Third In-Class Exam Solutions
Math 246, Professor David Levermore
Thursday, 3 December 2009

(1) [6] Given that 2 is an eigenvalue of the matrix

$$
\mathbf{A}=\left(\begin{array}{ccc}
2 & -1 & 1 \\
1 & 1 & -1 \\
0 & -1 & 3
\end{array}\right)
$$

find all the eigenvectors of \mathbf{A} associated with 2.
Solution. The eigenvectors of \mathbf{A} associated with 2 are all nonzero vectors \mathbf{v} that satisfy $\mathbf{A v}=2 \mathbf{v}$. Equivalently, they are all nonzero vectors \mathbf{v} that satisfy $(\mathbf{A}-2 \mathbf{I}) \mathbf{v}=$ 0 , which is

$$
\left(\begin{array}{ccc}
0 & -1 & 1 \\
1 & -1 & -1 \\
0 & -1 & 1
\end{array}\right)\left(\begin{array}{l}
v_{1} \\
v_{2} \\
v_{3}
\end{array}\right)=0
$$

The entries of \mathbf{v} thereby satisfy the homogeneous linear algebraic system

$$
\begin{aligned}
-v_{2}+v_{3} & =0, \\
v_{1}-v_{2}-v_{3} & =0, \\
-v_{2}+v_{3} & =0 .
\end{aligned}
$$

You may solve this system either by elimination or by row reduction. By either method you find that its general solution is

$$
v_{1}=2 \alpha, \quad v_{2}=\alpha, \quad v_{3}=\alpha, \quad \text { for any constant } \alpha
$$

The eigenvectors of \mathbf{A} associated with 1 therefore have the form

$$
\alpha\left(\begin{array}{l}
2 \\
1 \\
1
\end{array}\right) \text { for any nonzero constant } \alpha
$$

(2) [11] A 3×3 matrix has eigenpairs

$$
\left(1,\left(\begin{array}{l}
1 \\
2 \\
1
\end{array}\right)\right), \quad\left(2,\left(\begin{array}{l}
2 \\
1 \\
1
\end{array}\right)\right), \quad\left(3,\left(\begin{array}{l}
1 \\
0 \\
1
\end{array}\right)\right)
$$

(a) Give an invertible matrix \mathbf{V} and a diagonal matrix \mathbf{D} such that $\mathbf{A}=\mathbf{V D V}^{-1}$. (You do not have to compute \mathbf{V}^{-1} !)

Solution.

$$
\mathbf{V}=\left(\begin{array}{ccc}
1 & 2 & 1 \\
2 & 1 & 0 \\
1 & 1 & 1
\end{array}\right), \quad \mathbf{D}=\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 2 & 0 \\
0 & 0 & 3
\end{array}\right)
$$

(b) Give a general solution to the system $\frac{\mathrm{d} \mathbf{x}}{\mathrm{d} t}=\mathbf{A x}$.

Solution.

$$
\mathbf{x}(t)=c_{1} e^{t}\left(\begin{array}{l}
1 \\
2 \\
1
\end{array}\right)+c_{2} e^{2 t}\left(\begin{array}{l}
2 \\
1 \\
1
\end{array}\right)+c_{3} e^{3 t}\left(\begin{array}{l}
1 \\
0 \\
1
\end{array}\right) .
$$

(3) [6] Transform the equation $\frac{\mathrm{d}^{4} w}{\mathrm{~d} t^{4}}-t \frac{\mathrm{~d}^{3} w}{\mathrm{~d} t^{3}}+\frac{\mathrm{d} w}{\mathrm{~d} t}-3 w=\cos (t)$ into a first-order system of ordinary differential equations.
Solution: Because the equation is fourth order, the first order system must have dimension four. The simplest such first order system is

$$
\frac{\mathrm{d}}{\mathrm{~d} t}\left(\begin{array}{c}
x_{1} \\
x_{2} \\
x_{3} \\
x_{3} \\
x_{4}
\end{array}\right)=\binom{x_{4}}{\cos (t)+3 x_{1}-x_{2}+t x_{4}}, \quad \text { where } \quad\left(\begin{array}{c}
x_{1} \\
x_{2} \\
x_{3} \\
x_{4}
\end{array}\right)=\left(\begin{array}{c}
w \\
w^{\prime} \\
w^{\prime \prime} \\
w^{\prime \prime \prime}
\end{array}\right)
$$

(4) [10] Consider the vector-valued functions $\mathbf{x}_{1}(t)=\binom{1}{t^{2}}, \mathbf{x}_{2}(t)=\binom{t^{4}}{3+t^{6}}$.
(a) Compute the Wronskian $W\left[\mathbf{x}_{1}, \mathbf{x}_{2}\right](t)$.

Solution.

$$
W\left[\mathbf{x}_{1}, \mathbf{x}_{2}\right](t)=\operatorname{det}\left(\begin{array}{cc}
1 & t^{4} \\
t^{2} & 3+t^{6}
\end{array}\right)=3+t^{6}-t^{6}=3
$$

(b) Find $\mathbf{A}(t)$ such that $\mathbf{x}_{1}, \mathbf{x}_{2}$ is a fundamental set of solutions to the system $\frac{\mathrm{d} \mathbf{x}}{\mathrm{d} t}=\mathbf{A}(t) \mathbf{x}$ wherever $W\left[\mathbf{x}_{1}, \mathbf{x}_{2}\right](t) \neq 0$.
Solution. Let $\boldsymbol{\Psi}(t)=\left(\begin{array}{cc}1 & t^{4} \\ t^{2} & 3+t^{6}\end{array}\right)$. Because $\frac{\boldsymbol{\Psi}(t)}{\mathrm{d} t}=\mathbf{A}(t) \boldsymbol{\Psi}(t)$, one has

$$
\begin{aligned}
\mathbf{A}(t) & =\frac{\mathbf{\Psi}(t)}{\mathrm{d} t} \boldsymbol{\Psi}(t)^{-1}=\left(\begin{array}{cc}
0 & 4 t^{3} \\
2 t & 6 t^{5}
\end{array}\right)\left(\begin{array}{cc}
1 & t^{4} \\
t^{2} & 3+t^{6}
\end{array}\right)^{-1} \\
& =\frac{1}{3}\left(\begin{array}{cc}
0 & 4 t^{3} \\
2 t & 6 t^{5}
\end{array}\right)\left(\begin{array}{cc}
3+t^{6} & -t^{4} \\
-t^{2} & 1
\end{array}\right)=\frac{1}{3}\left(\begin{array}{cc}
-4 t^{5} & 4 t^{3} \\
6 t-4 t^{7} & 4 t^{5}
\end{array}\right) .
\end{aligned}
$$

(c) Give a general solution to the system you found in part (b).

Solution. Because $\mathbf{x}_{1}(t), \mathbf{x}_{2}(t)$ is a fundamental set of solutions to the system found in part (b), a general solution is given by

$$
\mathbf{x}(t)=c_{1} \mathbf{x}_{1}(t)+c_{2} \mathbf{x}_{2}(t)=c_{1}\binom{1}{t^{2}}+c_{2}\binom{t^{4}}{3+t^{6}} .
$$

(5) [4] Given that $e^{t \mathbf{A}}=\left(\begin{array}{cc}\cosh (2 t) & 2 \sinh (2 t) \\ \frac{1}{2} \sinh (2 t) & \cosh (2 t)\end{array}\right)$, solve the initial-value problem

$$
\frac{\mathrm{d}}{\mathrm{~d} t}\binom{x}{y}=\mathbf{A}\binom{x}{y}, \quad\binom{x(0)}{y(0)}=\binom{2}{3} .
$$

Solution. The solution of the initial-value problem is given by

$$
\begin{aligned}
\binom{x(t)}{y(t)} & =e^{t \mathbf{A}}\binom{2}{3}=\left(\begin{array}{cc}
\cosh (2 t) & 2 \sinh (2 t) \\
\frac{1}{2} \sinh (2 t) & \cosh (2 t)
\end{array}\right)\binom{2}{3} \\
& =\binom{2 \cosh (2 t)+6 \sinh (2 t)}{\sinh (2 t)+3 \cosh (2 t)}
\end{aligned}
$$

(6) [9] Consider two interconnected tanks filled with brine (salt water). The first tank contains 60 liters and the second contains 40 liters. Brine with a concentration of 3 grams of salt per liter flows into the first tank at a rate of 4 liters per hour. Well stirred brine flows from the first tank into the second at a rate of 5 liters per hour, from the second into the first at a rate of 2 liters per hour, from the first into a drain at a rate of 1 liter per hour, and from the second into a drain at a rate of 3 liters per hour. At $t=0$ there are 35 grams of salt in the first tank and 7 grams in the second. Give an initial-value problem that governs the amount of salt in each tank as a function of time.
Solution: The rates work out so there will always be 60 liters of brine in the first tank and 40 liters in the second. Let $S_{1}(t)$ be the grams of salt in the first tank and $S_{2}(t)$ be the grams of salt in the second tank. These are governed by the initial-value problem

$$
\begin{array}{ll}
\frac{\mathrm{d} S_{1}}{\mathrm{~d} t}=3 \cdot 4+\frac{S_{2}}{40} 2-\frac{S_{1}}{60} 5-\frac{S_{1}}{60} 1, & S_{1}(0)=35 \\
\frac{\mathrm{~d} S_{2}}{\mathrm{~d} t}=\frac{S_{1}}{60} 5-\frac{S_{2}}{40} 2-\frac{S_{2}}{40} 3, & S_{2}(0)=7
\end{array}
$$

You could leave the answer in the above form. It can however be simplified to

$$
\begin{array}{ll}
\frac{\mathrm{d} S_{1}}{\mathrm{~d} t}=12+\frac{S_{2}}{20}-\frac{S_{1}}{10}, & S_{1}(0)=35 \\
\frac{\mathrm{~d} S_{2}}{\mathrm{~d} t}=\frac{S_{1}}{12}-\frac{S_{2}}{8}, & S_{2}(0)=7 .
\end{array}
$$

(7) [12] Find a general solution for each of the following systems.
(a) $\frac{\mathrm{d}}{\mathrm{d} t}\binom{x}{y}=\left(\begin{array}{cc}-1 & -2 \\ 5 & -3\end{array}\right)\binom{x}{y}$

Solution. The characteristic polynomial of $\mathbf{A}=\left(\begin{array}{cc}-1 & -2 \\ 5 & -3\end{array}\right)$ is given by

$$
p(z)=z^{2}-\operatorname{tr}(\mathbf{A}) z+\operatorname{det}(\mathbf{A})=z^{2}+4 z+13=(z+2)^{2}+9 .
$$

The eigenvalues of \mathbf{A} are the roots of this polynomial, which are the conjugate pair $-2 \pm i 3$. One therefore has

$$
\begin{aligned}
e^{t \mathbf{A}} & =e^{-2 t}\left[\mathbf{I} \cos (3 t)+(\mathbf{A}+2 \mathbf{I}) \frac{\sin (3 t)}{3}\right] \\
& =e^{-2 t}\left[\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right) \cos (3 t)+\left(\begin{array}{ll}
1 & -2 \\
5 & -1
\end{array}\right) \frac{\sin (3 t)}{3}\right] \\
& =e^{-2 t}\left(\begin{array}{cc}
\cos (3 t)+\frac{1}{3} \sin (3 t) & -\frac{2}{3} \sin (3 t) \\
\frac{5}{3} \sin (3 t) & \cos (3 t)-\frac{1}{3} \sin (3 t)
\end{array}\right) .
\end{aligned}
$$

A general solution is therefore given by

$$
\begin{aligned}
\binom{x(t)}{y(t)} & =e^{t \mathbf{A}}\binom{c_{1}}{c_{2}}=e^{-2 t}\left(\begin{array}{cc}
\cos (3 t)+\frac{1}{3} \sin (3 t) & -\frac{2}{3} \sin (3 t) \\
\frac{5}{3} \sin (3 t) & \cos (3 t)-\frac{1}{3} \sin (3 t)
\end{array}\right)\binom{c_{1}}{c_{2}} \\
& =c_{1} e^{-2 t}\binom{\cos (3 t)+\frac{1}{3} \sin (3 t)}{\frac{5}{3} \sin (3 t)}+c_{2} e^{-2 t}\binom{-\frac{2}{3} \sin (3 t)}{\cos (3 t)-\frac{1}{3} \sin (3 t)} .
\end{aligned}
$$

(b) $\frac{\mathrm{d}}{\mathrm{d} t}\binom{x}{y}=\left(\begin{array}{cc}1 & 2 \\ -2 & 5\end{array}\right)\binom{x}{y}$

Solution. The characteristic polynomial of $\mathbf{A}=\left(\begin{array}{cc}1 & 2 \\ -2 & 5\end{array}\right)$ is given by

$$
p(z)=z^{2}-\operatorname{tr}(\mathbf{A}) z+\operatorname{det}(\mathbf{A})=z^{2}-6 z+9=(z-3)^{2} .
$$

The eigenvalues of \mathbf{A} are the roots of this polynomial, which is the double real root 3. One therefore has

$$
\begin{aligned}
e^{t \mathbf{A}} & =e^{3 t}[\mathbf{I}+(\mathbf{A}-3 \mathbf{I}) t]=e^{3 t}\left[\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right)+\left(\begin{array}{ll}
-2 & 2 \\
-2 & 2
\end{array}\right) t\right] \\
& =e^{3 t}\left(\begin{array}{cc}
1-2 t & 2 t \\
-2 t & 1+2 t
\end{array}\right)
\end{aligned}
$$

A general solution is therefore given by

$$
\begin{aligned}
\binom{x(t)}{y(t)} & =e^{t \mathbf{A}}\binom{c_{1}}{c_{2}}=e^{3 t}\left(\begin{array}{cc}
1-2 t & 2 t \\
-2 t & 1+2 t
\end{array}\right)\binom{c_{1}}{c_{2}} \\
& =c_{1} e^{3 t}\binom{1-2 t}{-2 t}+c_{2} e^{3 t}\binom{2 t}{1+2 t} .
\end{aligned}
$$

(8) [8] Sketch a phase-plane portrait for each of the two systems in the previous problem. For each portrait identify its type and give a reason why the origin is either attracting, stable, unstable, or repelling.
(a) Solution. Because the characteristic polynomial of \mathbf{A} is $p(z)=(z+2)^{2}+9$, one sees that $\mu=-2$ and $\delta=-9$. There are no real eigenpairs. Because $\mu=-2<0$, $\delta=-9<0$, and $a_{21}=5>0$ the phase portrait is a counterclockwise spiral sink. The origin is thereby attracting (and also stable). The phase portrait should indicate a family of counterclockwise spiral trajectories that approach the origin.
(b) Solution. Because the characteristic polynomial of \mathbf{A} is $p(z)=(z-3)^{2}$, one sees that $\mu=3$ and $\delta=0$. Because

$$
\mathbf{A}-3 \mathbf{I}=\left(\begin{array}{ll}
-2 & 2 \\
-2 & 2
\end{array}\right)
$$

we see that the eigenvectors associated with 1 have the form

$$
\alpha\binom{1}{1} \quad \text { for some } \alpha \neq 0 .
$$

The associated solutions will therefore lie on the line $y=x$. Because $\mu=3>0$, $\delta=0$, and $a_{21}=-2<0$ the phase portrait is a clockwise twist source. The origin is thereby repelling (and also unstable). The phase portrait should show that on the line $y=x$ there is one trajectory that emerges from each side of the origin. Every other trajectory emerges from the origin with a clockwise twist.
(9) [9] Consider the system

$$
\frac{\mathrm{d}}{\mathrm{~d} t}\binom{x}{y}=\binom{y}{-4 x+x^{3}} .
$$

(a) Find all of its stationary points.

Solution. Stationary points satisfy

$$
\begin{aligned}
& 0=y \\
& 0=-4 x+x^{3}=x\left(x^{2}-4\right)=x(x+2)(x-2) .
\end{aligned}
$$

The top equation shows that $y=0$ while the bottom equation shows that either $x=0$ or $x=-2$ or $x=2$. The stationary points of the system are therefore

$$
(0,0), \quad(-2,0), \quad(2,0) .
$$

(b) Find a nonconstant function $h(x, y)$ such that every trajectory of the system satisfies $h(x, y)=c$ for some constant c.
Solution. The associated first-order equation is

$$
\frac{\mathrm{d} y}{\mathrm{~d} x}=\frac{-4 x+x^{3}}{y} .
$$

This equation is separable, so can be integrated as

$$
\int y \mathrm{~d} y=\int-4 x+x^{3} \mathrm{~d} x
$$

whereby you find that

$$
\frac{1}{2} y^{2}=-2 x^{2}+\frac{1}{4} x^{4}+c .
$$

You can thereby set

$$
h(x, y)=\frac{1}{2} y^{2}+2 x^{2}-\frac{1}{4} x^{4} .
$$

Alternative Solution. An alternative approach is to notice that

$$
\partial_{x} f(x, y)+\partial_{y} g(x, y)=\partial_{x} y+\partial_{y}\left(-4 x+x^{3}\right)=0 .
$$

The system is therefore Hamiltonian with $h(x, y)$ such that

$$
\partial_{y} h(x, y)=y, \quad-\partial_{x} h(x, y)=-4 x+x^{3} .
$$

Integrating the first equation above yields $h(x, y)=\frac{1}{2} y^{2}+c(x)$. Substituting this into the second equation gives

$$
-c^{\prime}(x)=-4 x+x^{3} .
$$

Integrating this equation yields $c(x)=2 x^{2}-\frac{1}{4} x^{4}$, whereby

$$
h(x, y)=\frac{1}{2} y^{2}+2 x^{2}-\frac{1}{4} x^{4} .
$$

(10) [8] Compute the Laplace transform of $f(t)=u(t-4) e^{-3 t}$ from its definition. (Here u is the unit step function.)
Solution. The definition of Laplace transform gives

$$
\mathcal{L}[f](s)=\lim _{T \rightarrow \infty} \int_{0}^{T} e^{-s t} u(t-4) e^{-3 t} \mathrm{~d} t=\lim _{T \rightarrow \infty} \int_{4}^{T} e^{-(s+3) t} \mathrm{~d} t
$$

When $s \leq-3$ this limit diverges to $+\infty$ because in that case one has for every $T>4$ that

$$
\int_{4}^{T} e^{-(s+3) t} \mathrm{~d} t \geq \int_{4}^{T} \mathrm{~d} t=T-4
$$

which clearly diverges to $+\infty$ as $T \rightarrow \infty$.
When $s>-3$ one has for every $T>4$ that

$$
\int_{4}^{T} e^{-(s+3) t} \mathrm{~d} t=-\left.\frac{e^{-(s+3) t}}{s+3}\right|_{4} ^{T}=-\frac{e^{-(s+3) T}}{s+3}+\frac{e^{-(s+3) 4}}{s+3}
$$

whereby

$$
\mathcal{L}[f](s)=\lim _{T \rightarrow \infty}\left[-\frac{e^{-(s+3) T}}{s+3}+\frac{e^{-(s+3) 4}}{s+3}\right]=\frac{e^{-(s+3) 4}}{s+3} .
$$

(11) [9] Find the Laplace transform $Y(s)$ of the solution $y(t)$ of the initial-value problem

$$
\frac{\mathrm{d}^{2} y}{\mathrm{~d} t^{2}}+6 \frac{\mathrm{~d} y}{\mathrm{~d} t}+18 y=f(t), \quad y(0)=2, \quad y^{\prime}(0)=-4
$$

where

$$
f(t)= \begin{cases}\frac{1}{3} t & \text { for } 0 \leq t<3 \\ e^{3-t} & \text { for } t \geq 3\end{cases}
$$

You may refer to the table on the last page. DO NOT take the inverse Laplace transform to find $y(t)$, just solve for $Y(s)$!
Solution. The Laplace transform of the initial-value problem is

$$
\mathcal{L}\left[y^{\prime \prime}\right](s)+6 \mathcal{L}\left[y^{\prime}\right](s)+18 \mathcal{L}[y](s)=\mathcal{L}[f](s),
$$

where

$$
\begin{aligned}
\mathcal{L}[y](s) & =Y(s) \\
\mathcal{L}\left[y^{\prime}\right](s) & =s Y(s)-y(0)=s Y(s)-2 \\
\mathcal{L}\left[y^{\prime \prime}\right](s) & =s^{2} Y(s)-s y(0)-y^{\prime}(0)=s^{2} Y(s)-2 s+4
\end{aligned}
$$

To compute $\mathcal{L}[f](s)$, first write f as

$$
\begin{aligned}
f(t) & =(u(t)-u(t-3)) \frac{1}{3} t+u(t-3) e^{3-t} \\
& =u(t) \frac{1}{3} t+u(t-3)\left(e^{3-t}-\frac{1}{3} t\right) \\
& =\frac{1}{3} t+u(t-3)\left(e^{3-t}-\frac{1}{3}(t-3)-1\right) .
\end{aligned}
$$

Referring to the table on the last page, item 6 with $c=3$ and $h(t)=e^{-t}-\frac{1}{3} t-1$ shows that

$$
\mathcal{L}\left[u(t-3)\left(e^{3-t}-\frac{1}{3}(t-3)-1\right)\right](s)=\mathcal{L}[u(t-3) h(t-3)](s)=e^{-3 s} \mathcal{L}[h](s),
$$

while item 1 with $a=-1$ and $n=0$, with $a=0$ and $n=1$, and with $a=0$ and $n=0$ shows that

$$
\mathcal{L}\left[e^{-t}\right](s)=\frac{1}{s+1}, \quad \mathcal{L}[t](s)=\frac{1}{s^{2}}, \quad \mathcal{L}[1](s)=\frac{1}{s}
$$

whereby

$$
\mathcal{L}\left[\frac{1}{3} t\right](s)=\frac{1}{3 s^{3}}, \quad \mathcal{L}[h](s)=\frac{1}{s+1}-\frac{1}{3 s^{2}}-\frac{1}{s} .
$$

Therefore

$$
\mathcal{L}[f](s)=\frac{1}{3 s^{2}}+e^{-3 s}\left(\frac{1}{s+1}-\frac{1}{3 s^{2}}-\frac{1}{s}\right) .
$$

The Laplace transform of the initial-value problem then becomes

$$
\left(s^{2} Y(s)-2 s+4\right)+6(s Y(s)-2)+18 Y(s)=\frac{1-e^{-3 s}}{3 s^{2}}+\frac{e^{-3 s}}{s+1}-\frac{e^{-3 s}}{s}
$$

which becomes

$$
\left(s^{2}+6 s+18\right) Y(s)-2 s+4-12=\frac{1-e^{-3 s}}{3 s^{2}}+\frac{e^{-3 s}}{s+1}-\frac{e^{-3 s}}{s}
$$

Hence, $Y(s)$ is given by

$$
Y(s)=\frac{1}{s^{2}+6 s+18}\left(2 s+8+\frac{1-e^{-3 s}}{3 s^{2}}+\frac{e^{-3 s}}{s+1}-\frac{e^{-3 s}}{s}\right) .
$$

(12) [8] Find the inverse Laplace transforms of the function

$$
F(s)=e^{-4 s} \frac{s+5}{s^{2}-5 s+6} .
$$

You may refer to the table on the last page.
Solution. The denominator factors as $(s-3)(s-2)$, so the partial fraction decomposition is

$$
\frac{s+5}{s^{2}-5 s+6}=\frac{s+5}{(s-3)(s-2)}=\frac{8}{s-3}+\frac{-7}{s-2} .
$$

Referring to the table on the last page, item 1 with $a=3$ and $n=0$, and with $a=2$ and $n=0$ shows that

$$
\mathcal{L}\left[e^{3 t}\right](s)=\frac{1}{s-3}, \quad \mathcal{L}\left[e^{2 t}\right](s)=\frac{1}{s-2}
$$

You therefore obtain

$$
\mathcal{L}^{-1}\left[\frac{s+5}{s^{2}-5 s+6}\right](t)=8 \mathcal{L}^{-1}\left[\frac{1}{s-3}\right]-7 \mathcal{L}^{-1}\left[\frac{1}{s-2}\right]=8 e^{3 t}-7 e^{2 t}
$$

Then item 6 with $c=4$ and $h(t)=8 e^{3 t}-7 e^{2 t}$ shows that

$$
\begin{aligned}
\mathcal{L}^{-1}\left[e^{-4 s} \frac{s+5}{s^{2}-5 s+6}\right](t) & =u(t-4) \mathcal{L}^{-1}\left[\frac{s+5}{s^{2}-5 s+6}\right](t-4) \\
& =u(t-4)\left(8 e^{3(t-4)}-7 e^{2(t-4)}\right)
\end{aligned}
$$

A Short Table of Laplace Transforms

$$
\begin{array}{rlrl}
\mathcal{L}\left[e^{a t} t^{n}\right](s) & =\frac{n!}{(s-a)^{n+1}} & & \text { for } s>a, \\
\mathcal{L}\left[e^{a t} \cos (b t)\right](s) & =\frac{s-a}{(s-a)^{2}+b^{2}} & & \text { for } s>a, \\
\mathcal{L}\left[e^{a t} \sin (b t)\right](s) & =\frac{b}{(s-a)^{2}+b^{2}} & & \text { for } s>a, \\
\mathcal{L}\left[e^{a t} h(t)\right](s) & =H(s-a) & & \text { where } H(s)=\mathcal{L}[h(t)](s), \\
\mathcal{L}\left[t^{n} h(t)\right](s) & =(-1)^{n} H^{(n)}(s) & & \text { where } H(s)=\mathcal{L}[h(t)](s), \\
\mathcal{L}[u(t-c) h(t-c)](s) & =e^{-c s} H(s) & & \text { where } H(s)=\mathcal{L}[h(t)](s) \\
& & \text { and } u \text { is the step function } .
\end{array}
$$

