∩ U are Killloc-orbits, and they are closed in V1. Then

O = Ō ∩ V1 ∩ U = V1 ∩ U

so O is an open, dense, locally homogeneous subset of M . ♢

Question 6.5. This question is asked in [3] section 7.3: Can the conclusion

of theorem 6.4 above be strengthened to say that M is locally homogeneous?

The forthcoming corollary gives a positive answer in a very special case. For

(M,B, ω) a Cartan geometry modeled on (g, P ), the tangent bundle TM

can be identified with B ×P (g/p) (see [12, 4.5.1]). The Cartan geometry

will be called unimodular when the representation of P on g/p has image

in SL(g/p). In this case, there is a volume form on (M,B,ω) preserved by

Aut M .

Corollary 6.6. (see [6, 1.8]) Let (M,B,ω) be a compact, simply connected,

unimodular, Cω Cartan geometry of algebraic type. Let H < Aut M be a

connected Lie subgroup. If H has a dense orbit in M , then M is homoge-

neous: there exists H ′ < Aut M acting transitively.

Proof: If H has a dense orbit in M , then there is a dense Killloc-orbit in

M . By theorem 6.4, there is an open dense Killloc-orbit U ⊆ M . But all
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local Killing fields on M extend to global ones because M is Cω and simply

connected (see [13]), and they are complete because M is compact. Then

the volume-preserving automorphism group of M has an open orbit. The

conclusion then follows from theorem 1.7 of [6]. ♢
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