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We now consider linear systems of the form

(1)
d

dt

(

x
y

)

= A

(

x
y

)

, where A =

(

a11 a12

a21 a22

)

.

Here the entries of the coefficient matrix A are real constants. Such a system is called planar

because any solution of it can be thought of as tracing out a curve (x(t), y(t)) in the xy-plane.
Of course, we have seen that solutions to this system can be expressed analytically as

(2)

(

x(t)
y(t)

)

= etA

(

xI

yI

)

, where

(

x(0)
y(0)

)

=

(

xI

yI

)

,

and etA is given by one of the following three formulas that depend upon the roots of the
characteristic polynomial p(z) = det(zI − A) = z2 − tr(A)z + det(A).

• If p(z) has simple real roots µ ± ν with ν 6= 0 then

(3a) etA = eµt

[

I cosh(νt) + (A − µI)
sinh(νt)

ν

]

.

• If p(z) has conjugate roots µ ± iν with ν 6= 0 then

(3b) etA = eµt

[

I cos(νt) + (A − µI)
sin(νt)

ν

]

.

• If p(z) has a double real root µ then

(3c) etA = eµt [I + (A − µI)t] .

While these analytic formulas are useful, you can gain insight into all solutions of system (1)
by sketching a graph called its phase-plane portrait (or simply phase portrait).

As we have already observed, any solution of (1) can be thought of as tracing out a curve
(x(t), y(t)) in the xy-plane — the so-called phase-plane. Each such curve is called an orbit

or trajectory of the system. The existence and uniqueness theorem implies that every point
in the phase-plane has exactly one orbit that passes through it. In particular, two orbits
can not cross. You can gain insight into all solutions of system (1) by visualizing how their
orbits fill the phase-plane.

Of course, the origin will be an orbit of system (1) for every A. The solution that starts
at the origin will stay at the origin. Points that give rise to solutions that do not move are
called stationary points. In that case the entire orbit is a single point.

Orbits Associated with a Real Eigenpair. If the matrix A has a real eigenpair (λ,v)
then system (1) has special solutions of the form

(4) x(t) = ceλtv ,

where c is any nonzero real constant. These solutions all lie on the line x = cv parametrized
by c. This line is easy to plot; it is simply the line that passes through the origin and the
point v. There are three possibilities.

• If λ = 0 then every point on the line x = cv is a stationary point, and thereby is an
orbit.
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• If λ > 0 then the line x = cv consists of three orbits: the origin, corresponding to
c = 0, plus the two remaining half-lines, corresponding to c > 0 and c < 0. Because
λ > 0 all solutions on the half-lines will run away from the origin as t increases. We
indicate this case by placing arrowheads on each half-line pointing away from the
origin.

• If λ < 0 then the line x = cv again consists of three orbits: the origin, corresponding
to c = 0, plus the two remaining half-lines, corresponding to c > 0 and c < 0. Because
λ < 0 all solutions on the half-lines will run approach the origin as t increases. We
indicate this case by placing arrowheads on each half-line pointing towards the origin.

For every real eigenpair of A you should indicate the above orbits in your phase-plane portrait
before doing anything else. If A has no real eigenpairs then you are spared this step.

Characteristic Polynomials with Two Simple Real Roots. Now consider the case
when A has two real eigenvalues λ1 < λ2. Let (λ1,v1) and (λ2,v2) be real eigenpairs of A.
You first plot the ordits that lie on the lines x = c1v1 and x = c2v2 as described above.
Every other solution of system (1) has the form

(5) x(t) = c1e
λ1tv1 + c2e

λ2tv2 ,

where both c1 and c2 are arbitrary nonzero real numbers. There are five possibilities.

• If λ1 < λ2 < 0 then every solution will approach the origin as t → ∞. Because eλ1t

decays to zero faster than eλ2t it is clear that the solution (5) behaves like c2e
λ2tv2 as

t → ∞. This means that all orbits not on the line x = c1v1 will approach the origin
tangent to the line x = c2v2. This portrait is called a nodal sink.

• If λ1 < λ2 = 0 then the line x = c2v2 is a line of stationary points. It is clear that
as t increases the solution (5) will approach one of those stationary points as along a
line that is parallel to the line x = c1v1. This means that all orbits not on the line
of stationary points x = c2v2 will approach that line parallel to the line x = c1v1.
This portrait is called a linear sink.

• If λ1 < 0 < λ2 then the nonzero orbits on the line x = c1v2 will approach the origin
as t increases while the nonzero orbits on the line x = c2v2 will move away from the
origin as t increases. It is clear that as t increases the solution (5) will approach the
line x = c2v2 while as t decreases it will approach the line x = c1v1. This portrait is
called a saddle.

• If 0 = λ1 < λ2 then the line x = c1v1 is a line of stationary points. It is clear that as
t increases the solution (5) will run away from one of those stationary points along a
line that is parallel to the line x = c2v2. This means that all orbits not on the line of
stationary points x = c1v1 will run away from that line parallel to the line x = c2v2.
This portrait is called a linear source.

• If 0 < λ1 < λ2 then every solution will run away from the origin t increases. Because
eλ2t decays to zero faster than eλ1t as t → −∞, it is clear that the solution (5) behaves
like c1e

λ1tv1 as t → −∞. This means that all orbits not on the line x = c2v2 will
emerge from the origin tangent to the line x = c1v1. This portrait is called a nodal

source.
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Characteristic Polynomials with a Conjugate Pair of Roots. Now consider the case
when A has a conjugate pair of eigenvalues µ ± iν with ν 6= 0. The analytic solution is

(6)

(

x(t)
y(t)

)

= etA

(

xI

yI

)

= eµt

[

I cos(νt) + (A − µI)
sin(νt)

ν

](

xI

yI

)

.

The matrix inside the square brackets is a periodic function of t with period 2π/ν.
When µ = 0 this solution will trace out an ellipse. But will it do so with a clockwise or

counterclockwise rotation? You can determine the direction of rotation by considering what
happens at special values of x.

At x =

(

1
0

)

we have
dx

dt
= Ax =

(

a11 a12

a21 a22

) (

1
0

)

=

(

a11

a21

)

.

This vector points up if a21 > 0, which indicates counterclockwise rotation. Similarly, this
vector points down if a21 < 0, which indicates clockwise rotation.

At x =

(

0
1

)

we have
dx

dt
= Ax =

(

a11 a12

a21 a22

) (

0
1

)

=

(

a12

a22

)

.

This vector points right if a12 > 0, which indicates clockwise rotation. Similarly, this vector
points left if a12 < 0, which indicates counterclockwise rotation. You can therefore read off
the direction of rotation from the sign of either a21 or a12.

It is clear from (6) that when µ < 0 all solutions will approach the origin as t → ∞, while
when µ > 0 all solutions will run away from the origin as t increases. If we put this together
with the information above, we see there are six possibilities.

• If µ < 0 then all orbits spiral into the origin as t → ∞. This portrait is called a
spiral sink. The spiral is counterclockwise if a21 > 0, and is clockwise if a21 < 0.

• If µ = 0 then all orbits are ellipses around the origin. This portrait is called a center.
The center is counterclockwise if a21 > 0, and is clockwise if a21 < 0.

• If µ > 0 then all orbits spiral away from the origin as t → ∞. This portrait is called
a spiral source. The spiral is counterclockwise if a21 > 0, and is clockwise if a21 < 0.

Characteristic Polynomials with a Double Real Root. Finally, consider the case when
A has a single real eigenvalue µ. By (2) and (3c) the analytic solution is

(7)

(

x(t)
y(t)

)

= etA

(

xI

yI

)

= eµt [I + (A − µI) t]

(

xI

yI

)

.

There are two subcases.
The simplest subcase is when A = µI. This subcase is easy to spot because the matrix

A is simply a multipule of the identity matrix I. It follows that every nonzero vector is an
eigenvector of A. In this subcase the analytic solution (7) reduces to

(

x(t)
y(t)

)

= etA

(

xI

yI

)

= eµt

(

xI

yI

)

.

There are three possibilities.

• If µ < 0 all orbits radially approach the origin as t → ∞. This portrait is called a
radial sink.

• If µ = 0 then A = 0 and all solutions are stationary. This portrait is called zero.
• If µ > 0 all orbits radially move away from the origin as t → ∞. This portrait is

called a radial source.
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The other subcase is when A 6= µI. In this subcase A will have the eigenpair (µ,v) where
v is proportional to any nonzero column of A− µI. You first plot the ordits that lie on the
line x = cv as described above. There are six possibilities.

• If µ < 0 then all solutions on the line x = cv approach the origin as t increases.
Because eµt will decay to zero faster than eµtt, and because the columns of A−µI are
proportional to v, it is clear from (7) that every orbit approaches the origin tangent
to the line x = cv. This portrait is called a twist sink. The twist is counterclockwise

if either a21 > 0 or a12 < 0, and is clockwise if either a21 < 0 or a12 > 0.
• If µ = 0 then all solutions on the line x = cv are stationary. All other solutions

will move parallel to this line. This portrait is called a parallel shear. The shear is
counterclockwise if either a21 > 0 or a12 < 0, and is clockwise if either a21 < 0 or
a12 > 0.

• If µ > 0 then all solutions on the line x = cv move away from the origin as t increases.
Because eµt will decay to zero faster than eµtt as t → −∞, and because the columns
of A−µI are proportional to v, it is clear from (7) that every orbit emerges from the
origin tangent to the line x = cv. This portrait is called a twist source. The twist
is counterclockwise if either a21 > 0 or a12 < 0, and is clockwise if either a21 < 0 or
a12 > 0.

We remark that for a twist or a shear you can have a21 = 0 or a12 = 0 but you cannot have
a21 = a12 = 0. You will therefore always be able to determine the direction of rotation from
either a21 or a12. Alternatively, you can combine the a21 test and the a12 test into a single
test on a21 − a12 that works for every spiral, center, twist, or shear. Namely, if a21 − a12 > 0
the rotation is counterclockwise, while if a21 − a12 > 0 the rotation is clockwise.

The book calls radial sinks and sources proper nodes and twist sinks and sources improper

nodes. This terminology is both more cumbersome and much less desciptive than that used
here. Moreover, it often leaves students with the impression that improper nodes are rare.
However, the opposite is true; improper nodes are much more common than proper nodes.
Other books refer to radial sinks and sources as star sinks and sources.

The book fails to include linear sinks and sources, parallel shears, or zero in its discussion
of types of phase-plane portraits. These are the types for which det(A) = 0. It is not made
clear why these types are excluded. There is no good justification for it.

Mean-Discriminant Plane. You can visualize the relationships between the various types
of phase-plane portraits for linear systems through the mean-discriminant plane. By com-
pleting the square of the characteristic polynomial you bring it into the form

p(z) = z2 − tr(A)z + det(A) = (z − µ)2 − δ ,

where the mean µ and discriminant δ are given by

µ = 1

2
tr(A) , δ = µ2 − det(A) .

Recall that δ is called the discriminant because it determines the root structure of the
characteristic polynomial: when δ > 0 there are the two simple real roots µ ±

√
δ; when

δ = 0 there is the one double real root µ; when δ < 0 there is the conjugate pair of roots
µ ± i

√

|δ|. In all cases µ is the average of the roots, which is why it is called the mean.



5

In the (µ, δ)-plane the types of phase-plane portraits you get are shown in the figure below.
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In the upper half-plane (δ > 0) the matrix A has the two simple real eigenvalues µ ±
√

δ.

These will both be negative whenever µ < −
√

δ, which is the region labeled nodal sinks in
the figure. These will both be positive whenever

√
δ < µ, which is the region labeled nodal

sources in the figure. These will have opposite signs whenever −
√

δ < µ <
√

δ, which is
the region labeled saddles in the figure. These three regions are seperated by the parabola
δ = µ2. There is one negative and one zero eigenvalue along the branch of this parabola
where µ = −

√
δ, which is labeled linear sinks in the figure. There is one zero and one positive

eigenvalue along the branch of this parabola where µ =
√

δ, which is labeled linear sources

in the figure.

In the lower half-plane (δ < 0) the matrix A has the conjugate pair of eigenvalues µ± i
√

|δ|.
These will have negative real parts whenever µ < 0, which is the region labeled spiral sinks

in the figure. These will have positive real parts whenever µ > 0, which is the region labeled
spiral sources in the figure. These will be purely imaginary whenever µ = 0, which is the
half-line labeled centers in the figure. In each case you can determine the rotation of the
orbits (counterclockwise or clockwise) by the a21 test.
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On the µ-axis (δ = 0) the matrix A has the single real eigenvalue µ. There are two cases to
consider: the case when A = µI which we label above the µ-axis, and the case when A 6= µI

which we label below the µ-axis.

• When A = µI every nonzero vector is an eigenvector associated with the eigenvalue
µ. This eigenvalue is negative whenever µ < 0, which is the half-line labeled radial

sink in the figure. This eigenvalue is positive whenever µ > 0, which is the half-line
labeled radial source in the figure. This eigenvalue is zero whenever µ = 0, in which
case A = µI = 0, which is why the origin is labeled zero in the figure.

• When A 6= µI the eigenvectors associated with the eigenvalue µ are proportional to
any nonzero column of A − µI. This eigenvalue is negative whenever µ < 0, which
is the half-line labeled twist sink in the figure. This eigenvalue is positive whenever
µ > 0, which is the half-line labeled twist source in the figure. This eigenvalue is zero
whenever µ = 0, in which case the origin is labeled parallel shears in the figure. In
each of these cases you can determine the rotation of the orbits (counterclockwise or
clockwise) either by the a21 test or the a12 test or by the a21 − a12 test.

Stability of the Origin. The origin of the phase-plane plays a special role for linear
systems. This is because the solution (x(t), y(t)) of any system (1) that starts at the origin
will stay at the origin. In other words, the origin is an orbit for every linear system (1).

Definition. We say that the origin is stable if every orbit that starts near it will stay
near it. We say that the origin is unstable if there is at least one orbit near it that runs
away from it.

The language “every orbit that starts near it will stay near it” and “at least one orbit
near it that runs away from it” is not very precise. Rather than formulate a more precise
mathematical definition, we will build your understanding of these notions through examples.
To begin with, we hope this language makes it clear that for every system the origin is either
stable or unstable.

Definition. We say that the origin is attracting if every orbit that starts near it will
approach it as t → ∞. We say that the origin is repelling if every orbit other than itself
that starts near it will run away from it.

It should be clear that if the origin is attracting then it is stable, and that if it is repelling
then it is unstable. These implications do not go the other way. Indeed, we will soon see
that there are systems for which the origin is stable but not attracting, and systems which
the origin is unstable but not repelling.

When we examine the different phase-plane portraits we see that the stability of the origin
for each of them is as given by the following table.

attracting stable unstable repelling
(and also stable) (but not attracting) (but not repelling) (and also unstable)

nodal sinks linear sinks linear sources nodal sources
radial sinks zero saddles radial sources
twist sinks centers parallel shears twist sources
spiral sinks spiral sources

The book calls attracting asymptotically stable but has no terminology for repelling.


