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Abstract. We prove for the automorphism group of an arbitrary par-

abolic geometry that the C0 and C∞ topologies coincide, and the group

admits the structure of a Lie group in this topology. We further show

that this automorphism group is closed in the homeomorphism group of

the underlying manifold.

1. Introduction

It is well known that the automorphism group of a rigid geometric structure

is a Lie group. In fact, as there are multiple notions of rigid geometric struc-

tures, such as G-structures of finite type, Gromov rigid geometric structures,

or Cartan geometries, the property that the local automorphisms form a Lie

pseudogroup is sometimes taken as an informal definition of rigidity for a

geometric structure.

There remains, however, some ambiguity about the topology in which this

transformation group is Lie. It is a subgroup of Diff(M), assuming the

underlying structure is smooth, so one may ask whether it admits the struc-

ture of a Lie group in the C∞, Ck for some positive integer k, or even

the compact-open, topology. A related interesting question is whether the

automorphism group is closed in Homeo(M).

Theorems of Ruh [14] and Sternberg [17, Cor VII.4.2] state that, if H is the

automorphism group of a G-structure of finite type of order k, then H is

a Lie group in the Ck topology on Diffk+1(M). Gromov proved a similar

result in [5, Cor 1.5.B] for a smooth Gromov-k-rigid geometric structure. In

the case of a smooth Riemannian metric (M, g), the results above yield a

Lie group structure for the C1-topology on the isometry group Isom(M, g).
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The classical theorems of Myers and Steenrod [11], however, say that in

this Riemannian case the C0 and Ck topologies coincide on Isom(M, g) for

all k. Nomizu [12] proved the same for the group of affine transformations

of a connection (under an assumption of geodesic completeness, which can

be removed). The essence of the proof is that exponential coordinates lo-

cally convert affine transformations to linear maps, and a sequence of linear

transformations converging C0 automatically converges C∞.

This article is concerned with the topology of local automorphisms of par-

abolic geometries (see section 1.2 below for the general definition). These

form a rich class of differential-geometric structures which behave differently

from Riemannian metrics in the sense that their automorphisms can have

strong dynamics, so, for example, a convergent sequence of automorphisms

need not limit to a homeomorphism. Parabolic geometries do not deter-

mine a connection; without the exponential map, it is no longer clear that

a C0-limit of smooth automorphisms should be smooth.

1.1. Statement of main results. We first briefly survey some results for

specific parabolic geometries, which will be generalized by our main theo-

rem. We remark that the first two theorems below, of Ferrand and Schoen,

are proved by geometric-analytic techniques that are quite specific to the

structures in question.

• In the course of proving the Lichnerowicz Conjecture on Riemannian

conformal automorphism groups, Ferrand showed, using techniques

of quasiconformal analysis, that if a homeomorphism f is a C0 limit

of smooth conformal maps, then f is also smooth and conformal

[1, 9].

• Schoen [15] reproved Ferrand’s result above, and extended it to

strictly pseudoconvex CR-structures. His proof uses scalar curva-

ture and the conformal Laplace operator in the conformal case, and

the analogous Webster scalar curvature and pseudoconformal subel-

liptic operator in the CR setting.

• In [3], the first author proved for conformal pseudo-Riemannian

structures that if a sequence of smooth local conformal transfor-

mations converges C0, then it converges C∞. His approach is very

different from the analytic techniques of [1] and [15]: he uses the

Cartan connection associated to these structures and the dynamics

of the action on null geodesics.
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We prove a generalization of the results recounted above to local automor-

phisms of arbitrary parabolic geometries. Parabolic geometries are a broad

family of geometric structures which nonetheless admit an extensive general

theory. Well known examples include the conformal semi-Riemannian struc-

tures and strictly pseudoconvex CR structures mentioned above, as well as

more general nondegenerate CR structures, projective structures, and so-

called path geometries, which encode ODEs (see [19] for a comprehensive

reference). See Definitions 1.4 and 1.5 below for parabolic geometry and

automorphism/automorphic immersion.

Theorem 1.1. Let (M, C) be a smooth parabolic geometry. Let fk : U →M

be a sequence of automorphic immersions of (M, C) converging in the C0

topology on U to a map h. Then h is smooth and fk → h also in the C∞

topology.

In section 3.3 we will also prove the following:

Theorem 1.2. Let (M, C) be a smooth parabolic geometry. Then Aut(M, C)
is a Lie transformation group in the compact-open topology. Moreover,

Aut(M, C) is closed in Homeo(M) for this topology.

1.2. Definitions. Parabolic geometries are most conveniently defined in

terms of Cartan geometries. Let G be a Lie group with Lie algebra g, and

P < G a closed subgroup. We will assume throughout the article that the

pair (G,P ) is effective, meaning G acts faithfully on G/P . A noneffective

pair can always be replaced by an effective one, with the same quotient space

G/P (see [16]).

Definition 1.3. A Cartan geometry C on a manifold M , with model space

X = G/P comprises (M̂, ω), where π : M̂ → M is a principal P -bundle,

and ω is a g-valued one-form on M̂ satisfying:

• For all x̂ ∈ M̂ , ωx̂ : Tx̂M̂ → g is a linear isomorphism.

• For all g ∈ P , R∗gω = (Ad g)−1 ◦ ω, where Rg denotes the right

translation by g on M̂ .

• For all X ∈ p, ω(X‡) ≡ X, where X‡(x̂) = d
ds

∣∣
0
x̂esX .

The basic example of a Cartan geometry modeled on X = G/P is the flat

geometry on X comprising (G,ωG), where ωG is the Maurer-Cartan form.
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Definition 1.4. A parabolic geometry is a Cartan geometry modeled on

X = G/P , where G is a semisimple Lie group with finite center and without

compact local factors, and P < G is a parabolic subgroup.

Our notion of parabolic subgroup is the standard one, which will be recalled

in section 2.5.1.

Essentially all classical rigid geometric structures correspond to a canonical

Cartan geometry. The process of canonically associating a Cartan geometry

is called the equivalence problem for a given geometric structure (see [16] for

examples). Parabolic geometries admit a uniform solution of the equivalence

problem, in which each corresponds to a type of “filtered manifold” (barring

one exception, projective structures); see [19, Sec 3.1], [18].

Definition 1.5. For (M, C) a smooth Cartan geometry with C = (M̂, ω),

an automorphism is f ∈ Diff(M) which lifts to a bundle automorphism f̂ of

M̂ satisfying f̂∗ω = ω. The group of automorphisms is denoted Aut(M, C).

For an open subset U ⊆M , a smooth immersion f : U →M is an automor-

phic immersion of (M, C) if it lifts to a bundle map f̂ : Û = π−1(U) → M̂

satisfying f̂∗ω = ω|
Û

.

As (G,P ) is effective, the elements f ∈ Aut(M, C) correspond bijectively

to their lifts f̂ to M̂ satisfying f̂∗ω = ω, and similarly for automorphic

immersions (see [10, Prop. 3.6]).

1.3. Lie topology on the automorphism group. For C = (M̂, ω) a

smooth Cartan geometry on M , the group Aut(M, C) can be endowed with

the structure of a Lie transformation group as follows (we refer to the defini-

tion in [13, Chap. IV] of Lie transformation group). The Cartan connection

defines a framing P of M̂ , the pullback by ω of any basis in g. The auto-

morphisms of a framing form a Lie transformation group; more precisely:

Theorem 1.6. (S. Kobayashi [8, Thm I.3.2]) Let N be a smooth, connected

manifold with a smooth framing P.

(1) Aut(P) < Diff(N) admits the structure of a Lie transformation

group.

(2) For k = 0, . . . ,∞, the Ck-topology on Aut(P) coincides with the Lie

topology.

(3) A sequence fk ∈ Aut(P) converges in the Lie topology if and only if

there exists z ∈ N such that fk(z) converges in N .
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Denote by Âut(M, C) the bundle automorphisms of M̂ preserving ω. This

is a C∞-closed subgroup of Aut(M̂,P), so it is closed in the Lie topology

and inherits the structure of a Lie transformation group. The isomorphism

Âut(M, C) ∼= Aut(M, C) then provides the latter with the structure of a

Lie group, in fact of a Lie transformation group of M . The underlying

topology on Aut(M, C), the pullback of the C∞ topology on Âut(M, C), will

henceforth be referred to as the Lie topology. For U ⊂M , the automorphic

immersions defined on U admit a similarly defined topology, which we will

also call the Lie topology.

Recall that the Lie topology on Aut(M, C), as well as all Ck-topologies,

are second countable. A sequence fk of automorphic immersions of (M, C)
converges in the Lie topology if and only if the lifted sequence f̂k converges

C∞. Thus if fk converges for the Lie topology to an automorphic immersion,

then it does for the C∞-topology on M . In cases where M̂ is a subbundle of

the r-frames of M , and f̂k are the corresponding natural lifts of fk, then C∞

convergence of fk on M conversely implies convergence in the Lie topology.

Such is the case for many parabolic geometries, but this property in general

is unclear. Our proofs will go via the Lie topology on Aut(M, C), thus

showing that it coincides with all Ck-topologies, k = 0, . . . ,∞, and similarly

for automorphic immersions of (M, C).

2. Holonomy and equicontinuity with respect to segments

Let (M, C) be a Cartan geometry modeled on X = G/P , not necessarily

parabolic.

Definition 2.1. A sequence fk : U → M of automorphic immersions of

(M, C) is equicontinuous at x ∈ U if there exists y ∈ M such that for any

xk → x in U , the sequence fk(xk)→ y.

If fk : U → M converges C0, then (fk) is clearly equicontinuous at every

point of U . The following theorem says that conversely, equicontinuity at a

single point implies local C0-convergence, at least for parabolic geometries.

Theorem 2.2. Let (M, C) be a smooth parabolic geometry and (fk) a se-

quence of automorphic immersions equicontinuous at x ∈ M . Then there

exists an open neighborhood U of x on which a subsequence of (fk) converges

C∞ to a smooth map h.

Note that Theorem 2.2 implies Theorem 1.1.
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2.1. Holonomy sequences. Let fk : U →M be a sequence of automorphic

immersions of (M, C) which is equicontinuous at x ∈ U , with lifts f̂k : Û →
M̂ . Associated to (fk) is a holonomy sequence (pk) in P , whose behavior

around the base point o = [P ] ∈ G/P reflects much of the local behavior of

fk around x.

Definition 2.3. Let xk → x in U . A sequence (pk) of P is a holonomy

sequence of (fk) along (xk) when there exist x̂k ∈ π−1(xk) such that {x̂k}k∈N
and {ŷk} = {f̂k(x̂k).p−1

k }k∈N are bounded in M̂ . A holonomy sequence of

(fk) at x is any holonomy sequence along some sequence xk → x.

We will denote by Hol(x) the set of all holonomy sequences of (fk) at x.

Equicontinuity of (fk) at x obviously ensures that Hol(x) is nonempty.

2.2. Equicontinuity with respect to segments. Equicontinuity of a se-

quence (fk) at x will have strong consequences on the local behavior of its

holonomy sequences around the basepoint o ∈ G/P . A useful notion to

capture this local behavior is equicontinuity with respect to segments. An

unparametrized segment in G/P is a set of the form [ξ] = {etξ.o | t ∈ [0, 1]},
for some ξ ∈ g. Remark that distinct ξ, η ∈ g may define the same un-

parametrized segment.

We fix a Riemannian metric in a fixed neighborhood of o in X, with respect

to which we will measure the length of segments [ξ] in this neighborhood,

and denote the results by L([ξ]).

Definition 2.4. A sequence (pk) in P is equicontinuous with respect to

segments if when a sequence of segments [ξk] satisfies L([ξk]) → 0, and

pk.[ξk] = [ηk], then every cluster value of (ηk) in g is in p.

Observe that the condition L([ξk])→ 0, hence the very notion of equiconti-

nuity with respect to segments, does not depend on the choice of Riemannian

metric, since any two are bi-Lipschitz equivalent in a neighborhood of o.

2.3. Relation of equicontinuity and equicontinuity with respect to

segments.

Proposition 2.5. Let (M, C) be a Cartan geometry and fk : U → M a

sequence of automorphic immersions of (M, C). If (fk) is equicontinuous at

x ∈ U , then every holonomy sequence (pk) ∈ Hol(x) is equicontinuous with

respect to segments.
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The proof will use the developments of curves γ : [0, 1]→ M̂ , a notion which

we now recall. Given such a smooth curve γ, the equation ωG(γ̃′(s)) =

ω(γ′(s)), where ωG is the Maurer Cartan form of G, defines an ODE on G.

The solution γ̃ such that γ̃(0) = id will be called the development of γ.

The Cartan connection also yields an exponential map on M̂ : any u in g

defines the ω-constant vector field U ‡ on M̂ by ω(U ‡) ≡ u; denote {ϕt
U‡
}

the corresponding flow. The exponential map at x̂ ∈ M̂ is

exp(x̂, u) := φ1
U‡ .x̂,

defined for u in a neighborhood of the origin in g.

It is easy to see that whenever f̂ : M̂ → M̂ is the lift of an automorphic

immersion of M , then

exp(x̂, u) = exp(f̂(x̂), u).

The P -equivariance property of ω leads to a corresponding equivariance

property for the exponential map for all p ∈ P

(1) exp(x̂, u).p−1 = exp(x̂.p−1, (Ad p).u)

Last, we recall the following crucial reparametrization lemma.

Lemma 2.6 ([4], Proposition 4.3). Let γ, α : [0, 1]→ M̂ be smooth curves,

with γ(0) = α(0), and let q : [0, 1]→ P be a smooth map satisfying q(0) = id.

(1) Assume that for the developments γ̃ and α̃, the relation γ̃(s) =

α̃(s).q(s) holds in G for every s ∈ [0, 1]. Then γ(s) = α(s).q(s)

holds in M̂ .

(2) In particular, if u, v ∈ g, and if there exists a smooth a : [0, 1] →
[0, 1], with a(0) = 0 and a(1) = 1, such that

esu = ea(s)vq(s) ∀s ∈ [0, 1],

then, for every ŷ ∈ M̂ such that exp(ŷ, u) or exp(ŷ, v) is defined,

exp(ŷ, u) = exp(ŷ, v).q(1)

Proof: (of Proposition 2.5) Assume for a contradiction that (fk) is equicon-

tinuous at x, but that some holonomy sequence (pk) of (fk) at x does not

act equicontinuously with respect to segments. Then ŷk = f̂k(x̂k).p
−1
k is

bounded for a bounded sequence (x̂k) projecting to xk → x. After passing

to a subsequence, we can assume x̂k → x̂ and ŷk → ŷ.
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Since (pk) is not equicontinuous with respect to segments, passing again to

a subsequence, there exists a sequence of segments [ξk], with L([ξk]) → 0,

as well as a sequence (ηk) in g converging to η∞ 6∈ p, such that for all k:

(2) pk.[ξk] = [ηk].

This condition can be expressed by the relation, valid for all s ∈ [0, 1]:

esAd(pk)(ξk) = eϕk(s)ηk .pk(s).

Here, pk : [0, 1] → P denotes a smooth path and ϕk : [0, 1] → [0, 1] a

diffeomorphism satisfying ϕk(0) = 0. Given λ > 0 arbitrary small, let

0 < λk < 1 be such that ϕk(λk) = λ for all k. Then write

(3) esAd(pk)(λkξk) = e
ϕk(λks)

ϕk(λk)
ϕk(λk)ηk .pk(λks).

Note that L([λkξk]) → 0. Thus for λ sufficiently small, we can replace ξk

and ηk by λkξk and ϕk(λk)ηk, so that (2) holds, with the extra property that

that exp(ŷk, ηk) is defined for all k ∈ N, and η∞ is in an injectivity domain

of the map u 7→ exp(ŷ, u). In particular, if we call y := π(ŷ), the fact that

η∞ 6∈ p implies, shrinking λ again if necessary, π(exp(ŷ, η∞)) 6= y.

The next step is to show that π(exp(x̂k, ξk)) is defined for k large enough, and

converges to x. To this aim, define a left-invariant Riemannian metric ρG

on G by left translating any scalar product < , > on g, and a corresponding

Riemannian metric ρ on M̂ , with

ρ(u, v) := 〈ω(u), ω(v)〉.

By the definition of ρ, if γ is a curve in M̂ and γ̃ its development in G, then

LρG(γ̃) = Lρ(γ). Fix ε > 0 small enough that ∀ k ∈ N, the ρ-ball B(x̂k, ε)

of center x̂k and radius ε has compact closure in M̂ .

Now consider the curve s 7→ esξk . We fix Σ a small submanifold of G

containing 1G, which is transverse to the fibers of πX : G→ X = G/P , and

such that the restriction of πX to Σ yields a diffeomorphism ψ : Σ → U ,

where U is a neighborhood of o in X. For k large enough, there exists a

smooth qk : [0, 1] → P , with qk(0) = id, such that αk(s) = esξk .qk(s) is

contained in Σ. Of course ψ(αk([0, 1])) = [ξk]. Two Riemannian metrics on

Σ are always locally bi-Lipschitz equivalent, hence there exist C1, C2 > 0

such that for k large enough:

C1L([ξk]) ≤ LρG(αk) ≤ C2L([ξk]).
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We infer that LρG(αk) → 0; in particular, for k ≥ k0, LρG(αk) < ε. Now

consider, for each k ≥ k0, the first-order ODE on M̂ :

(4) ω(β′k) = α′k

with initial condition βk(0) = x̂k. If [0, τ∗k ), is a maximal interval of definition

for s 7→ exp(x̂, sξk), then for all k, βk(s) := exp(x̂k, sξk).qk(s), s ∈ [0, τ∗k ),

is a maximal solution of our ODE, by Lemma 2.6. By the definition of Lρ,

we have Lρ(βk) = LρG(αk). If τ∗k ≤ 1, the inequality LρG(αk) < ε implies

that βk is included in the relatively compact set B(x̂k, ε); this contradicts

the maximality of τ∗k . We thus infer τ∗k > 1, which ensures that βk(1), hence

exp(x̂k, ξk) = βk(1).qk(1)−1 is defined. Moreover, Lρ(βk) = LρG(αk) → 0,

so βk(1)→ x̂. Projecting to M gives π(exp(x̂, ξk))→ x.

Now Lemma 2.6, combined with equation (3) above says that for all k ≥ k0,

fk(exp(x̂k, ξk).p
−1
k )) = exp(ŷk,Ad(pk)ξk) = exp(ŷk, ηk).pk(1).

Projecting this relation on M , we obtain

f̂k(π(exp(x̂k, ξk))) = π(exp(ŷk, ηk)).

After possibly passing to a subsequence, the right-hand term converges to

π(exp(ŷ, η∞)) 6= y, while we just showed π(exp(x̂k, ξk))→ x; this yields the

desired contradiction with the equicontinuity of (fk) at x. ♦

2.4. Vertical and transverse perturbations of holonomy sequences.

Proposition 2.5 translates equicontinuity of (fk) at x to a property of se-

quences in Hol(x), which are in turn sequences of P acting on X = G/P . In

this section we define several operations on sequences in P which preserve

Hol(x).

Holonomy sequences involve many choices: of (xk), of (x̂k), and of (ŷk) =

(f̂(x̂k)p
−1
k ), in the notation of Definition 2.3. The right and left vertical

perturbations of (pk) correspond to other possible choices of (x̂k) and (ŷk),

respectively.

Definition 2.7. Let (pk) be a sequence in P . A vertical perturbation of (pk)

is a sequence qk = lkpkmk where (lk) and (mk) are two bounded sequences

in P .
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Transverse perturbations of (pk) correspond roughly to other possible choices

of (xk) converging to x.

Definition 2.8. For (pk) a sequence of P , a sequence (qk) of P is said to

be a transverse perturbation of (pk) when there exist two sequences (ξk) and

(ηk) in g\p such that:

(1) qk = e−ηkpke
ξk .

(2) The sequences (ξk) and (ηk) both converge to 0.

(3) For every s ∈ R, e−sηkpke
sξk belongs to P .

The other choice of (xk) in this case is π(exp(x̂k, ξk)), as will be seen in the

proof below.

Lemma 2.9. Let (M, C) be a Cartan geometry, and let fk : U → M be a

sequence of automorphic immersions. For any x ∈ U , the set of holonomies

Hol(x) is stable by vertical and transverse perturbations.

Proof: We consider (pk) a sequence belonging to Hol(x). By definition,

there exists (x̂k) a bounded sequence in M̂ such that ŷk = f̂k(x̂k).p
−1
k is

bounded, and the projection xk on M converges to x.

Assume that (qk) is obtained from (pk) by vertical perturbation, namely

there exist bounded sequences (lk) and (mk) in P such that qk = lkpkmk.

Then (x̂k.mk) is bounded in M̂ , and still projects on (xk). Moreover

f̂k(x̂k.mk)q
−1
k = ŷk.l

−1
k

is still bounded in M̂ . It follows that (qk) is a holonomy sequence at x.

We now handle the case of a transverse perturbation qk = e−ηkpke
ξk . The se-

quence (x̂k) is bounded and ξk → 0, hence (ẑk) = (exp(x̂k, ξk)) is bounded in

M̂ , too; moreover, π(ẑk) converges to x. It remains to show that f̂k(ẑk).q
−1
k

is bounded in M . Write this expression as f̂k(ẑk).p
−1
k .pkq

−1
k . By the equiv-

ariance (1) of the exponential map,

f̂k(ẑk).p
−1
k = exp(f̂k(x̂k).p

−1
k ,Ad(pk)ξk).

Point (2) in the definition of transverse perturbation says that qk(s) =

e−sηkpke
sξk belongs to P for all s ∈ R. Thus

esAd(pk)ξk = esηkqk(s)p
−1
k ,
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where s 7→ qk(s)p
−1
k is a smooth path in P passing through id when s = 0.

Lemma 2.6 then implies

exp(f̂k(x̂k).p
−1
k ,Ad(pk)ξk) = exp(ŷk, ηk).qkp

−1
k .

Right translation by pkq
−1
k gives f̂k(ẑk).q

−1
k = exp(ŷk, ηk). This expression

is bounded, because (ŷk) is a bounded sequence, and ηk tends to zero by

definition of a transverse perturbation. ♦

2.5. Admissible operations. In this section, we specialize to X = G/P a

parabolic model space, and define some operations on holonomy sequences

specific to parabolic geometries. We first introduce some notation in g.

2.5.1. Notation in g. Let G semisimple with no compact local factors and

with finite center. We denote by Θ a Cartan involution of the semisim-

ple Lie algebra g. Associated to Θ, we choose a Cartan subspace a, and

Φ = {α1, . . . , αr} a set of simple roots. The positive and negative roots

are denoted Φ+ and Φ−, respectively. The usual decomposition of the Lie

algebra g into root spaces is

g = Σα∈Φ−gα ⊕ a⊕m⊕ Σα∈Φ+gα.

We will denote by n+ (resp. n−) the sum Σα∈Φ+gα (resp. Σα∈Φ−gα).

The minimal parabolic subalgebra of g is pmin = a⊕m⊕Σα∈Φ+gα. A general

parabolic subalgebra p is one containing pmin, and is obtained as follows (up

to conjugacy in G): there exists Λ ( Φ, possibly empty, such that

pΛ = Σα∈Λ+g−α ⊕ pmin.

where Λ+ is the set of roots in Φ+ which are in the span of Λ. A parabolic

subgroup of G is any Lie subgroup PΛ < G with Lie algebra pΛ, for some Λ.

We will sometimes denote this group simply P when Λ is understood.

We denote by n+
Λ the nilpotent radical of p, equal Σα∈(Λ+)cgα. Here (Λ+)c

stands for the positive roots written as a linear combinations of roots in Φ

involving at least one root which is not in Λ. Notice that n+
Λ is an ideal of

n+ and of p. Finally, we call hΛ the Lie algebra hΛ = an n+
Λ .

We denote by A, N+
Λ and HΛ the connected Lie subgroups of G with Lie

algebras a, n+
Λ and hΛ, respectively; they are all subgroups of PΛ.
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2.5.2. Reduced holonomy sequences. A sequence (pk) in P will be called

reduced when it is a sequence of HΛ.

Lemma 2.10. Any sequence (pk) in P = PΛ can be converted by left and

right vertical perturbation to (qk) ∈ HΛ.

Proof: Consider the Levi decomposition of PΛ = SΛ n N+
Λ , where SΛ is

the connected reductive subgroup of G with Lie algebra spanned by a and

the positive and negative root spaces of Λ+. Write pk = sknk according to

this decomposition. As SΛ is reductive, it admits a KAK decomposition,

according to which sk = l′kaklk, with ak ∈ A = exp(a) and lk, l
′
k in a maximal

compact subgroup of SΛ. Then pk = l′kakn
′
klk, where n′k = l−1

k nklk ∈ N+
Λ .

Now qk = akn
′
k is the desired reduced sequence. ♦

2.5.3. Weyl reflections. For X = G/P parabolic, these are transformations

of holonomy sequences in HΛ, which will be useful in our proof.

For any root α, the Weyl reflection is ρα : a∗ → a∗ with

ρα(ξ) = ξ − 2〈α, ξ〉
〈α, α〉

α ξ ∈ a∗

Recall that for α positive, ρα preserves Φ+\{α} and Φ−\{−α}, assuming 2α

is not a root (in which case, ρα preserves Φ+\{α, 2α} and Φ−\{−α,−2α}).
Recall that whenever ξ is a root, then Aαξ = 2〈α, ξ〉/〈α, α〉 is an integer.

For any root α, there exists kα ∈ G, such that Ad(kα) preserves a, and the

action of Ad(ak) on a∗ coincides with that of ρα (see [7, Prop 6.52c]). In the

sequel, we will denote by rα any automorphism of G such that the action

induced on g preserves a and sends every root space gβ to the corresponding

gρα(β); for instance, rα could be conjugacy by kα.

Let α ∈ Λ+. If a root β is a linear combination with integer coefficients

of roots in Λ, then so is ρα(β); thus ρα preserves Λ+ ∪ −Λ+. As ρα sends

all positive roots except multiples of α to positive roots, it also preserves

Φ+\Λ+ = (Λ+)c. We conclude that for every α ∈ Λ+, an automorphism rα

preserves the connected subgroups A, N+
Λ , and the identity component P 0

Λ;

in particular, it sends sequences (pk) in HΛ to rα(pk) in HΛ. Note that in

general, PΛ may not be invariant by rα.

2.5.4. Definition of admissible operations, perturbations.
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Definition 2.11. Let X = G/P be a parabolic variety with P = PΛ. For

(pk) a sequence of P , an elementary admissible operation on (pk) is of one

of the three following types:

(1) A vertical perturbation of (pk).

(2) A transverse perturbation of (pk).

(3) For (pk) in HΛ, a Weyl reflection rα applied to (pk), with α ∈ Λ+.

An admissible perturbation of a sequence (pk) in P is a sequence (qk) which

is obtained from (pk) by finitely many elementary admissible operations.

Note that the result of an admissible perturbation of a sequence (pk) of P

is always in P . Weyl reflections are only allowed on sequences of HΛ, which

must be kept in mind when applying successive admissible operations.

We conclude this section with an important remark about Weyl reflections.

The normalizer in G of P 0 has Lie algebra p (see [19, Lemma 3.1.3, Cor.

3.2.1(4)]). Hence for any sequence (pk) of HΛ, and any α ∈ Λ+, the reflection

rα(pk) = kαpkk
−1
α for kα ∈ NorG(P 0). In particular, when P = NorG(P 0),

any Weyl reflection rα(pk) is actually a vertical perturbation of (pk). We

thus get a straigthforward rephrasing of Lemma 2.9, namely

Lemma 2.12. Let (M, C) be a parabolic geometry modeled on X = G/P ,

where P = Nor(P 0). Let x ∈M , and let (fk) be a sequence of automorphic

immersions which is equicontinuous at x. Then if (pk) is in Hol(x), any

admissible perturbation of (pk) is in Hol(x).

3. Translation of the main theorem to the model space

Via the holonomy sequences associated to an equicontinuous sequence (fk)

of automorphic immersions, we can translate Theorem 2.2 to an assertion

about sequences of HΛ acting equicontinuously with respect to segments on

X.

Theorem 3.1. Let X = G/P be a parabolic variety with P = PΛ. Given

a sequence (aknk) of HΛ which, together with all of its admissible perturba-

tions, acts equicontinuously with respect to segments on X, the factor (nk)

is bounded.

Theorem 3.1 is proved in sections 4, 5 and 6.
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3.1. Derivation of Theorem 2.2 from Theorem 3.1. Given a sequence

(fk) of automorphic immersions as in the statement of Theorem 2.2, let (pk)

be a holonomy sequence of (fk) at x. We can assume by Lemmas 2.9 and

2.10 that pk ∈ HΛ for all k.

We will first deduce Theorem 2.2 under the extra assumption that P equals

NorG(P 0). Section 3.2 explains how to dispense with this assumption.

Proposition 2.5 ensures that (pk) acts equicontinuously with respect to seg-

ments on X. Lemma 2.12 says that in fact every admissible perturbation

of (pk) does (under our assumption P = Nor(P 0)). Now the hypotheses

of Theorem 3.1 are satisfied. The conclusion implies that (ak) is a right

vertical perturbation of (pk), which by Lemma 2.9 also belongs to Hol(x).

The action of Ad(ak) on g preserves the subalgebra n−; denote by Lk the

endomorphism Ad(ak)|n− .

Lemma 3.2. The sequence (Lk) is bounded in End(n−).

Proof: The representation of Ad(ak) on n− is diagonalizable with eigen-

values (λ1(k), . . . , λs(k)). Assume for a contradiction that Lk is unbounded;

we may assume that λ1(k) is unbounded, and after passing to a subsequence,

that |λ1(k)| → ∞. Taking a subsequence also allows us to assume that in

M̂ , the sequence ŷk = fk(x̂k).p
−1
k converges to ŷ.

For each k, let ηk be in the λ1(k)-eigenspace of Lk such that ηk → η∞ 6= 0;

these can moreover be chosen in the injectivity domain of expŷk , and such

that η∞ is in the injectivity domain of expŷ. Set ξk := ηk/λ1(k). Because

ξk → 0, the exponential exp(x̂k, ξk) is defined for sufficiently large k, and

satisfies

fk(exp(x̂k, ξk)).a
−1
k = exp(ŷk, ηk).

Projecting to M gives a contradiction to the equicontinuity of (fk) at x:

π(exp(x̂k, ξk))→ x, while π(exp(ŷk, ηk))→ π(exp(ŷ, η∞)) 6= π(ŷ). ♦

Now again passing to a subsequence of (fk), we may assume that Lk tends to

some L ∈ End(n−). Let K ⊂ M̂ be a compact set containing both sequences

(x̂k) and (ŷk), and let U and V be relatively compact neighborhoods of 0 in

n−, such that:

(1) Lk(U) ⊂ V for every k ∈ N.
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(2) For every ẑ ∈ K, the map Φẑ : u 7→ π(exp(ẑ, u)) is defined on U
and V, and is a diffeomorphism from U and V onto their respective

images.

There exists an open neighborhood U of x, such that U ⊆ Φẑ(U) for ẑ ∈ K
close enough to x̂. Then define the smooth map h : U → M by h =

Φŷ ◦ L ◦ Φ−1
x̂ . Because Lk converges smoothly to L, and since on U , for k

large enough,

fk = Φŷk ◦ Lk ◦ Φ−1
x̂k
,

(fk) converges smoothly to h on U . Thus Theorem 2.2 is proved.

3.2. Justification of the assumption P = Nor(P 0). Let (fk) be a se-

quence of automorphic immersions as in Theorem 2.2. In general P ≤
Nor(P 0), and they have the same Lie algebra, as remarked above (again, see

[19, Lemma 3.1.3, Cor. 3.2.1(4)]). Thus P ′ = Nor(P 0) is an isogeneous su-

pergroup of P . The following lemma gives a general procedure for inducing

a Cartan geometry modeled on G/P to one modeled on G/P ′, with respect

to which the automorphism group behaves nicely.

Lemma 3.3. Let C = (M̂, ω) be a Cartan geometry modeled on X = G/P .

Let P ′ < G be a closed subgroup, with P ≤ P ′ and (P ′)0 = P 0. Then there

exists a Cartan geometry C′ = (M̂ ′, ω′) modeled on X ′ = G/P ′, such that:

(1) Every automorphic immersion of (M, C) is an automorphic immer-

sion of (M, C′).
(2) The corresponding inclusion of Aut(M, C) into Aut(M, C′) is a home-

omorphism onto a closed subgroup with respect to the Lie topologies

on each.

Proof: The bundle M̂ ′ is obtained as the quotient M̂ ×P P ′, where P acts

diagonally by p.(x̂, q) = (x̂.p−1, pq), freely and properly. There is an obvious

commuting right P ′-action onM = M̂ ×P ′, which descends to M̂ ′, making

it a P ′-principal bundle over M .

To construct the Cartan connection on M̂ ′, we first build a one-form ω̃ ∈
Ω1(M, g). For (ξ, u) ∈ T(x̂,q)M, let

ω̃(x̂,q)(ξ, u) := Ad(q−1)ωx̂(ξ) + (ωP ′)q(u).

where ωP ′ is the Maurer-Cartan form of P ′. It is readily checked that ω̃

satisfies the equivariance relation (Rp)
∗ω̃ = Ad(p−1) ◦ ω̃ for every p ∈ P ′,
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and that it is invariant under the diagonal action of P on M. Moreover

ω̃(x̂,q)(Tx̂M̂ × {0}) = Ad(q−1) ◦ ωx̂(Tx̂M̂) = g

showing that ω̃ : TM→ g is onto at each point.

For X ∈ p, let X‡ ∈ X (M̂) be as in Definition 1.3, and let γ be the curve

γ(t) = etX .(x̂, q) = (x̂.e−tX , etXq).

Then

ω̃(γ′(t)) = Ad(q−1) ◦ ωx̂(−X‡) + Ad(q−1)X = 0

since ω(X‡) ≡ X. Hence the kernel of ω̃(x̂,q) contains the tangent space to

the P -orbits on M; by a dimension argument, these spaces are equal. We

infer that ω̃ induces a 1-form ω′ ∈ Ω1(M̂ ′, g), which is the desired Cartan

connection on M̂ ′.

We prove point (1) for f ∈ Aut(M, C). The argument for automorphic

immersions is similar. Let f̂ be the lift of f to M̂ , and define f̃ :M→M by

f̃(x̂, q) = (f̂(x̂), q). The P -equivariance of f̂ gives the equivariance relation

p.f̃(x̂, q) = f̃(p.(x̂, q)); obviously, f̃((x̂, q).p′) = f̃(x̂, q).p′ for every p′ ∈ P ′.
Thus f̃ induces a bundle morphism f̂ ′ of M̂ ′ covering f .

To prove that f ∈ Aut(M, C′), it remains to check that f̂ ′ preserves ω′. To

this end, we compute f̃∗ω̃ and show that it coincides with ω̃:

ω̃(f̂(x̂),q)(Dx̂f̂(ξ), u) = Ad(q−1) ◦ ωf̂(x̂)(Dx̂f̂(ξ)) + (ωP ′)q(u)

but ωf̂(x̂)(Dx̂f̂(ξ)) = ωx̂(ξ) because f ∈ Aut(M, C). Finally,

ω̃(f̂(x̂),q)(Dx̂f̂(ξ), u) = Ad(q−1)ωx̂(ξ) + (ωP ′)q(u) = ω̃(x̂,q)(ξ, u)

as desired, so (1) is proved.

There is a natural P -equivariant, proper embedding j : (M̂, ω) → (M̂ ′, ω′)

defined by j(x̂) := [(x̂, e)], the P -orbit in M of (x̂, e). For f ∈ Aut(M, C)
with respective lifts f̂ and f̂ ′ to M̂ and M̂ ′, we have j ◦ f̂ = f̂ ′ ◦ j.

Now consider a sequence fk ∈ Aut(M, C) converging for the Lie topology of

Aut(M, C′) to an automorphism f . By Kobayashi’s theorem (Thm 1.6), the

sequence of lifts f̂ ′k converges in the C∞-topology of M̂ ′ to a diffeomorphism

f̂ ′, which clearly preserves ω′. Properness of j implies that j(M̂) is closed.

Then f̂ ′ preserves j(M̂), because every f̂k does. Thus f̂k = j−1 ◦ f̂ ′k ◦ j
converges smoothly on M̂ to f̂ := j−1 ◦ f̂ ′ ◦ j, which preserves ω and covers

f . It follows that f ∈ Aut(M, C), and by Kobayashi’s theorem, fk → f in
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the Lie topology of Aut(M, C). We conclude moreover that Aut(M, C) is

closed in the Lie topology of Aut(M, C′).

Conversely, given fk → f in the Lie topology of Aut(M, C), with f ∈
Aut(M, C), the lifts f̂k → f̂ smoothly on M̂ . These correspond, as in the

proof of (1), to automorphisms f̂ ′k and f̂ ′ of (M̂ ′, ω′) with f̂ ′k → f̂ ′ on j(M̂).

For any ŷ ∈ M̂ ′, there exists p′ ∈ P ′ such that ŷ.p′ ∈ j(M̂). It follows by

Theorem 1.6 (3) that f̂ ′k → f̂ ′ smoothly on each connected component of

M̂ ′; in other words, fk → f holds in the Lie topology of Aut(M, C′). Thus

Aut(M, C) ↪→ Aut(M, C′) is a homeomorphism onto its image with respect

to the Lie topologies on each group. ♦

Now, given a sequence (fk) as in Theorem 2.2, Lemma 3.3 with P ′ =

Nor(P 0) allows us to consider (fk) as a sequence of automorphic immer-

sions of (M, C′), modeled on X ′ = G/P ′. The proof of Section 3.1 says that

(fk) converges smoothly on M to a smooth map h. We have thus shown

that Theorem 3.1 implies Theorem 2.2.

3.3. Derivation of Theorem 1.2. Let fk ∈ Aut(M, C) converge to h ∈
Homeo(M) in the C0 topology. The aim is to show that h ∈ Aut(M, C),
and fk → h in the Lie topology on Aut(M, C).

By Lemma 3.3 point (2), we may assume that the model space G/P satisfies

P = Nor(P 0). As in Section 3.1, (fk) admits a holonomy sequence ak ∈ A at

any x ∈M , such that Lk = Ad(ak)|n− is bounded in End(n−). Moreover, in

the notation of Section 3.1, there is a neighborhood U of x such that for any

accumulation point L of (Lk) in End(n−), a subsequence of (fk) converges

to Φŷ ◦ L ◦ Φ−1
x̂ on U . Then L|U = Φ−1

ŷ ◦ h ◦ Φx̂, so Lk → L. Because

h is a homeomorphism, L is injective around 0, hence L ∈ GL(n−). As a

consequence, (ak) converges in P .

Now we have f̂k(x̂k).a
−1
k = ŷk → ŷ with (ak) also converging, so fk(x̂k)

tends to some point ẑ. As x̂k → x̂, for sufficiently large k, x̂ = exp(x̂k, ξk),

with ξk → 0 in g. Now f̂k(x̂) = exp(f̂k(x̂k), ξk), so fk(x̂)→ ẑ. By Theorem

1.6 (3), f̂k and the inverses f̂−1
k both converge C∞ on M̂ to smooth maps f̂

and ĝ, which obviously satisfy f̂ ◦ ĝ = id. It is easy to see that f̂ is a bundle

automorphism of M̂ preserving ω. It lifts h, hence h ∈ Aut(M, C). Finally,

because fk → f̂ smoothly on M̂ , Theorem 1.6 (2) gives that fk → h in the

Lie topology on Aut(M, C).
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4. Proof of Theorem 3.1 in rank one

Our proof of Theorem 3.1 will proceed by induction on rkR(G). The essential

arguments for the base case, rkR(G) = 1, are in the paper [2] by the first

author. For the convenience of the reader, the proof is presented here in a

manner consistent with our terminology and notation. Theorem 3.1 in this

rank one case will actually be a consequence of the following proposition.

Proposition 4.1. Let X = G/P be a parabolic space, with rkR(G) = 1. If

pk = aknk is a sequence of A nN+ such that (nk) is unbounded, then (pk)

does not act equicontinuously with respect to segments.

Recall the notation of Section 2.5.1. The rank one Lie algebra can be decom-

posed as a vector space direct sum of subalgebras g = n−⊕ a⊕m⊕n+. The

Lie algebra n− (resp. n+) is abelian if g = o(1, n), and nilpotent of index

2, with center of respective dimension 1, 3 and 7 if g is su(1, n), sp(1, n) or

f−20
4 . In all cases, z− (resp. z+) will denote the center of n− (resp. n+). The

nonequicontinuity will be observed on a restricted class of segments, namely

those [ξ] with

ξ ∈ Q = {Ad(p)u | u ∈ z−, p ∈ P}.

This set of segments will be denoted [Q] and corresponds to conformal circles

when g = o(1, n), and to chains and their generalizations in the other rank

one models. We will adopt the notation Q̇ (resp. [Q̇]) for Q \ {0} (resp.

[Q] \ {[o]}).

We now recall two results from [2] regarding these distinguished segments.

Lemma 4.2 ([2], Lemme 2). Let ([αk]) be a sequence of segments in [Q].

If [αk] tends to [o] for the Hausdorff topology, then L([αk])→ 0.

Lemma 4.3 ([2], Proposition 1, (ii)). There exists a continuous section s :

[Q̇]→ Q̇. In other words, if a sequence of segments ([αk]) tends to a segment

[β] 6= [o], there is a convergent sequence (ξk) in g such that [αk] = [ξk].

By these two lemmas, if we can find a sequence of segments [αk] in [Q̇]

tending to [o], such that pk.[αk] tends to [β] ∈ [Q̇] (maybe considering

a subsequence), then (pk) does not act equicontinuously with respect to

segments.

The group A has exactly two fixed points on X, namely o and another point

ν. To better understand the action of P on [Q], it is convenient to work in
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the chart ρ : n+ → X \ {o}, given by ρ(x) = ex.ν. In this chart, elements

of P act as affine transformations, and segments [α] ∈ [Q̇] coincide with

half-lines [x, u) = {x + tu | t ∈ R}, where x ∈ n+ and u is a unit vector in

z+ (for any given norm in g which is invariant by the Cartan involution).

More precisely, the action of A in the chart ρ is linear, and is equivalent to

the adjoint action on n+, and the action of an element n = eξ, ξ ∈ n+, is

given by x 7→ (id+ ad ξ)(x) + ξ, ∀x ∈ n+.

Now, let us write nk = evk . By assumption, (vk) is an unbounded sequence

in n+. We claim there is an unbounded sequence (xk) in n+ such that

(5) xk +
1

2
[vk, xk] + vk = 0

To see this, decompose n+ as a direct sum n+ = h⊕z+ (observe that h = {0}
when g = o(1, n)). Denoting by xk, respectively vk, and x̃k, respectively ṽk,

the components of xk, respectively vk, on h and z+, Equation (5) splits into

two equations in h and z, namely

xk + vk = 0

and

x̃k +
1

2
[vk, xk] + ṽk = 0.

If (vk) is unbounded, then so is (xk), and the same is true for (xk). If (vk)

is bounded, then (ṽk) is unbounded because (vk) is unbounded. This forces

(x̃k) to be unbounded.

We can now conclude the proof of Proposition 4.1. Since aknk(xk) = 0, then

for ξ of norm 1 in z+, the sequence of segments [xk, ξ) is mapped to [0, ξ)

by (pk). Now, after taking a subsequence, xk/|xk| tends to ξ∞. Thus for

ξ 6= −ξ∞, the sequence of half-lines [xk, ξ) goes to infinity in the chart ρ,

which means that the corresponding sequence of segments [αk] tends to [o]

in X. On the other hand, pk([αk]) is equal to a constant segment [α] 6= [o],

and the non equicontinuity of (pk) with respect to segments follows.

5. Tools for the induction step: sliding along root spaces

The proof in the previous section for rkR(G) = 1 relies heavily on the fact

that the action of P on the complement of its fixed point o ∈ G/P is by

affine transformations. In higher rank, the P -action on G/P is a compacti-

fication of an affine action, but no longer a one point compactification. This
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difference creates significantly more complexity, which motivates our choice

to prove Theorem 3.1 by induction rather than directly in arbitrary rank.

The tools developed in this section build on those of Sections 2.4 and 2.5,

with the purpose of simplifying holonomy sequences.

5.1. Essential range of (pk). The group exponential of G restricts to a

diffeomorphism of a onto A by definition. Moreover, AdN+
Λ is unipotent,

and Z(G) ∩ N+
Λ = 1, so N+

Λ is simply connected; thus exp restricts to a

diffeomorphism n+
Λ → N+

Λ .

Fix an ordering α1 > · · · > αr of Φ, and endow Φ+ with the lexicographical

ordering. Then we obtain exponential coordinates ln a = (Z1, . . . , Zr) on A

and lnn = Y = (Y α)α∈(Λ+)c , where Y α is a vector in gα, on N+
Λ .

Proposition 5.1. Let pk = aknk ∈ HΛ with exponential coordinates ((Zik), (Y
α
k )).

Then up to vertical perturbation of (pk), we may assume each component se-

quence (Y α
k ) is either trivial or unbounded.

Proof: The group N+
Λ is nilpotent; write the lower central series

N+
Λ = N (0) BN (1) B · · ·BN (d) B id

Each n(i)/n(i+1) is abelian and can be spanned by a direct sum of certain

root spaces; denote the corresponding set of roots by Σ(i). Let Π ⊂ (Λ+)c

be the set of roots α with (Y α
k ) bounded. We first multiply pk on the right

by e−Y
α
k for all α ∈ Π ∩ Σ(0), in any order. The Baker-Campbell-Hausdorff

formula implies that the resulting exponential coordinates ((Y ′)αk ) are trivial

or bounded for all α ∈ Π∩Σ(0). Then proceed sequentially through Π∩Σ(i)

for i = 1, . . . d to obtain (p′k) satisfying the conclusion of the proposition. ♦

We remark that (Zik) can also be assumed trivial or bounded by a similar

argument, which is not given because this fact is not needed below.

Definition 5.2. Let pk = aknk ∈ HΛ with exponential coordinates ((Zik), (Y
α
k )).

The essential range of (pk), denoted ER(pk), is the set of roots λ ∈ (Λ+)c

for which the component Y λ
k is unbounded.

5.2. Transverse and vertical sliding along root spaces. In our proof

by induction on the rank of G, the goal will be, given a sequence (pk) in HΛ,

to obtain roots in the essential range of (pk) that belong to a lower-rank

subspace of the span of Φ. More precisely, given λ ∈ ER(pk) such that λ
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has nontrivial component on some α ∈ (Λ+)c, we will perform admissible

perturbations on (pk) to obtain a new sequence (qk) ⊂ HΛ with λ − α ∈
ER(qk). Such a manipulation is possible only under some circumstances,

which are enunciated in Propositions 5.5 and 5.6 below. First, the following

proposition holds the basic Lie-algebraic calculations that make our “sliding

along g−α” procedure work.

Proposition 5.3. Assume that α, ν, ν + α ∈ Φ+. Given a sequence (Yk) in

n+ with (Y ν+α
k ) unbounded, there exists ξk → 0 in g−α such that

(1) [ξk, Y
ν+α
k ] = [ξk, Yk]

ν is unbounded

(2)
(
Ad(eξk)Yk

)ν
is unbounded

Proof: The bilinear map g−α × gν+α → gν induced by the bracket is

nondegenerate; we recall the proof of this fact for real semisimple Lie alge-

bras. Denote B the Killing form on g; Θ the Cartan involution as in section

2.5.1; and Hν+α ∈ a the dual with respect to B of ν + α. Then, given

Y ∈ gν+α nonzero, [Θ(Y ), Y ] = B(Θ(Y ), Y )Hν+α. Rescaling Y if neces-

sary, the vectors Y , Θ(Y ) and [Θ(Y ), Y ] = H form an sl2-triple. Consider

V = ⊕k∈Zg−α+k(ν+α), which is an sl2-module. If [g−α, Y ] were zero, then

V ′ = ⊕k≤0g−α+k(ν+α) would be a submodule with highest weight −α(H),

which implies α(H) < 0. On the other hand, V/V ′ is also an sl2-module

with lowest weight ν(H) = −α(H) + (ν + α)(H) > 0, which is impossible.

Given Y ∈ gν+α, |Y | = 1 (for any norm on g), let

m(Y ) = max
X∈g−α, |X|=1

|[X,Y ]| > 0.

Then infY ∈gν+α, |Y |=1m(Y ) ≥ c > 0. In particular, there exist ξk ∈ g−α,

|ξk| = 1 such that

|[ξk, Yk]ν | = |[ξk, Y ν+α
k ]| = m

(
Y ν+α
k

|Y ν+α
k |

)
|Y ν+α
k | ≥ c|Y ν+α

k |

is unbounded. Observe that replacing ξk by ξk/|Y ν+α
k |1/2 gives same con-

clusion with the extra property that ξk → 0. Now (1) is proved.

The conjugates in (2) are given, for some m ∈ N, by

Ad(eξk)Yk = Y ′k =
m∑
j=0

1

j!
(ad ξk)

j(Yk)
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After replacing ξk with sξk, the ν components are

Y
′ν
k =

m∑
j=0

sj

j!
(ad ξk)

j(Y ν+jα
k )

From (1), the ν components of the terms corresponding to j = 1 form an

unbounded sequence. The following lemma shows that replacing ξk by sξk,

with a suitable s ∈ (0, 1], makes the components (Y
′ν
k ) unbounded too. ♦

Lemma 5.4. Let (u0(k)), . . . , (um(k)) be m sequences in a finite dimen-

sional vector space V . Assume that one of the sequences (uj(k)) is un-

bounded. Then for a suitable choice of s ∈ (0, 1], the sequence u0(k) +

su1(k) + s2u2(k) + · · ·+ smum(k) is unbounded.

Proof: There exist (m + 1) values of s in ]0, 1], let say s0, . . . , sm, such

that the vectors vi = (1, si, . . . , s
m
i ) form a basis of Rm+1. Let | · | be any

norm on V . Then on the vector space of linear maps L(Rm+1, V ), we have

two norms:

||f ||1 = sup
|v|=1
|f(v)|

and

||f ||2 = max
i=0,...,m

|f(vi)|.

If fk denotes the linear map (λ0, . . . , λm) 7→ λ0u0(k) + · · ·+ λmum(k), then

(||fk||1)k∈N is unbounded (which is the case under the hypothesis of the

lemma) if and only if (||fk||2)k∈N is unbounded. The lemma follows. ♦

Define Φ+
max ⊂ Φ+ to be the subset comprising the positive roots in which all

αi ∈ Φ occur with a positive coefficient. Observe that this set is nonempty

only when G is simple.

Proposition 5.5. (Transverse sliding) Let pk = aknk ∈ HΛ with ER(pk) ⊆
Φ+
max, and assume (pk) and all its admissible perturbations act equicontin-

uously with respect to segments on G/P . Let α ∈ (Λ+)c such that for all

λ ∈ Φ+
max, for all l ≥ 0, if λ− lα is a root, then it belongs to (Λ+)c. Suppose

α+ν ∈ ER(pk) for some ν ∈ Φ+. Then vertical and transverse perturbation

of (pk) yields qk = akn
′
k ∈ HΛ such that ν ∈ ER(qk).

Proof: If (Y ν
k ) is unbounded, there is nothing to do. By Proposition 5.1,

we may assume after a vertical perturbation that Y ν
k is trivial for all k. Let
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xk = eξk for ξk → 0 in g−α. Then, for some m ∈ N,

Ad(x−1
k )Yk = Y ′k = Yk +

m∑
j=1

(−1)j

j!
(ad ξk)

j(Yk)

By our hypotheses, Y ′k ∈ n+
Λ , hence n′k = eY

′
k ∈ P . By Proposition 5.3, we

can choose ξk → 0 in g−α such that the sequence (Y
′ν
k ) is unbounded.

We have the relation

aknke
ξk = eAd(ak)ξkakn

′
k.

We wish to show that Ad(ak)ξk → 0. The action of Ad(ak) on g−α is

scalar multiplication by λk = e−α(Zk), where Zk = ln ak, so it is enough

to show that λk ≤ C, for some constant C ∈ R. If this were not the

case, then, up to taking a subsequence, there would be ζk → 0 in g−α with

Ad(ak)ζk → ζ∞ 6= 0. For the product

pke
ζk = eAd(ak)ζkake

−ζknke
ζk

we know from above that ake
−ζknke

ζk ∈ P . Thus pk.[ζk] = [Ad(ak)ζk] →
[ζ∞], while L([ζk]) → 0, which contradicts the fact that (pk) acts equicon-

tinuously with respect to segments.

Now let ηk = Ad(ak)ξk, which tends to 0. It is easy to verify that

e−sηkpke
sξk ∈ P ∀ s ∈ R

Thus qk = akn
′
k is a transverse perturbation of (pk) according to Definition

2.8, and, because (Y ′νk ) is unbounded, it has ν ∈ ER(qk), as desired. ♦

Proposition 5.6. (Vertical sliding) Let ν ∈ (Λ+)c and α ∈ Λ+. Let pk =

aknk ∈ HΛ with α(Zk) ≥ M > −∞ (α(Zk) ≤ M <∞). If ν + α ∈ ER(pk)

(or ν − α ∈ ER(pk), resp.), then left and right vertical perturbation of (pk)

yields qk = akn
′
k ∈ HΛ such that ν ∈ ER(qk).

Proof: We can assume after vertical perturbation that Y ν
k ≡ 0. We apply

proposition 5.3 to obtain ξk → 0 in g−α such that (Y
′ν
k ) is unbounded, where

Y ′k = Ad(x−1
k )Yk = Yk +

m∑
j=1

(−1)j

j!
(ad ξk)

j(Yk)

for some m ∈ N, with xk = eξk . In this case, Yk ∈ n+
Λ and α ∈ Λ+ together

imply that (ad ξk)
j(Yk) ∈ n+

Λ for all j ∈ N. Thus Y ′k ∈ n+
Λ .
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Let n′k = eY
′
k . The lower bound on α(Zk) implies (Ad ak)(ξk)→ 0, so

e−Ad(ak)ξkaknke
ξk = akn

′
k

is obtained by left and right vertical perturbation from (pk).

The proof for α(Zk) ≤M <∞ and Y ν−α
k unbounded is similar. ♦

5.3. Algebraic proposition to reduce rank. Using the tools developed

so far in this section, we will now state the algebraic proposition that drives

our induction step. The next section contains the geometric interpretation

of this result, and explains how to prove Theorem 3.1 by induction on rkRG.

Proposition 5.7. Let (pk) = (aknk) be a sequence of HΛ with (nk) un-

bounded. Assume that (pk), together with all its admissible perturbations,

acts equicontinuously with respect to segments. Then an admissible pertur-

bation of (pk) yields (qk) such that ER(qk) contains a root in (Λ+)c\Φ+
max.

The proof of this proposition is given in Sections 6.3 and 6.4 below.

6. Proof of Theorem 3.1 by induction on rank

The first half of this section gives the proof of Theorem 3.1 from Proposition

5.7. The second half gives the proof of Proposition 5.7.

6.1. Invariant parabolic subvarieties. Let X = G/P with G semisimple

of real-rank r and P a parabolic subgroup with a Lie algebra p = pΛ, Λ ( Φ.

Let V ⊂ X be a parabolic subvariety through the base point o. (These

will be defined precisely below.) If (pk) acts equicontinuously with respect

to segments on X and preserves V , then clearly it is equicontinuous with

respect to segments on V . The strategy for our induction argument is to

find (pk)-invariant V ⊂ X of rank less than r.

Recall the notation introduced in Section 2.5.1, and denote by B the Killing

form on g. Given a subset Ψ ⊂ Φ, let a0 and m0 be the ideals of a and

m, respectively, commuting with ⊕α∈Ψ+gα. Let aΨ = a⊥0 and mΨ = m⊥0 ,

where the orthogonal is taken with respect to the scalar product 〈X,Y 〉 =

−B(X,ΘY ). We obtain a subalgebra of g

gΨ =
∑
α∈Ψ−

gα ⊕ aΨ ⊕mΨ ⊕
∑
α∈Ψ+

gα.

It is easy to check that gΨ is Θ−invariant, hence reductive, and has trivial

center. It follows that gΨ is semisimple.
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The corresponding connected subgroup GΨ < G is closed. Indeed, ad(gΨ)

is a semisimple subalgebra of End(g), hence is an algebraic subalgebra (see

[6, Th 3.2, p 112]). For G′Ψ the corresponding Zariski closed subgroup of

GL(g), the group Ad−1(G′Ψ) is closed in G, and so is its identity component

GΨ.

A minimal parabolic of GΨ is contained in Pmin. The stabilizer of o in

GΨ contains Pmin ∩GΨ, hence is a parabolic subgroup of GΨ, denoted QΨ.

The orbit GΨ.o is a parabolic subvariety VΨ
∼= GΨ/QΨ, nontrivial provided

Ψ 6⊂ Λ, and of rank less than r.

Proposition 6.1. Let pk = aknk ∈ HΛ and let ((Zik), (Y
α
k )) be the exponen-

tial coordinates of pk. Then for any Ψ ⊂ Φ, the variety VΨ ⊂ X is invariant

by (pk). If Zik = 0 for all αi ∈ Ψ, then ak acts trivially on VΨ; if Y α
k = 0

for all α ∈ Ψ+ ∩ (Λ+)c, then nk is trivial on VΨ.

Proof: Let ξ ∈ Σα∈Ψ+g−α and x = eξ.

Given (Zk) as in the hypotheses above, α(Zk) ≡ 0, for all α ∈ Ψ+. Thus

ad(ξ)Zk = 0 and Ad(x)Zk = Zk for all k. Thus akx.o = xak.o = x.o, and

ak acts trivially on VΨ.

Now let Y ∈ n+
Λ with Y α = 0 for all α ∈ Ψ+. Write

Ad(x)Y = Y ′ = Y +

m∑
k=1

(−1)k

k!
(ad ξ)k(Y )

Note that Y
′λ = 0 unless λ = µ+ ν, with µ a sum with nonpositive integral

coefficients of elements of Ψ and ν in (Ψ+)c; in particular, µ+ν has positive

coefficient on some simple root of Φ\Ψ. In this case, λ is a positive root, so

Y ′ ∈ n+, and eY
′ ∈ P . Thus eY x.o = xeY

′
.o = x.o, and eY is trivial on VΨ.

The above calculation with Y ∈ Σα∈Ψ+gα shows that VΨ is invariant by eY ;

it is easy to see that A leaves VΨ invariant. For invariance under a general

sequence pk = aknk in HΛ, we can use the following basic lemma, the proof

of which we leave to the reader:

Lemma 6.2. Let N be a simply connected nilpotent Lie group with Lie

algebra n. Let n0 be an ideal of n, and let Y, Y0 be elements of n and n0.

Then there exists Y ′0 ∈ n0 such that

eY+Y0 = eY eY
′
0 .
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This lemma allows to write nk = eWkeUk with Wk ∈ Σα∈Ψ+gα and Uk ∈
Σ(Ψ+)cgα. We can then conclude because each factor ak, e

Wk and eUk pre-

serves VΨ. ♦

The unipotent radical of QΨ is N+
Ψ,Λ < N+

Λ with Lie algebra

n+
Ψ,Λ = ⊕α∈Ψ+\Λ+gα

The analogue of HΛ in GΨ is HΨ,Λ = AΨ nN+
Ψ,Λ. Note that

N+
Λ = N+

Ψ,Λ · (N
+
Ψ ∩N

+
Λ ),

and that the second factor is normal in HΛ. We will also need below the

decomposition A = AΨ ·AΦ\Ψ.

6.2. The induction step. Suppose that Theorem 3.1 holds for all parabolic

models G/P of real-rank at most r − 1. We will prove using Proposition

5.7 that it holds for all models of real-rank r. Let X = G/PΛ of rank

r be given, and let (pk) be a sequence of HΛ which, together with all its

admissible perturbations, acts equicontinuously with respect to segments.

The aim is to show that (nk) is bounded. If not, then Proposition 5.7

gives, after an admissible perturbation, (qk) with ER(qk) containing a root

λ ∈ (Λ+)c\Φ+
max.

There is a proper subset Ψ of Φ such that λ ∈ Ψ+. It cannot be that Ψ is

contained in Λ because λ ∈ (Λ+)c. Now qk ∈ HΛ preserves VΨ by Proposi-

tion 6.1; denote the restriction by (q′k), which is a sequence of QΨ, and let

a′kn
′
k be the decomposition into components on AΨ and N+

Ψ,Λ, respectively.

Because λ ∈ ER(qk), it follows that (n′k) is unbounded.

As rkRGΨ ≤ r−1, the induction hypothesis yields a contradiction, provided

that all admissible perturbations of (q′k) in GΨ act equicontinuously with

respect to segments on VΨ. Admissible perturbation in GΨ means more

precisely that vertical and transverse perturbations are as in Section 2.4

with gΨ in place of g, and QΨ in place of P , and Weyl reflections are done

with respect to roots α in (Ψ∩Λ)+. The following lemma ensures that (q′k)

satisfies the hypotheses of Theorem 3.1 and allows us to apply our induction

hypothesis:

Lemma 6.3. Let X = G/PΛ be a parabolic variety, and (qk) be a sequence

of HΛ. Assume that (qk) preserves a parabolic subvariety VΨ on which it re-

stricts to (q′k). If every admissible perturbation of (qk) acts equicontinuously
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with respect to segments in X, then every admissible perturbation of (q′k) in

GΨ acts equicontinuously with respect to segments in VΨ.

Proof: We will prove that any admissible perturbation of the sequence (q′k)

in GΨ can be obtained by an admissible perturbation of (qk), restricted to

VΨ. Assume that (p′k) is obtained from (q′k) by an admissible perturbation in

GΨ. We seek an admissible perturbation (pk) of (qk), such that pk preserves

VΨ, and the restriction of pk to Vψ is precisely p′k. Existence of such (pk) can

be checked for each of the three kinds of admissible perturbations in GΨ:

(1) vertical perturbation: There are bounded sequences (lk) and (mk)

in QΨ such that p′k = lkq
′
kmk on VΨ. Because QΨ < P , the desired vertical

perturbation of (qk) in G is simply (pk) = (lkqkmk).

(2) transverse perturbation: In this case, write p′k = e−ηkq′ke
ξk where

(ηk) and (ξk) are two sequences of gΨ \ qΨ tending to 0. As these are also

sequences of g \ p, we can set pk = e−ηkqke
ξk ; we will show that this is a

transverse perturbation in G.

Let x ∈ VΨ. Observe that because ξk, ηk ∈ gΨ,

e−sηkqke
sξk .x = e−sηkq′ke

sξk .x ∀ s ∈ R;

thus e−sηkqke
sξk preserves VΨ and acts on it by e−sηkq′ke

sξk . Taking x = o

gives e−sηkqke
sξk .o = e−sηkq′ke

sξk .o = o, because the latter is in QΨ for

all s. This proves e−sηkqke
sξk ∈ P for all s ∈ R, and pk is a transverse

perturbation of qk.

(3) Weyl reflection: Let rα ∈ Aut(GΨ) realize the Weyl reflection ρα, for

α ∈ (Ψ ∩ Λ)+. Decompose, using Lemma 6.2,

qk = aknk = a′′ka
′
kn
′
kn
′′
k,

where a′k ∈ AΨ, n′k ∈ N
+
Ψ,Λ, a′′k ∈ AΦ\Ψ, and n′′k ∈ (N+

Ψ ∩ N
+
Λ ). By Propo-

sition 6.1, both a′′k and n′′k are in the kernel of the restriction to VΨ, so we

can write q′k = a′kn
′
k.

Now let r̃α be an automorphism of G effecting ρα on a∗. Because α ∈
(Ψ ∩ Λ)+, the derivative of r̃α preserves the Lie algebras aΨ, aΦ\Ψ, n+

Ψ,Λ

and (n+
Ψ∩n

+
Λ), so r̃α preserves the corresponding connected subgroups in G.

Thus r̃α(q′k) = rα(q′k), and

r̃α(qk) = r̃α(a′′k)rα(q′k)r̃α(n′′k)
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preserves VΨ and restricts on it to rα(q′k), as desired. ♦

The proof by induction of Theorem 3.1 is now complete, once we prove

Proposition 5.7.

6.3. Proof of Proposition 5.7 (assuming the root system of g is not

of type G2). Proposition 5.7 is vacuously true if the set Φ+
max is empty.

Thus, we assume from now on that G is a simple Lie group.

Let (pk) = (aknk) be a sequence of HΛ with (nk) unbounded. That means

ER(pk) ⊆ (Λ+)c is nonempty. If it contains a root not in Φ+
max, then there

is nothing to show, so we suppose that ER(pk) ⊆ Φ+
max. Define the degree

of α ∈ Φ+ to be the sum of the coefficients in the unique expresssion of α

as a nonnegative integral linear combination of roots in Φ.

Let Yk = lnnk. By Proposition 5.1, we may assume Y λ
k ≡ 0 for λ /∈ ER(pk).

To prove that an admissible perturbation of (pk) results in (qk) with ER(qk)

not contained in Φ+
max, we will show that for any λ ∈ ER(pk) of minimal

degree, there is a sequence of admissible operations resulting in λ′ ∈ ER(qk)

with the degree of λ′ strictly lower than the degree of λ.

Let λ ∈ ER(pk) ⊆ Φ+
max of minimal degree. There is some α ∈ Φ with

〈α, λ〉 > 0; otherwise, λ would be in the negative of the Weyl chamber

spanned by Φ, contradicting that it is a positive root. For such α,

Aαλ =
2〈α, λ〉
〈α, α〉

> 0

Case α ∈ Λ. In this case, the Weyl reflection ρα ∈WΛ yields

ρα(λ) = λ′ = λ−Aαλα ∈ (Λ+)c

of smaller degree. The admissible operation rα yields qk ∈ HΛ with λ′ ∈
ER(qk).

Case α ∈ Φ\Λ. Note that ν = λ − α ∈ Φ+, because λ − Aαλα ∈ Φ+, and

strings are unbroken.

If P = PΛ is not a maximal parabolic with Λ = Φ\{α}, then (pk), α, and ν

satisfy the hypotheses of Proposition 5.5, which thus gives another holonomy

sequence (qk) with ν = λ− α ∈ ER(qk), which has lower degree than λ.

Now suppose P is a maximal parabolic, with Λ = Φ\{α}. Every root in

ER(pk) has the form λi = miα+µi, where mi ≥ 1, and µi is in the positive

integral span of Λ. If none of the µi is a root, then again the hypotheses
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of Proposition 5.5 are satisfied, so, as above, there is a holonomy sequence

(qk) with λ− α ∈ ER(qk).

Thus we may assume that µi is a root for some i.

Lemma 6.4. Let PΛ < G be a maximal parabolic with Λ = Φ\{α}. If

mα + µ ∈ Φ+
max for m ≥ 1 and µ ∈ Λ+, then α is a valence-one vertex of

the Dynkin graph of g—that is, Aαβ 6= 0 for exactly one element β ∈ Λ.

Proof: The root µ belongs to some basis of simple roots, and the Weyl

group W acts transitively on such sets (see [7, Th 2.6.3]), which means there

is ρ ∈W sending some αi ∈ Φ to µ. This ρ is moreover a product ρi` · · · ρi1
of Weyl reflections. Let µ0 = αi and µj be the result after performing

j reflections. Then one can see that at each step, µj is a positive root,

comprised of simple roots that are a connected subset of the Dynkin graph.

If ρij is the reflection at the jth step, then αij is connected to exactly one

of the simple roots appearing in µj−1 because the Dynkin diagram is a tree,

and it adds a positive multiple of αij to make µj .

We conclude that the elements of Φ appearing in the decomposition of µ

correspond to a connected subset of the Dynkin graph. These are precisely

the elements of Λ = Φ\{α}. As the Dynkin graph is a connected tree, the

conclusion follows. ♦

Let Λ = {β1, . . . , βr−1}. Assume Aαβ1 6= 0, and write β = β1. Write

λi = λ′ = m′α + µ′ where µ′ =
∑
c′iβi ∈ Λ+

max. Now Aαµ′ = c′1Aαβ and

Aµ′α = c′1Aβα. The product

Aαµ′Aµ′α = (c′1)2AαβAβα ∈ {1, 2, 3}.

(Although our root system is not necessarily reduced, the value 4 could only

occur for µ′ = 2α or α = 2µ′, neither of which is the case.) Then c′1 = 1. If

AαβAβα = 1, then the α-string of µ′ comprises µ′ and µ′+α. Hence m′ = 1

and λ′ = µ′+α. The µ′-string of α comprises α, λ′. Now ρµ′(λ
′) = α, so the

Weyl reflection rµ′(pk) is an admissible perturbation resulting in (qk) with

α ∈ ER(qk).

We will now suppose AαβAβα ≥ 2 and that λ ∈ ER(pk) with Aαλ > 0 as

above has minimal degree. Under the assumption that g is not of type G2,

there are no triple bonds in the Dynkin diagram of g, so AαβAβα = 2. Write

λ = mα+ µ, where µ =
∑
ciβi—not necessarily a root—with ci ≥ 1 ∀i.
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Because λ−Aαλα is a positive root,

(6) 0 < Aαλ = 2m+ c1Aαβ ≤ m

Type Cr. First assume that Aαβ = −1 and Aβα = −2. Then the set Φ+
max

comprises, for i = 1, . . . , r − 1,

λ0 = α+ β1 + · · ·+ βr−1, λi = λ0 + β1 + · · ·+ βi

The only possible value of m is 1. Then (6) gives Aαλ = 1 = 2−c1, so c1 = 1

and λ = λ0. If r > 2, then Aβr−1λ = 1, so ρβr−1(λ) = α + β1 + · · · + βr−2.

Then rβr−1 is the desired admissible perturbation.

The remaining possibility is r = 2 with ER(pk) = {α + β, α + 2β} or

simply {α+ β}. In the first case, the Weyl reflection rβ results in (qk) with

α ∈ ER(qk). In the second case, there is a rank-one subvariety Vλ ⊂ X left

invariant by (pk) and on which it restricts to (a′knk) with (nk) unbounded.

Proposition 4.1 leads to a contradiction.

Type Br or BCr. Next consider Aαβ = −2 and Aβα = −1. For Br, the set

Φ+
max comprises, for i = 2, . . . , r,

λ0 = α+ β1 + · · ·+ βr−1, λ1 = λ0 + α, λi = λ1 + β1 + · · ·+ βi−1,

while for BCr, it comprises the set above together with 2λ0. The possibility

m = 1 is incompatible with (6). If m = 2, then the same inequality implies

c1 = 1, so λ = λ1.

As above, if r > 2, then ρβr−1(λ) = 2α+β1 + · · ·+βr−2, so a Weyl reflection

rβr−1 is an admissible perturbation with the desired effect. Otherwise, r = 2

and λ = β + 2α. In this case, as λ is an element of ER(pk) of minimal

degree, ER(pk) = {λ}. Restricting to the rank-one subvariety Vλ as above

yields a contradiction.

6.4. Proof of Proposition 5.7 for G2. Assume g is of type G2, and write

Φ = {α, β} with |α| ≤ |β|. Then

Φ+
max = {α+ β, 2α+ β, 3α+ β, 3α+ 2β}

Assume first that Λ = {α}, so Aαβ = −3. Given λ ∈ ER(pk) of minimal

degree, the goal is to find an admissible perturbation (qk) with β ∈ ER(qk).

As in the previous section (but with the roles of α and β switched), we can

assume that Aβλ > 0. The two possibilities for λ are thus 3α+ 2β or α+ β.

In the first case, λ is the only element of ER(pk), so we can conclude using
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Proposition 4.1 as in the cases of C2 and B2. In the second case, we apply

Proposition 5.6. We can assume, after passing to a subsequence, that α(Zk)

is bounded either below or above. If it is bounded below, then a vertical

sliding on (pk) yields (qk) with β ∈ ER(qk), as desired. If α(Zk) is bounded

above, then vertical slidings give 3α+β in ER(qk). Then the Weyl reflection

rα on (qk) gives (sk) with β ∈ ER(sk).

Now consider Λ = {β}, so Aβα = −1. The condition Aαλ > 0 leaves the

possibilities 2α+β or 3α+β for λ. Unfortunately, the tools used above don’t

help in either of these cases. The solution is to slide along −α, although it

does not satisfy the hypotheses of Proposition 5.5.

Let S ∼= Z(S)S0 be the reductive complement in a Levi decomposition of Pβ,

where S0 is simple of rank one. The group S admits a KAK decomposition,

where A = exp(a) as defined above, and K is a maximal compact subgroup

of S0. Write N+
β for the unipotent radical of Pβ. The decomposition of

the corresponding Lie algebra n+
β into irreducible subspaces under Ad(S) is

E1⊕E2⊕E3, where E1 = gα⊕gα+β; E2 = g2α+β; and E3 = g3α+β⊕g3α+2β.

This decomposition can be seen from the fact that s is contained in the sum

of root spaces g−β ⊕ g0 ⊕ gβ.

Recall that pk = aknk with Y ν
k ≡ 0 if ν /∈ ER(pk). Let ξk → 0 in g−α and

xk = eξk , and set

qk = e−Ad(ak)ξkpke
ξk = akx

−1
k nkxk.

Just as in the proof of Proposition 5.5, Ad(ak)ξk → 0 and (qk) is a transverse

perturbation of (pk); it is in particular a sequence in P , although it may not

be in Hβ. More precisely, x−1
k nkxk ∈ N+, which can be deduced from the

formula,

Ad(x−1
k )Yk = Yk +

m∑
j=1

(−1)j

j!
(ad ξk)

j(Yk)

with Yk = lnnk. Using Lemma 6.2, write qk = akukn
′′
k with akuk ∈ S and

n′′k ∈ N+
β . Proposition 5.3 gives that λ − α ∈ ER(n′′k). Performing this

transverse sliding twice if necessary, depending on λ, we arrive at α + β ∈
ER(n′′k).

Next, let l′ka
′
klk be the KAK decomposition of akuk in S. Finally, set

q′k = a′kn
′
k where n′k = l−1

k n′′klk

Note that a′k ∈ A and n′k ∈ N
+
β , so q′k ∈ Hβ. Clearly (q′k) is a vertical pertur-

bation of (qk), so it is an admissible perturbation of (pk). The conjugation
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by lk on N+
β preserves the subspace E1 = gα ⊕ gα+β, so ER(q′k) contains α

or α+ β. If it only contains α+ β, then we perform a Weyl reflection rβ to

finally obtain an admissible perturbation (q′′k) of (pk) with α ∈ ER(q′′k).
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Ann. Sci. École Norm. Sup. (4) 40 (2007), no. 5, 741–764.
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