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(1) [6] Give the interval of definition for the solution of the initial-value problem

sin(t)
d4x

dt4
+

5

1 − t2
dx

dt
=

3

4 − t2
, x(3) = x′(3) = x′′(3) = x′′′(3) = 0 .

Solution. Put the equation into normal form

d4x

dt4
+

5

sin(t)(1 − t2)

dx

dt
=

3

sin(t)(4 − t2)
, x(3) = x′(3) = x′′(3) = x′′′(3) = 0 .

The coefficient and forcing are both continuous over the interval (2, π), which contains
the initial time t = 3. The coefficient is not defined at t = nπ for every integer n

and at t = ±1 while the forcing is not defined at t = nπ for every integer n and at
t = ±2. The interval of definition is therefore (2, π).

(2) [14] Solve the initial-value problem

d2y

dt2
+

dy

dt
− 2y = 9et , y(0) = 0 , y′(0) = 2 .

Solution. This is a constant coefficient, nonhomogeneous, linear equation. Its char-
acteristic polynomial is

p(z) = z2 + z − 2 = (z − 1)(z + 2) .

This has the roots 1 and −2, which yields a general solution of the associated homo-
geneous problem

y
H

(t) = c1e
t + c2e

−2t .

The forcing 9et has degree d = 0 and characteristic µ + iν = 1, which is a root of
p(z) of multiplicity m = 1. A particular solution y

P
(t) can be found by the method

of either KEY identity evaluations or undetermined coefficients.

KEY Indentity Evaluations. Because m+ d = 1, you need the KEY identity and
its first derivative

L
(

ezt
)

= (z2 + z − 2)ezt , L
(

t ezt
)

= (z2 + z − 2)t ezt + (2z + 1) ezt .

Evaluate these at z = 1 to find L(et) = 0 and L(t et) = 3et. Multiplying the second
of these equations by 3 yields L(3t et) = 9et, which implies y

P
(t) = 3t et.

Undetermined Coefficients. Because m = 1 and m+d = 1, you seek a particular
solution of the form

y
P
(t) = At et .

Because y′

P
(t) = At et + Aet and y′′

P
(t) = At et + 2Aet, one sees that

Ly
P
(t) = y′′

P
(t) + y′

P
(t) − 2yP (t) =

(

At et + 2Aet
)

+
(

At et + Aet
)

− 2At et = 3Aet .

Setting Ly
P
(t) = 3Aet = 9et, we see that 3A = 9, whereby A = 3. Hence, y

P
(t) =

3t et.
1
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Imposing the Initial Conditions. By either approach one finds y
P
(t) = 3t eT ,

which yields the general solution

y(t) = c1e
t + c2e

−2t + 3t et .

Because
y′(t) = c1e

t − 2c2e
−2t + 3t et + 3et ,

when the initial conditions are imposed, one finds that

y(0) = c1 + c2 = 0 , y′(0) = c1 − 2c2 + 3 = 2 .

These are solved to find c1 = −1

3
and c2 = 1

3
. The solution of the initial-value problem

is therefore
y(t) = 1

3
et − 1

3
e−2t + 3t et .

(3) [10] Give a general real solution of the equation

D2y − 6Dy + 10y = 5 sin(2t) , where D =
d

dt
.

Solution. This is a constant coefficient, nonhomogeneous, linear equation. Its char-
acteristic polynomial is

p(z) = z2 − 6z + 10 = (z − 3)2 + 1 = (z − 3)2 + 12 .

This has the conjugate pair of roots 3 ± i, which yields a general solution of the
associated homogeneous problem

y
H

(t) = c1e
3t cos(t) + c2e

3t sin(t) .

The forcing 5 sin(2t) has degree d = 0 and characteristic µ + iν = i2, which is a
root of p(z) of multiplicity m = 0. A particular solution y

P
(t) can be found by the

method of either KEY identity evaluations or undetermined coefficients.

KEY Indentity Evaluations. Because m + d = 0, you only need to evaluate the
KEY identity at z = i2, which yields

L
(

ei2t
)

= p(i2)ei2t =
(

(i2)2 − 6(i2) + 10
)

ei2t = 6(1 − i2)ei2t .

Because the forcing has the form 5 sin(2t) = 5 Im(ei2t), we write

L

(

5

6

ei2t

1 − i2

)

= 5ei3t ,

which implies that

y
P
(t) = Im

(

5

6

ei2t

1 − i2

)

=
5

6
Im

(

ei2t

1 − i2

1 + i2

1 + i2

)

=
5

6
Im

(

(1 + i2)ei2t

12 + 22

)

= 1

6
Im

(

(1 + i2)ei2t
)

= 1

6

(

2 cos(2t) + sin(2t)
)

.

A general solution of the equation is therefore

y(t) = c1e
3t cos(t) + c2e

3t sin(t) + 1

3
cos(2t) + 1

6
sin(2t) .

Undetermined Coefficients. Because m = d = 0, you seek a particular solution
of the form

y
P
(t) = A cos(2t) + B sin(2t) .
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Because

y′

P
(t) = −2A sin(2t) + 2B cos(2t) , y′′

P
(t) = −4A cos(2t) − 4B sin(2t) ,

one sees that

Ly
P
(t) = y′′

P
(t) − 2y′

P
(t) + 10y

P
(t)

=
[

− 4A cos(2t) − 4B sin(2t)
]

− 6
[

− 2A sin(2t) + 2B cos(2t)
]

+ 10
[

A cos(2t) + B sin(2t)
]

= (6A − 12B) cos(3t) + (12A + 6B) sin(3t) .

Setting Ly
P
(t) = 5 sin(2t), we see that

6A − 12B = 0 , 12A + 6B = 5 ,

whereby A = 1

3
and B = 1

6
. Hence, y

P
(t) = 1

3
cos(2t) + 1

6
sin(2t). A general solution

of the equation is therefore

y(t) = c1e
3t cos(t) + c2e

3t sin(t) + 1

3
cos(2t) + 1

6
sin(2t) .

(4) [10] What answer will be produced by the following MATLAB commands?

>> ode = ’D2y + 8*Dy + 20*y = 4*exp(–2*t)’;
>> dsolve(ode, ’t’)

ans =

Solution. The commands ask MATLAB to give a general solution of the equation

D2y + 8Dy + 20y = 4e−2t , where D =
d

dt
.

at least one version of MATLAB will produce the answer

exp(–4t)*sin(2*t)*C2 + exp(–4t)*cos(2*t)*C1 + .5*exp(–2*t)

Your answer does not have to be given in this MATLAB format. Rather, your answer
should be equivalent to it. The fact this is the answer is seen as follows.

The problem being solved is a constant coefficient, nonhomogeneous, linear equa-
tion. The characteristic polynomial is

p(z) = z2 + 8z + 20 = (z + 4)2 + 4 = (z + 4)2 + 22 .

Its roots are the conjugate pair −4 ± i2. A general solution of the associated homo-
geneous problem is

y
H

(t) = c1e
−4t cos(2t) + c2e

−4t sin(2t) .

The forcing 4e−2t has degree d = 0 and characteristic µ + iν = −2, which is a root of
p(z) of multiplicity m = 0. A particular solution y

P
(t) can be found by the method

of either KEY identity evaluation or undetermined coefficients.

KEY Indentity Evaluations. Because m + d = 0, you only need to evaluate the
KEY identity at the characteristic z = −2, which yields

L(e−2t) = p(−2)e−2t =
(

(−2)2 + 8(−2) + 20
)

e−2t = 8e−2t .
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Dividing by 2 yields L(1

2
e−2t) = 4e−2t, which implies y

P
(t) = 1

2
e−2t. A general solution

is therefore

y(t) = c1e
−4t cos(2t) + c2e

−4t sin(2t) + 1

2
e−2t .

Up to notational differences, this is the answer that MATLAB produces.

Direct Substitution. Because m = d = 0 and the characteristic is −2, you seek a
particular solution of the form

y
P
(t) = Ae−2t .

Because

y′

P
(t) = −2Ae−2t , y′′

P
(t) = 4Ae−2t ,

one sees that

Ly
P
(t) = y′′

P
(t) + 4y′

P
(t) + 8y

P
(t)

= [4Ae−2t] + 8[−2Ae−2t] + 20[Ae−2t] = 8Ae−2t .

Setting Ly
P
(t) = 8Ae−2t = 4e−2t, we see that A = 1

2
. Hence, y

P
(t) = 1

2
e−2t. A

general solution is therefore

y(t) = c1e
−4t cos(2t) + c2e

−4t sin(2t) + 1

2
e−2t .

Up to notational differences, this is the answer that MATLAB produces.

(5) [8] Compute the Green function associated with the differential operator

L = D2 + 16 , where D =
d

dt
.

Solution. The Green function g(t) associated with the operator L satisfies the
initial-value problem

Lg = D2g + 16g = 0 , g(0) = 0 , g′(0) = 1 .

The characteristic polynomial is

p(z) = z2 + 16 = z2 + 42 ,

which has roots ±i4. Hence,

g(t) = c1 cos(4t) + c2 sin(4t) .

The initial condition g(0) = 0 implies c1 = 0. Because

g′(t) = 4c2 cos(4t) ,

the initial condition g′(0) = 1 implies c2 = 1

4
. The Green function is thereby

g(t) = 1

4
sin(4t) .
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(6) [12] Find a particular solution xP (t) of the equation

D2x + 16x =
1

cos(4t)
, where D =

d

dt
.

Solution. This is a constant coefficient nonhomogeneous equation. Its forcing does
not have the characteristic form required for the methods of either KEY identity
evaluations or undetermined coefficients. You can therefore use either the Green
function method or variation of parameters.

Green Function. By the previous problem, the associated Green function is given
by g(t) = 1

4
sin(4t). A particular solution is therefore

x
P
(t) = 1

4

∫

t

0

sin(4t − 4s)
1

cos(4s)
ds

= 1

4

∫

t

0

[

sin(4t) cos(4s) − cos(4t) sin(4s)
] 1

cos(4s)
ds

= 1

4
sin(4t)

∫

t

0

cos(4s)

cos(4s)
ds − 1

4
cos(4t)

∫

t

0

sin(4s)

cos(4s)
ds

= 1

4
sin(4t) t + 1

16
cos(4t) log(| cos(4t)|) .

Variation of Parameters. By the previous problem, a general solution of the
associated homogeneous problem is

xH(t) = c1 cos(4t) + c2 sin(4t) .

We therefore seek a solution of the nonhomogeneous problem in the form

x = u1(t) cos(4t) + u2(t) sin(4t) ,

where u′

1(t) and u′

2(t) satisfy the linear algebraic system

u′

1(t) cos(4t) + u′

2(t) sin(4t) = 0 ,

−u′

1(t)4 sin(4t) + u′

2(t)4 cos(4t) =
1

cos(4t)
.

The solution of this system is

u′

1(t) = −1

4

sin(4t)

cos(4t)
, u′

2(t) = 1

4
.

Integrate these equations to obtain

u1(t) = c1 + 1

16
log(| cos(4t)|) , u2(t) = c2 + 1

4
t .

A particular solution is therefore

x
P
(t) = 1

16
cos(4t) log(| cos(4t)|) + 1

4
sin(4t) t .

Remark: You can use the formulas for u′

1(t) and u′

2(t) given in the book, but this
becomes more involved than simply setting up and solving the linear algebraic system
as was done above.

Remark: It is clear that the Green function method gets to the definite integrals
quicker.
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(7) [12] Let L be a linear ordinary differential operator with constant coefficients. Sup-
pose that all the roots of its characteristic polynomial (listed with their multiplicities)
are 3 + i2, 3 + i2, 3 − i2, 3 − i2, i5, −i5, −4, −4, −4, 0, 0.
(a) Give the order of L.

Solution. There are 11 roots listed above, so the degree of the characteristic
polynomial is 11, whereby the order of L is 11.

(b) Give a general real solution of the homogeneous equation Ly = 0.

Solution. A general solution is

y(t) = c1e
3t cos(2t) + c2e

3t sin(2t) + c3t e3t cos(2t) + c4t e3t sin(2t)

= c5 cos(5t) + c6 sin(5t) + c7e
−4t + c8te

−4t + c9t
2e−4t + c10 + c11t .

The reasoning is as follows:
• the double conjugate pair 3 ± i2 yields

e3t cos(2t) , e3t sin(2t) , t e3t cos(2t) , and t e3t sin(2t) ;

• the single conjugate pair ±i5 yields cos(5t) and sin(5t);
• the triple real root −4 yields e−4t, t e−4t, and t2e−4t;
• the double real root 0 yields 1 and t.

(8) [12] The functions t and t3 are solutions of the homogeneous equation

t2
d2y

dt2
− 3t

dy

dt
+ 3y = 0 over t > 0 .

(You do not have to check that this is true!)
(a) Compute their Wronskian.

Solution. The Wronskian is

W [t, t3](t) = det

(

t t3

1 3t2

)

= 3t3 − t3 = 2t3 .

(b) Give a general solution of the equation

t2
d2y

dt2
− 3t

dy

dt
+ 3y =

t4

1 + t2
over t > 0 .

Solution. Because W [t, t3](x) = 2t3 > 0 over t > 0, the functions t and t3 are
linearly independent. A general solution of the associated homogeneous problem
is

y
H

(t) = c1t + c2t
3 .

Because this problem has variable coefficients, you must use the method of gen-
eral Green functions or variation of parameters to find a particular solution y

P
(t).

In either case you should first divide by t2 to bring the equation into its normal
form

d2y

dt2
− 3

t

dy

dt
+

3

t2
y =

t2

1 + t2
over t > 0 .
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General Green Function. The Green function G(t, s) is given by

G(t, s) =

det

(

s s3

t t3

)

W [s, s3](s)
=

st3 − ts3

2s3
=

t3 − ts2

2s2
.

The Green function formula then yields the solution

y(t) =

∫

t

0

G(t, s)
s2

1 + s2
ds = 1

2

∫

t

0

t3 − ts2

1 + s2
ds

= 1

2
t3

∫

t

0

1

1 + s2
ds − 1

2
t

∫

t

0

s2

1 + s2
ds

= 1

2
t3

∫

t

0

1

1 + s2
ds − 1

2
t

∫

t

0

1 − 1

1 + s2
ds

= 1

2
t3 tan−1(t) − 1

2
t
[

t − tan−1(t)
]

.

Variation of Parameters. Seek a solution in the form

y = u1(t)t + u2(t)t
3 .

where u′

1(t) and u′

2(t) satisfy the linear algebraic system

u′

1(t)t + u′

2(t)t
3 = 0 ,

u′

1(t)1 + u′

2(t)3t
2 =

t2

1 + t2
.

The solution of this system is

u′

1(t) = −1

2

t2

1 + t2
, u′

2(t) = 1

2

1

1 + t2
.

Alternatively, because you know that W [t, t3](t) = 2t3, you can directly use the
formulas from the book to obtain

u′

1(t) =
−t3 · t2

1+t2

2t3
= −1

2

t2

1 + t2
, u′

2(t) =
t · t2

1+t2

2t3
= 1

2

1

1 + t2
.

No matter how they are obtained, you integrate these equations to find

u1(t) = c1 − 1

2
t + 1

2
tan−1(t) , u2(t) = c2 + 1

2
tan−1(t) .

A general solution is therefore

y = c1t + c2t
3 − 1

2
t2 + 1

2
t tan−1(t) + 1

2
t3 tan−1(t) .
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(9) [8] When a 1.5 kilogram mass is hung vertically from a spring, at rest it stretches
the spring .2 m. (Gravitational acceleration is g = 9.8 m/sec2.) At t = 0 the mass is
displaced .3 m above its rest position and is released with a downward initial velocity
of .4 m/sec. Assume that the spring force is proportional to displacement, that there
is no drag force, and that the mass is driven by an external force of Fext(t) = 3 cos(ωt)
Newtons (1 Newton = 1 kg m/sec2), where up is taken to be positive.

(a) Formulate an initial-value problem that governs the motion of the mass for t > 0.
(DO NOT solve this initial-value problem, just write it down!)

Solution. Let h(t) be the displacement (in meters) of the mass from its rest
position at time t (in seconds), with upward displacements being positive. The
governing initial-value problem then has the form

m
d2h

dt2
+ kh = Fext(t) , h(0) = .3 , h′(0) = −.4 ,

where m is the mass and k is the spring constant. The problem says that m = 1.5
kilograms. The spring constant is obtained by balancing the weight of the mass
(mg = 1.5 · 9.8 Newtons) with the force applied by the spring when it is stetched
.2 m. This gives k .2 = 1.5 · 9.8, or

k =
1.5 · 9.8

.2
=

1.5 · 98

2
Newtons/m .

Because Fext(t) = 3 cos(ωt), the governing initial-value problem is therefore

1.5
d2h

dt2
+

1.5 · 98

2
h = 3 cos(ωt) , h(0) = .3 , h′(0) = −.4 .

While the above answer was sufficient, had you put the initial-value problem
into normal form you should have obtained

d2h

dt2
+ 49 h = 2 cos(ωt) , h(0) = .3 , h′(0) = −.4 .

(b) What is the natural frequency of this spring?

Solution. The natural frequency of the spring is given by

ωo =

√

k

m
=

√

1.5 · 98

1.5 · 2 =
√

49 = 7 1/sec .

(c) At what value of the driving frequency ω does resonance occur?

Solution. Resonance occurs when the driving frequency ω equals the natural
fequency of the spring ωo. Given the answer to part (b), resonance occurs when

ω = ωo = 7 1/sec .
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(10) [8] The vertical displacement of a mass on a spring is given by

h(t) = 3e−t cos(πt) − 4e−t sin(πt) .

(a) Why is this system under damped?

Solution. The system is under damped because the given displacement corre-
sponds to the underlying characteristic polynomial having the complex conjugate
pair of roots −1 ± iπ.

(b) Express h(t) in the form h(t) = Ae−t cos(ωt − δ) with A > 0 and 0 ≤ δ < 2π,
identifying the quasiperiod and phase of the oscillation. (The phase may be
expressed in terms of an inverse trig function.)

Solution. By compairing

Ae−t cos(ωt− δ) = Ae−t cos(δ) cos(ωt) + Ae−t sin(δ) sin(ωt) ,

with h(t) = 3e−t cos(πt) − 4e−t sin(πt), we see that ω = π and that

A cos(δ) = 3 , A sin(δ) = −4 .

This shows that (A, δ) are the polar coordinates of the point in the plane whose
Cartesian coordinates are (3,−4). Clearly A is given by

A =
√

42 + 32 =
√

16 + 9 =
√

25 = 5 .

Because (3,−4) lies in the fourth quadrant, the phase δ satisfies 3π

2
< δ < 2π.

Because

sin(δ) = −4

5
, tan(δ) = −4

3
, cos(δ) = 3

5
,

you can express the phase by any one of the formulas

δ = 2π − sin−1
(

4

5

)

, δ = 2π − tan−1
(

4

3

)

, δ = 2π − cos−1
(

3

5

)

.

Finally, the quasiperiod T is given by

T =
2π

ω
=

2π

π
= 2 .


