First In-Class Exam Solutions
 Math 246, Fall 2009, Professor David Levermore

(1) [6] Suppose you have used the Runge-Kutta method to approximate the solution of an initial-value problem over the time interval $[0,4]$ with 1000 uniform time steps. About how many uniform time steps would you need to reduce the global error of your approximation by a factor of 16 ?
Solution. The Runge-Kutta is fourth order, so its global error scales like h^{4}. To reduce the error by a factor of 16 , you must reduce h by a factor of $16^{\frac{1}{4}}=2$. You must therefore double the number of time steps, which means you need 2000 uniform time steps.
(2) [8] Sketch the graph that you expect would be produced by the following MATLAB commands.
$[\mathrm{x}, \mathrm{y}]=\operatorname{meshgrid}(-2: 0.25: 2,-2: 0.25: 2)$
contour (x, y, y - x. $\left.{ }^{\wedge} 2,[-2,-2]\right)$
axis square
Solution. Your sketch should show both x and y axes marked from -2 to 2 and the parabola $y=x^{2}-2$. The tick marks on the axes should mark intervals of length .25 .
(3) [20] Find the explicit solution for each of the following initial-value problems and identify its interval of definition.
(a) $\frac{\mathrm{d} y}{\mathrm{~d} t}=5 t^{4} e^{-y}, \quad y(0)=10$.

Solution. This equation is separable. Its separated differential form is

$$
e^{y} \mathrm{~d} y=5 t^{4} \mathrm{~d} t, \quad \Longrightarrow \quad e^{y}=t^{5}+c .
$$

The initial condition $y(0)=10$ implies that $c=e^{10}-0^{5}=e^{10}$. Therefore $e^{y}=t^{5}+e^{10}$, which can be solved as

$$
y=\log \left(t^{5}+e^{10}\right), \quad \text { with interval of definition } t>-e^{2} .
$$

Here we need $t^{5}>-e^{10}$ for the \log to be defined. The interval of definition is obtained by taking the fifth root of both sides of this inequality.
(b) $\frac{\mathrm{d} w}{\mathrm{~d} t}=\frac{t^{2}-2 t w}{1+t^{2}}, \quad w(3)=2$.

Solution. This equation is linear. Its linear normal form is

$$
\frac{\mathrm{d} w}{\mathrm{~d} t}+\frac{2 t}{1+t^{2}} w=\frac{t^{2}}{1+t^{2}}
$$

An integrating factor is $\exp \left(\int_{0}^{t} \frac{2 s}{1+s^{2}} d s\right)=\exp \left(\log \left(1+t^{2}\right)\right)=1+t^{2}$, so that

$$
\frac{\mathrm{d}}{\mathrm{~d} t}\left(\left(1+t^{2}\right) w\right)=\left(1+t^{2}\right) \cdot \frac{t^{2}}{1+t^{2}}=t^{2}, \quad \Longrightarrow \quad\left(1+t^{2}\right) w=\frac{1}{3} t^{3}+c
$$

The initial condition $w(3)=2$ implies that $c=\left(1+3^{2}\right) \cdot 2-\frac{1}{3} 3^{3}=20-9=11$. Therefore

$$
w=\frac{\frac{1}{3} t^{3}+11}{1+t^{2}}, \quad \text { with interval of definition }-\infty<t<\infty
$$

(4) [16] Consider the differential equation $\frac{\mathrm{d} p}{\mathrm{~d} t}=p^{2}(4-p)(8-p)$.
(a) Sketch its phase-line. Indicate all of the stationary (equilibrium) solutions and classify each as being either stable, unstable, or semistable.
(b) If $p(0)=10$, how does the solution $p(t)$ behave as $t \rightarrow \infty$?
(c) If $p(0)=6$, how does the solution $p(t)$ behave as $t \rightarrow \infty$?
(d) If $p(0)=2$, how does the solution $p(t)$ behave as $t \rightarrow \infty$?
(e) If $p(0)=-2$, how does the solution $p(t)$ behave as $t \rightarrow \infty$?

Solution (a). The stationary solutions are $p=0, p=4$, and $p=8$. A sign analysis of $p^{2}(4-p)(8-p)$ shows that the phase-line for this equation is therefore

Solution (b). The phase-line shows that if $p(0)=10$ then $p(t) \rightarrow \infty$ as $t \rightarrow \infty$.
Solution (c). The phase-line shows that if $p(0)=6$ then $p(t) \rightarrow 4$ as $t \rightarrow \infty$.
Solution (d). The phase-line shows that if $p(0)=2$ then $p(t) \rightarrow 4$ as $t \rightarrow \infty$.
Solution (e). The phase-line shows that if $p(0)=-2$ then $p(t) \rightarrow 0$ as $t \rightarrow \infty$.
(5) [16] Consider the following MATLAB function M-file.
function $[\mathrm{t}, \mathrm{y}]=$ solveit(ti, yi, tf, n$)$
$\mathrm{h}=(\mathrm{tf}-\mathrm{ti}) / \mathrm{n}$;
$\mathrm{t}=\mathrm{zeros}(\mathrm{n}+1,1)$;
$\mathrm{y}=\operatorname{zeros}(\mathrm{n}+1,1)$;
$\mathrm{t}(1)=\mathrm{t}$;
$y(1)=y i ;$
for $\mathrm{k}=1$: n
thalf $=\mathrm{t}(\mathrm{k})+\mathrm{h} / 2$;
yhalf $=\mathrm{y}(\mathrm{k})+(\mathrm{h} / 2)^{*}\left(4^{*} \mathrm{t}(\mathrm{k})-(\mathrm{y}(\mathrm{k}))^{\wedge} 2\right)$;
$\mathrm{t}(\mathrm{k}+1)=\mathrm{t}(\mathrm{k})+\mathrm{h}$;
$\mathrm{y}(\mathrm{k}+1)=\mathrm{y}(\mathrm{k})+\mathrm{h}^{*}\left(4^{*}\right.$ thalf $\left.-(\text { (yhalf })^{\wedge} 2\right) ;$
end
(a) What is the initial-value problem being approximated numerically?
(b) What is the numerical method being used?
(c) What are the output values of $t(2)$ and $y(2)$ that you would expect for input values of $\mathrm{ti}=1$, $\mathrm{yi}=2, \mathrm{tf}=9, \mathrm{n}=40$?

Solution (a). The initial-value problem being approximated numerically is

$$
\frac{\mathrm{d} y}{\mathrm{~d} t}=4 t-y^{2}, \quad y(\mathrm{ti})=\mathrm{yi}
$$

Solution (b). The Heun-midpoint method is being used. (This is clear from the lines defining thalf and yhalf.)

Solution (c). When $\mathrm{ti}=1$, yi $=2$, $\mathrm{tf}=9, \mathrm{n}=40$ one has $\mathrm{h}=(\mathrm{tf}-\mathrm{ti}) / \mathrm{n}=(9-$ 1) $/ 40=.2, \mathrm{t}(1)=\mathrm{ti}=1$, and $\mathrm{y}(1)=\mathrm{yi}=2$.

Setting $\mathrm{k}=1$ inside the "for" loop then yields

$$
\begin{aligned}
& \text { thalf }=\mathrm{t}(1)+\mathrm{h} / 2=1+.1=1.1 \\
& \text { yhalf }=\mathrm{y}(1)+(\mathrm{h} / 2)\left(4 \mathrm{t}(1)-\mathrm{y}(1)^{2}\right)=2+.1\left(4 \cdot 1-2^{2}\right)=2, \\
& \mathrm{t}(2)=\mathrm{t}(1)+\mathrm{h}=1+.2=1.2, \\
& \mathrm{y}(2)=\mathrm{y}(1)+\mathrm{h}\left(4 \text { thalf }- \text { yhalf }^{2}\right)=2+.2\left(4 \cdot 1.1-2^{2}\right) .
\end{aligned}
$$

The above answer got full credit, but $y(2)=2.08$ if you worked out the arithmetic.
(6) [14] What is the maximum amount a student can borrow with a five-year loan at an interest rate of 5% per year compounded continuously assuming that she can make payments continuously at a constant rate of 2400 dollars per year? Hint: Write down an initial-value problem that governs $B(t)$, the balance of the loan at t years.
Solution. Because the loan get paid-off in five years, the balance $B(t)$ satisfies the initial-value problem

$$
\frac{\mathrm{d} B}{\mathrm{~d} t}=.05 B-2400, \quad B(5)=0
$$

The equation is linear and can be put into the integrating factor form

$$
\frac{\mathrm{d}}{\mathrm{~d} t}\left(e^{-.05 t} B\right)=-2400 e^{-.05 t}
$$

which implies that

$$
e^{-.05 t} B=48000 e^{-.05 t}+c
$$

The initial condition $B(5)=0$ implies that $c=-48000 e^{-.25}$. Therefore

$$
B(t)=48000-48000 e^{.05(t-5)}
$$

The maximum amount she can borrow is $B(0)=48000\left(1-e^{-.25}\right)$.
(7) [20] Give an implicit general solution to each of the following differential equations.
(a) $\left(3 x^{2} \sin (y)+e^{x}\right) \mathrm{d} x+\left(x^{3} \cos (y)+2 y\right) \mathrm{d} y=0$.

Solution: This differential form is exact because

$$
\partial_{y}\left(3 x^{2} \sin (y)+e^{x}\right)=3 x^{2} \cos (y)=\partial_{x}\left(x^{3} \cos (y)+2 y\right)=3 x^{2} \cos (y)
$$

We can therefore find $H(x, y)$ such that

$$
\partial_{x} H(x, y)=3 x^{2} \sin (y)+e^{x}, \quad \partial_{y} H(x, y)=x^{3} \cos (y)+2 y .
$$

Integrating the first equation with respect to x yields

$$
H(x, y)=x^{3} \sin (y)+e^{x}+h(y) .
$$

Plugging this expression for $H(x, y)$ into the second equation gives

$$
x^{3} \cos (y)+h^{\prime}(y)=\partial_{y} H(x, y)=x^{3} \cos (y)+2 y,
$$

which yields $h^{\prime}(y)=2 y$. Taking $h(y)=y^{2}$, a general solution is therefore given implicitly by

$$
x^{3} \sin (y)+e^{x}+y^{2}=c .
$$

(b) $\left(3 x^{2} y+2 x y+y^{3}\right) \mathrm{d} x+\left(x^{2}+y^{2}\right) \mathrm{d} y=0$.

Solution. This differential form is not exact because

$$
\partial_{y}\left(3 x^{2} y+2 x y+y^{3}\right)=3 x^{2}+2 x+3 y^{2} \quad \neq \quad \partial_{x}\left(x^{2}+y^{2}\right)=2 x
$$

You therefore seek an integrating factor μ such that

$$
\partial_{y}\left[\left(3 x^{2} y+2 x y+y^{3}\right) \mu\right]=\partial_{x}\left[\left(x^{2}+y^{2}\right) \mu\right] .
$$

Expanding the partial derivatives yields

$$
\left(3 x^{2} y+2 x y+y^{3}\right) \partial_{y} \mu+\left(3 x^{2}+2 x+3 y^{2}\right) \mu=\left(x^{2}+y^{2}\right) \partial_{x} \mu+2 x \mu
$$

If you set $\partial_{y} \mu=0$ then this becomes

$$
\left(3 x^{2}+2 x+3 y^{2}\right) \mu=\left(x^{2}+y^{2}\right) \partial_{x} \mu+2 x \mu
$$

which reduces to $\partial_{y} \mu=3 \mu$. This yields the integrating factor $\mu=e^{3 x}$.
Because $e^{3 x}$ is an integrating factor, the differential form

$$
e^{3 x}\left(3 x^{2} y+2 x y+y^{3}\right) \mathrm{d} x+e^{3 x}\left(x^{2}+y^{2}\right) \mathrm{d} y=0 \quad \text { is exact. }
$$

You can therefore find $H(x, y)$ such that

$$
\partial_{x} H(x, y)=e^{3 x}\left(3 x^{2} y+2 x y+y^{3}\right), \quad \partial_{y} H(x, y)=e^{3 x}\left(x^{2}+y^{2}\right)
$$

Integrating the second equation with respect to y yields

$$
H(x, y)=e^{3 x}\left(x^{2} y+\frac{1}{3} y^{3}\right)+h(x) .
$$

Plugging this expression for $H(x, y)$ into the first equation gives

$$
3 e^{3 x}\left(x^{2} y+\frac{1}{3} y^{3}\right)+e^{3 x} 2 x y+h^{\prime}(x)=\partial_{x} H(x, y)=e^{3 x}\left(3 x^{2} y+2 x y+y^{3}\right)
$$

which yields $h^{\prime}(x)=0$. Taking $h(x)=0$, a general solution is therefore given implicitly by

$$
e^{3 x}\left(x^{2} y+\frac{1}{3} y^{3}\right)=c
$$

