
Math 246, Fall 2009, Professor Levermore

6. First-Order Equations: Numerical Methods

For many first-order differential equations analytic methods are either difficult or
impossible to apply. If one is interested in understanding how a particular solution behaves
it is often easiest to use numerical methods to construct accurate approximations to the
solution. Suppose we are interested in the solution Y (t) of the initial-value problem

dy

dt
= f(t, y) , y(tI) = yI , (6.1)

over the time interval [tI , tF ] — i.e. for tI ≤ t ≤ tF . Here tI is called the initial time and
tF is called the final time. A numerical method selects times {tn}N

n=0 such that

tI = t0 < t1 < t2 < · · · < tN−1 < tN = tF ,

and computes values {yn}N
n=0 such that y0 = Y (t0) = yI and yn approximates Y (tn) for

n = 1, 2, · · · , N . For good numerical methods, these approximations will improve as N

increases. So for sufficiently large N you can plot the points {(tn, yn)}N
n=0 in the (t, y)-

plane and “connect the dots” to get an accurate picture of how Y (t) behaves over the time
interval [tI , tF ].

Here we will introduce a few basic numerical methods in simple settings. The numer-
ical methods used in software packages such as MATLAB are generally far more sophisti-
cated than those we will study here. They are however built upon the same fundamental
ideas as the simpler methods we will study. Throughout this section we will make the
following two basic simplifications.

• We will employ uniform time steps. This means that given N we set

h =
tF − tI

N
, and tn = tI + nh for n = 0, 1, · · · , N , (6.2)

where h is called the time step.

• We will employ one-step methods. This means that given f(t, y) and h the value of
yn+1 for n = 0, 1, · · · , N − 1 will depend only on yn and h.

Sophisticated software packages use methods in which the time step is chosen adaptively.
In other words, the choice of tn+1 will depend on the behavior of recent approximations
— for example, on (tn, yn) and (tn−1, yn−1). Employing uniform time steps will greatly
simplify the algorithms, and thereby simplify the programming you will have to do. If
you do not like the way a run looks, you will simply try again with a larger N . Similarly,
sophisticated software packages will sometimes use so-called multi-step methods for which
the value of yn+1 for n = m, m + 1, · · · , N − 1 will depend on yn, yn−1, · · · , and yn−m for
some positive integer m. Employing one-step methods will again simplify the algorithms,
and thereby simplify the programming you will have to do.

1



2

6.1. Euler Methods. The simplest (and the least accurate) numerical methods are the
Euler methods. These can be derived many ways. Here we give a simple approach based
on the definition of the derivative through difference quotients.

If we start with the fact that

lim
h→0

Y (t + h) − Y (t)

h
=

dY

dt
(t) = f(t, Y (t)) ,

then for small positive h one has

Y (t + h) − Y (t)

h
≈ f(t, Y (t)) .

Upon solving this for Y (t + h) we find that

Y (t + h) ≈ Y (t) + hf(t, Y (t)) .

If we let t = tn above (so that t + h = tn+1) this is equivalent to

Y (tn+1) ≈ Y (tn) + hf(tn, Y (tn)) .

Because yn and yn+1 are approximations of Y (tn) and Y (tn+1) respectively, this suggests
setting

yn+1 = yn + hf(tn, yn) for n = 0, 1, · · · , N − 1 . (6.3)

This so-called Euler method was introduced by Euler in 1700’s.

Alternatively, we could have start with the fact that

lim
h→0

Y (t) − Y (t − h)

h
=

dY

dt
(t) = f(t, Y (t)) ,

then for small positive h one has

Y (t) − Y (t − h)

h
≈ f(t, Y (t)) .

Upon solving this for Y (t − h) we find that

Y (t − h) ≈ Y (t) − hf(t, Y (t)) .

If we let t = tn+1 above (so that t − h = tn) this is equivalent to

Y (tn+1) − hf(tn+1, Y (tn+1)) ≈ Y (tn) .

Because yn and yn+1 are approximations of Y (tn) and Y (tn+1) respectively, this suggests
setting

yn+1 − hf(tn+1, yn+1) = yn for n = 0, 1, · · · , N − 1 . (6.4)



3

This method is called the implicit Euler or backward Euler method. It is called the implicit
Euler method because equation (6.4) implicitly relates yn+1 to yn. It is called the backward
Euler method because the difference quotient upon which it is based steps backward in
time (from t to t − h). In contrast, the Euler method (6.3) sometimes called the explicit

Euler or forward Euler method because it gives yn+1 explicitly and because the difference
quotient upon which it is based steps forward in time (from t to t + h).

The implicit Euler method can be very inefficient unless equation (6.4) can be explicitly
solved for yn+1. This can be done when f(t, y) is a fairly simple function if y. For example,
it can be done when f(t, y) is linear or quadratic in either y or

√
y. However, there are

equations for which the implicit Euler method will outperform the (explicit) Euler method.

6.2. Explicit Methods Based on Taylor Approximation. The explicit (or forward)
Euler method can be understood as the first in a sequence of explicit methods that can be
derived from the Taylor approximation formula.

6.2.1. Explicit Euler Revisited. The explicit Euler method can be derived from the first
order Taylor approximation, which is also called the tangent line approximation. This
approximation states that if Y (t) is twice continuously differentiable then

Y (t + h) = Y (t) + h
dY

dt
(t) + O(h2) . (6.5)

Here the O(h2) means that the remainder vanishes at least as fast as h2 as h tends to zero.

It is clear from (6.5) that for small positive h one has

Y (t + h) ≈ Y (t) + h
dY

dt
(t) .

Because Y (t) satisfies (6.1), this is the same as

Y (t + h) ≈ Y (t) + hf(t, Y (t)) .

If we let t = tn above (so that t + h = tn+1) this is equivalent to

Y (tn+1) ≈ Y (tn) + hf(tn, Y (tn)) .

Because yn and yn+1 are approximations of Y (tn) and Y (tn+1) respectively, this suggests
setting

yn+1 = yn + hf(tn, yn) for n = 0, 1, · · · , N − 1 , (6.6)

which is exactly the Euler method (6.3). This was the approach to deriving the Euler
method that was taken in class.

6.2.2. Local and Global Errors. One advantage of viewing the Euler method through the
tangent line approximation (6.5) is that you gain some understanding of how its error



4

behaves as you increase N , the number of time steps — or what is equivalent by (6.2), as
you decrease h, the time step. The O(h2) term in (6.5) represents the local error, which is
error the approximation makes at each step. Roughly speaking, if you halve the time step
h then by (6.5) the local error will reduce by a factor of four while by (6.2) the number
of steps N you must take to get to a prescribed time (say tF ) will double. If we assume
that the errors add (which is often the case) then the error at tF will reduce by a factor of
two. In other words, doubling the number of time steps will reduce the error by about a
factor of two. Similarly, tripling the number of time steps will reduce the error by about a
factor of three. Indeed, one can show (but we will not do so) that the error of the explicit
Euler method is O(h) over the interval [tI , tF ]. The best way to think about this is that
if you take N steps and the error made at each step is O(h2) then you can expect that
the acummulation of the local errors will lead to a global error of O(h2)N . Because (6.2)
states that hN = tF − tI , which is a fixed number that is independent of h and N , you
thereby see that global error of the explicit Euler method is O(h). Moreover, the error of
the implicit Euler method behaves the same way.

Because the global error tells you how fast a method converges over the entire interval
[tI , tF ], it is a more meaningful concept than local error. We therefore identify the order of

a method by the order of its global error. In particular, methods like the Euler methods with
global errors of O(h) are first order methods. By the reasoning of the previous paragraph,
methods whose local error is O(hm+1) will have a global error of O(hm+1)N = O(hm) and
are thereby mth order methods.

Higher order methods are more complicated than the explicit Euler method. The
hope is that this cost is overcome by the fact that its error improves faster as you increase
N — or what is equivalent by (6.2), as you decrease h. For example, if you halve the time
step h of a fourth order method then the global error will reduce by a factor of sixteen.
Similarly, tripling the number of time steps will reduce the error by about a factor of 81.

6.2.3. A Second Order Explicit Method. The second order Taylor approximation states
that if Y (t) is thrice continuously differentiable then

Y (t + h) = Y (t) + h
dY

dt
(t) + 1

2
h2 d2Y

dt2
(t) + O(h3) . (6.7)

Here the O(h3) means that the remainder vanishes at least as fast as h3 as h tends to zero.

It is clear from (6.7) that for small positive h one has

Y (t + h) ≈ Y (t) + h
dY

dt
(t) + 1

2
h2 d2Y

dt2
(t) . (6.8)

Because Y (t) satisfies (6.1), we see that

d2Y

dt2
(t) =

d

dt

(

dY

dt
(t)

)

=
d

dt
f(t, Y (t)) = ∂tf(t, Y (t)) +

dY

dt
(t) ∂yf(t, Y (t))

= ∂tf(t, Y (t)) + f(t, Y (t)) ∂yf(t, Y (t)) .



5

Hence, equation (6.8) is the same as

Y (t + h) ≈ Y (t) + hf(t, Y (t)) + 1

2
h2

(

∂tf(t, Y (t)) + f(t, Y (t)) ∂yf(t, Y (t))
)

.

If we let t = tn above (so that t + h = tn+1) this is equivalent to

Y (tn+1) ≈ Y (tn) + hf(tn, Y (tn)) + 1

2
h2

(

∂tf(tn, Y (tn)) + f(tn, Y (tn)) ∂yf(tn, Y (tn))
)

.

Because yn and yn+1 are approximations of Y (tn) and Y (tn+1) respectively, this suggests
setting

yn+1 = yn + hf(tn, yn) + 1

2
h2

(

∂tf(tn, yn) + f(tn, yn) ∂yf(tn, yn)
)

for n = 0, 1, · · · , N − 1 .
(6.9)

We call this the second-order Taylor-based method.

6.2.4. Higher Order Explicit Methods. By generalizing what we did in the last subsection,
one can use the nth order Taylor approximation to derive an explicit numerical method
whose error is O(hn) over the interval [to, tf ] — a so-called nth order method. However,
the formulas for these methods grow in complexity. For example, the third order method
is

yn+1 = yn + hf(tn, yn) + 1

2
h2

(

∂tf(tn, yn) + f(tn, yn) ∂yf(tn, yn)
)

+ 1

6
h3

[

∂ttf(tn, yn) + 2f(tn, yn) ∂ytf(tn, yn) + f(tn, yn)2∂yyf(tn, yn)

+
(

∂tf(tn, yn) + f(tn, yn) ∂yf(tn, yn)
)

∂xf(tn, yn)
]

for n = 0, 1, · · · , N − 1 .

(6.10)

This complexity makes them less practical for general algorithms than the next class of
methods we will study.

6.3. Explicit Methods Based on Numerical Quadrature. The starting point for
our next class of methods will be the Fundamental Theorem of Calculus — specifically,
the fact that

Y (t + h) − Y (t) =

∫ t+h

t

dY

dt
(s) ds .

Because Y (t) satisfies (6.1), this becomes

Y (t + h) − Y (t) =

∫ t+h

t

f(s, Y (s)) ds . (6.11)

The idea now is to replace the definite integral on the right-hand side above with a numer-
ical approximation — a so-called numerical quadrature. In particular, we will employ four



6

basic numerical quadrature rules that are covered in most calculus courses: the left-hand
rule, the trapezoidal rule, the midpoint rule, and the Simpson rule.

6.3.1. Explicit Euler Method Revisited. The left-hand rule approximates the definite inte-
gral on the right-hand side of (6.11) as

∫ t+h

t

f(s, Y (s)) ds = hf(t, Y (t)) + O(h2) ,

whereby you see that (6.11) becomes

Y (t + h) = Y (t) + hf(t, Y (t)) + O(h2) .

If we let t = tn above (so that t + h = tn+1) this is equivalent to

Y (tn+1) = Y (tn) + hf(tn, Y (tn)) + O(h2) .

Because yn and yn+1 approximate Y (tn) and Y (tn+1) respectively, this suggests setting

yn+1 = yn + hf(tn, yn) for n = 0, 1, · · · , N − 1 ,

which is exactly the forward Euler method (6.3). In practice, it is implemented by initial-
izing y0 = yI and then for n = 0, · · · , N − 1 cycling through the instructions

fn = f(tn, yn) , yn+1 = yn + hfn ,

where tn = tI + nh.

Example. Let Y (t) be the solution of the initial-value problem

dy

dt
= t2 + y2 , y(0) = 1 .

Use the forward Euler method with h = .1 to approximate Y (.2).

Solution. We initialize t0 = 0 and y0 = 1. The forward Euler method then gives

f0 = f(t0, y0) = 02 + 12 = 1

y1 = y0 + hf0 = 1 + .1 · 1 = 1.1

f1 = f(t1, y1) = (.1)2 + (1.1)2 = .01 + 1.21 = 1.22

y2 = y1 + hf1 = 1.1 + .1 · 1.22 = 1.1 + .122 = 1.222

Therefore Y (.2) ≈ y2 = 1.222.



7

6.3.2. Heun-Trapezoidal Method. The trapezoidal rule approximates the definite integral
on the right-hand side of (6.11) as

∫ t+h

t

f(s, Y (s)) ds =
h

2

[

f(t, Y (t)) + f(t + h, Y (t + h))
]

+ O(h3) .

whereby you see that (6.11) becomes

Y (t + h) = Y (t) +
h

2

[

f(t, Y (t)) + f(t + h, Y (t + h))
]

+ O(h3) .

If you approximate Y (t + h) by the forward Euler method then

Y (t + h) = Y (t) +
h

2

[

f(t, Y (t)) + f
(

t + h, Y (t) + hf(t, Y (t))
)]

+ O(h3) .

If we let t = tn above (so that t + h = tn+1) this is equivalent to

Y (tn+1) = Y (tn) +
h

2

[

f(tn, Y (tn)) + f
(

tn+1, Y (tn) + hf(tn, Y (tn))
)]

+ O(h3) .

Because yn and yn+1 approximate Y (tn) and Y (tn+1) respectively, this suggests setting

yn+1 = yn +
h

2

[

f(tn, yn) + f
(

tn+1, yn + hf(tn, yn)
)]

for n = 0, 1, · · · , N − 1 .

The book calls this the Improved Euler method. That name is sometimes used for other
methods. Moreover, it is not very descriptive. We will call it the Heun-Trapezoidal method,
which makes its origins clearer. In practice, it is implemented by initializing y0 = yI and
then for n = 0, · · · , N − 1 cycling through the instructions

fn = f(tn, yn) ,

f̃n+1 = f(tn+1, ỹn+1) ,

ỹn+1 = yn + hfn ,

yn+1 = yn + 1

2
h[fn + f̃n+1] ,

where tn = tI + nh.

Example. Let y(t) be the solution of the initial-value problem

dy

dt
= t2 + y2 , y(0) = 1 .

Use the Heun-Trapezoidal method with h = .2 to approximate y(.2).

Solution. We initialize t0 = 0 and y0 = 1. The Heun-Trapezoidal method then gives

f0 = f(t0, y0) = 02 + 12 = 1

ỹ1 = y0 + hf0 = 1 + .2 · 1 = 1.2

f̃1 = f(t1, ỹ1) = (.2)2 + (1.2)2 = .04 + 1.44 = 1.48

y1 = y0 + 1

2
h
[

f0 + f̃1

]

= 1 + .1 · (1 + 1.24) = 1 + .1 · 2.24 = 1.224

We then have y(.2) ≈ y1 = 1.224.



8

6.3.3. Heun-Midpoint Method. The midpoint rule approximates the definite integral on
the right-hand side of (6.11) as

∫ t+h

t

f(s, Y (s)) ds = hf
(

t + 1

2
h, Y (t + 1

2
h)

)

+ O(h3) .

whereby you see that (6.11) becomes

Y (t + h) = Y (t) + hf
(

t + 1

2
h, Y (t + 1

2
h)

)

+ O(h3) .

If you approximate Y (t + 1

2
h) by the forward Euler method then

Y (t + h) = Y (t) + hf
(

t + 1

2
h, Y (t) + 1

2
hf(t, Y (t))

)

+ O(h3) .

If we let t = tn above (so that t + h = tn+1) this is equivalent to

Y (tn+1) = Y (tn) + hf
(

tn+ 1

2

, Y (tn) + 1

2
hf(tn, Y (tn))

)

+ O(h3) ,

where tn+ 1

2

= tn + 1

2
h = tI + (n + 1

2
)h. Because yn and yn+1 approximate Y (tn) and

Y (tn+1) respectively, this suggests setting

yn+1 = yn + hf
(

tn+ 1

2

, yn + 1

2
hf(tn, yn)

)

for n = 0, 1, · · · , N − 1 .

This is called the Heun-Midpoint method. In practice, it is implemented by initializing
y0 = yI and then for n = 0, · · · , N − 1 cycling through the instructions

fn = f(tn, yn) ,

fn+ 1

2

= f(tn+ 1

2

, yn+ 1

2

) ,

yn+ 1

2

= yn + 1

2
hfn ,

yn+1 = yn + hfn+ 1

2

,

where tn = tI + nh and tn+ 1

2

= tI + (n + 1

2
)h.

Example. Let y(t) be the solution of the initial-value problem

dy

dt
= t2 + y2 , y(0) = 1 .

Use the Heun-Midpoint method with h = .2 to approximate y(.2).

Solution. We initialize t0 = 0 and y0 = 1. The Heun-Midpoint method then gives

f0 = f(t0, y0) = 02 + 12 = 1

ỹ 1

2

= y0 + 1

2
hf0 = 1 + .1 · 1 = 1.1

f̃ 1

2

= f(t 1

2

, ỹ 1

2

) = (.1)2 + (1.1)2 = .01 + 1.21 = 1.22

y1 = y0 + hf̃ 1

2

= 1 + .2 · (1.22) = 1 + .244 = 1.244

We then have y(.2) ≈ y1 = 1.244.



9

6.3.4. Runge-Kutta Method. The Simpson rule approximates the definite integral on the
right-hand side of (6.11) as

∫ t+h

t

f(s, Y (s)) ds =
h

6

[

f(t, Y (t)) + 4f
(

t + 1

2
h, Y (t + 1

2
h)

)

+ f
(

t + h, Y (t + h)
)]

+ O(h5) ,

whereby you see that (6.11) becomes

Y (t + h) = Y (t) +
h

6

[

f(t, Y (t)) + 4f
(

t + 1

2
h, Y (t + 1

2
h)

)

+ f
(

t + h, Y (t + h)
)]

+ O(h5) .

This leads to the Runge-Kutta method, which in practice is implemented by initializing
y0 = yI and then for n = 0, · · · , N − 1 cycling through the instructions

fn = f(tn, yn) ,

f̃n+ 1

2

= f(tn+ 1

2

, ỹn+ 1

2

) ,

fn+ 1

2

= f(tn+ 1

2

, yn+ 1

2

) ,

f̃n+1 = f(tn+1, ỹn+1) ,

ỹn+ 1

2

= yn + 1

2
hfn ,

yn+ 1

2

= yn + 1

2
hf̃n+ 1

2

,

ỹn+1 = yn + hfn+ 1

2

,

yn+1 = yn + 1

6
h
[

fn + 2f̃n+ 1

2

+ 2fn+ 1

2

+ f̃n+1

]

,

where tn = tI + nh and tn+ 1

2

= tI + (n + 1

2
)h.

Example. Let y(t) be the solution of the initial-value problem

dy

dt
= t2 + y2 , y(0) = 1 .

Use the Runge-Kutta method with h = .2 to approximate y(.2).

Solution. We initialize t0 = 0 and y0 = 1. The Runge-Kutta method then gives

f0 = f(t0, y0) = 02 + 12 = 1

ỹ 1

2

= y0 + 1

2
hf0 = 1 + .1 · 1 = 1.1

f̃ 1

2

= f(t 1

2

, ỹ 1

2

) = (.1)2 + (1.1)2 = .01 + 1.21 = 1.22

y 1

2

= y0 + 1

2
hf̃ 1

2

= 1 + .1 · 1.22 = 1.122

f 1

2

= f(t 1

2

, y 1

2

) = (.1)2 + (1.122)2 = .01 + 1.258884 = 1.268884

ỹ1 = y0 + hf 1

2

= 1 + .2 · 1.268884 = 1 + .2517768 = 1.2517768

f̃1 = f(t1, ỹ1) = (.2)2 + (1.2517768)2 ≈ .04 + 1.566945157 = 1.606945157

y1 = y0 + 1

6
h
[

f0 + 2f̃ 1

2

+ 2f 1

2

+ f̃1

]

≈ 1 + .033333333
[

1 + 2 · 1.22 + 2 · 1.268884 + 1.606945157
]

.

We then have y(.2) ≈ y1 ≈ 1.252823772. Of course, you would not be expected to carry
out such arithmetic calculations to nine decimal places on an exam.


