Third In-Class Exam Solutions
Math 246, Professor David Levermore
Thursday, 3 December 2009

(1) [6] Given that 2 is an eigenvalue of the matrix

2 -1 1
A=(1 1 -1],
0 -1 3

find all the eigenvectors of A associated with 2.

Solution. The eigenvectors of A associated with 2 are all nonzero vectors v that
satisfy Av = 2v. Equivalently, they are all nonzero vectors v that satisfy (A —2I)v =
0, which is

0 —1 1 (%1

1 -1 -1 vy | =0.

0 —1 1 (%}

The entries of v thereby satisfy the homogeneous linear algebraic system

—'Ug—l—’UgZO,
01—02—03:0,
—’02+U3:0.

You may solve this system either by elimination or by row reduction. By either
method you find that its general solution is

v =20, Vs =, U3=, for any constant «a.
The eigenvectors of A associated with 1 therefore have the form
2
1
1

o for any nonzero constant «.

(2) [11] A 3 x 3 matrix has eigenpairs

1 2 1
17 2 Y 27 1 Y 37 O
1 1 1

(a) Give an invertible matrix V and a diagonal matrix D such that A = VDV L
(You do not have to compute V~1!)

Solution.
1 21 1 00
1 11 0 0 3



d
(b) Give a general solution to the system & _ Ax.

dt
Solution.
1 2 1
x(t)=cre [ 2] +cpe® | 1| +c3e® [0
1 1 1

4 3
(3) [6] Transform the equation dw td—w dw

+ — — 3w = cos(t) into a first-order system
, . ' it as ®) Y
of ordinary differential equations.

Solution: Because the equation is fourth order, the first order system must have
dimension four. The simplest such first order system is

T ) T w
d |z x x w’
2 = 3 ,  where 2| = "

dt | =3 Ty T3 w
T4 cos(t) + 3xy — xo + tay T4 w

4
(4) [10] Consider the vector-valued functions x;(t) = (1), X(t) = ( t )

t? 3+1°
(a) Compute the Wronskian W xy, Xs](2).
Solution.
Wk, %0](t) = det<12 ¢t 6) 34455 —3.
t“ 3+t

(b) Find A(t) such that x;, X2 is a fundamental set of solutions to the system
dx

i A (t)x wherever W [xy,x2](t) # 0.

, 1 ¢ U(t)
Solution. Let ¥(t) = 2 3440 ) Because e A(t)¥(t), one has

Wt _ 0 4\ /1 ¢+ \ !
A(t):%@(t) = (2t 6t5) <t2 3+t6)
_ L0 4PN (3410 =t 1 [ —4® 4P
“3\2t 6t° —t2 1 ) 7 3\6t—4t" 4t°) -

(c) Give a general solution to the system you found in part (b).

Solution. Because x;(t), x2(t) is a fundamental set of solutions to the system
found in part (b), a general solution is given by

x(t) = e (f) + epxalt) = & <1) +02< ! ) .

12 346



cosh(2t) 2sinh(2t)
ssinh(2¢)  cosh(2t)

w()-20) (0)-0)
dt \y y)’ y(0) 3)
Solution. The solution of the initial-value problem is given by
x(t)\  sa (2) _ ( cosh(2t) 2sinh(2t)) (2
y(t)) =% \3) 7 \Usinh(2t) cosh(2t) ) \3
_ (2cosh(2t) 4 6sinh(2t)
~ \_sinh(2¢) + 3cosh(2t) /-

(5) [4] Given that et = ( ), solve the initial-value problem

(6) [9] Consider two interconnected tanks filled with brine (salt water). The first tank
contains 60 liters and the second contains 40 liters. Brine with a concentration of 3
grams of salt per liter flows into the first tank at a rate of 4 liters per hour. Well
stirred brine flows from the first tank into the second at a rate of 5 liters per hour,
from the second into the first at a rate of 2 liters per hour, from the first into a drain
at a rate of 1 liter per hour, and from the second into a drain at a rate of 3 liters
per hour. At ¢ = 0 there are 35 grams of salt in the first tank and 7 grams in the
second. Give an initial-value problem that governs the amount of salt in each tank
as a function of time.

Solution: The rates work out so there will always be 60 liters of brine in the first
tank and 40 liters in the second. Let Si(¢) be the grams of salt in the first tank and
S5(t) be the grams of salt in the second tank. These are governed by the initial-value

problem
dSl 52 Sl Sl
ol o344+ 29 "ls_Zly =
@ 2T e 0=,
d52—515—§2—§3, S5(0) = 7.

At 607 40 40
You could leave the answer in the above form. It can however be simplified to

ds; S, S

2l g2 2 —
dt T2 107 51(0) =35,
ds, S, S,

dt 12 8



(7) [12] Find a general solution for each of the following systems.

(a) d (z\ _ (-1 =2\ (z
dt \y 5 =3/ \y
Solution. The characteristic polynomial of A = <_51 ig) is given by

p(z) = 22— tr(A)z + det(A) = 224 Ay413 = (2 + 2)2 ey

The eigenvalues of A are the roots of this polynomial, which are the conjugate
pair —2 £ 13. One therefore has

otA 2 lI cos(3t) + (A + 21I) Siné?)t)}

—en [(3 N eman (1 2) 280)

_ (cos(st) + 1 sin(3t) —% in(3t ) .

2 sin(3t) cos(3t

A general solution is therefore given by

(‘;”Eii) =4 (2) = (cos(Bé)S;(%gi;n(?)t) cos(:;s§ Tn;f ?s)fr)l(?)t)) (2)

9 (cos(3t) + & sin(3t) _ot —2sin(3t)
- ( 5 sin(31) € 7\ cos(3t) — Lsin(3t) ) -

()= (53 0)

Solution. The characteristic polynomial of A = <_12 g) is given by

p(z) = 2% — tr(A)z +det(A) = 22 — 62+ 9 = (2 — 3)2.
The eigenvalues of A are the roots of this polynomial, which is the double real
root 3. One therefore has

et = eI+ (A -3I)t] =e* K(l) (1)) + <:§ g) t}

o (1=2t 2
=\ ot 1+492t)

A general solution is therefore given by
l’(t) A [C1\ 3t 1—-2t 2t C1
y(t)) “ \ey) =° =2t 1+2t) \c
1—2t 2t
3t 3t
- ac ( ot ) +ec <1+2t) ‘
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(8) [8] Sketch a phase-plane portrait for each of the two systems in the previous problem.
For each portrait identify its type and give a reason why the origin is either attracting,
stable, unstable, or repelling.

(a) Solution. Because the characteristic polynomial of A is p(z) = (2 +2)?+9, one
sees that 4 = —2 and § = —9. There are no real eigenpairs. Because yp = —2 < 0,
0 =—9 <0, and as; = 5 > 0 the phase portrait is a counterclockwise spiral sink.
The origin is thereby attracting (and also stable). The phase portrait should
indicate a family of counterclockwise spiral trajectories that approach the origin.

(b) Solution. Because the characteristic polynomial of A is p(z) = (2 — 3)?, one
sees that = 3 and § = 0. Because

-2 2
A (22).

we see that the eigenvectors associated with 1 have the form

o) G) for some o # 0.

The associated solutions will therefore lie on the line y = x. Because p =3 > 0,
0 = 0, and ag; = —2 < 0 the phase portrait is a clockwise twist source. The
origin is thereby repelling (and also unstable). The phase portrait should show
that on the line y = x there is one trajectory that emerges from each side of the
origin. Every other trajectory emerges from the origin with a clockwise twist.

i ()= (i)

(a) Find all of its stationary points.

(9) [9] Consider the system

Solution. Stationary points satisfy
0=y,
0=—-dz+2°=x(*-4)=z(r+2)(z—2).

The top equation shows that y = 0 while the bottom equation shows that either
x=0or x=—2or x=2. The stationary points of the system are therefore

(0,0), (—2,0), (2,0).

(b) Find a nonconstant function h(z,y) such that every trajectory of the system
satisfies h(z,y) = ¢ for some constant c.

Solution. The associated first-order equation is
dy —dx + 23
dr ~ y

This equation is separable, so can be integrated as

/ydy:/—4x+x3dx,



whereby you find that
y? =22+ 1t +c.

N[

You can thereby set
h(z,y) = 1y* + 227 — La*.

Alternative Solution. An alternative approach is to notice that

Ouf(z,y) + 0y9(z,y) = Oy + 0, (—da + 2°) = 0.
The system is therefore Hamiltonian with h(z,y) such that

Oyh(x,y) =y, —O,h(z,y) = —4x + 23,

Integrating the first equation above yields h(z,y) = %yz + ¢(x). Substituting
this into the second equation gives

—d(z) = —4x +2°.

Integrating this equation yields ¢(z) = 22? — 1z*, whereby

hz,y) = 3y° + 227 — La*.

(10) [8] Compute the Laplace transform of f(t) = u(t —4) e~ from its definition. (Here
w is the unit step function.)

Solution. The definition of Laplace transform gives

T T
Lfl(s) = lim [ e tu(t —4)e ' dt = lim [ e C+dt,

T—o00 0 T—o00 4

When s < —3 this limit diverges to +00 because in that case one has for every 7' > 4

that
T T
/ e_(5+3)tdt2/ dt =T — 4,
4 4

which clearly diverges to +o00 as T" — oo.
When s > —3 one has for every T' > 4 that

T AP _e—(s+3)t T B _e—(s+3)T e (s+3)4
e dt = = + :
4 s+3 |, s+3 s+ 3
whereby
—(s+3)T —(s+3)4 —(s+3)4
e e e

L = li — =

f1(s) TI—IEO[ s+3 * s—l—B} s+3
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(11) [9] Find the Laplace transform Y(s) of the solution y(¢) of the initial-value problem

d? d

dt? dt
it for0<t<3
=43 R
f(#) {63_t fort > 3.

You may refer to the table on the last page. DO NOT take the inverse Laplace
transform to find y(t), just solve for Y (s)!

where

Solution. The Laplace transform of the initial-value problem is

Lly"|(s) + 6L[Y1(s) + 18L[yl(s) = L[f1(s),

where

Llyl(s) =Y (s),
Lly(s) = sY(s) —y(0) = sY (s) — 2,
L[y"|(s) = s°Y (s) = sy(0) — y/(0) = s°Y (s) — 25 + 4.
To compute L[f](s), first write f as
F(t) = (u(t) —u(t = 3)) 5t +u(t — 3)e* ™"

= u(t)st + u(t — 3)(e* " — 31)

=it+u(t—3)( " —1t-3)-1).
Referring to the table on the last page, item 6 with ¢ = 3 and h(t) = et — 1t — 1
shows that
Llu(t—3)(e" -

while item 1 with
n = 0 shows that

(t=3) = 1)](s) = Llu(t = 3)h(t - 3)](s) = e L[h](s),

1
3
a=—1and n =0, with a =0 and n = 1, and with a = 0 and

gy L _ 1 _1
Le)s) = —50 LM ==, L) =+,
whereby
1 1 1 1
L6 = 550 L6 = 5
Therefore

£ = g+ e (s - g 1)

s+1 382 s
The Laplace transform of the initial-value problem then becomes

_ 6—38 6—38 6—35

352 +S—|—1_ s

(s°Y(s) —2s+4) +6(sY(s) — 2) + 18Y (s) = !

Y

which becomes
1 — 6—33 6—33 6—33

2 18)Y(s) —2s+4—12 = —
(s +6s+18)Y(s) —2s+ 52 o] .

Hence, Y'(s) is given by

1
Vi) — —
()= 2765 118

5 N . N 1— 6—38 N 6—38 6—35
S —_
3s2 s+1 s



(12) [8] Find the inverse Laplace transforms of the function
s+5

52— 5s+6

You may refer to the table on the last page.

F(s)=¢™

Solution. The denominator factors as (s — 3)(s — 2), so the partial fraction decom-
position is
5+95 5+95 8 —7
s2—5s+6 (s—3)(s—2) s—3+8—2'
Referring to the table on the last page, item 1 with a = 3 and n = 0, and with a = 2
and n = 0 shows that

Lle™](s) =

s—3’
You therefore obtain
5+ 95

L ———

[32 —55+6

Then item 6 with ¢ = 4 and h(t) = 83 — 7e*' shows that

| 4 s+D 4 s+5
— () =u(t—4 — | (t—4
£ {e 52—5s+6]() ut =4~ {32—5s+6 (=4
=u(t —4) (863(t_4) - 762(t_4)) :

] (t) =8L" [%} — 7Lt [—2} = 8¢t — 7e?.

A Short Table of Laplace Transforms

|
L[e™t"|(s) = (s—nw for s > a,
Lle™ cos(bt)](s) = S for s > a
C(s—a)24b? ’
E[e“t Slﬂ(bt)](S) = m for s > a,

Lle™h(t)|(s) = H(s — a)
L[t"h(1)](s) = (=1)"H™)(s)

Llu(t — c)h(t — c)](s) = e “H(s)

where H(s) = L[h(t)](s),
where H(s) = L[h(t)](s),

where H(s) = L[h(t)](s)

and wu is the step function.



