Quiz 1 Solutions, Math 246, Professor David Levermore Tuesday, 8 September 2009

(1) [4] For each of the following ordinary differential equations, give its order and state whether it is linear or nonlinear.
(a) $\frac{\mathrm{d}^{4} w}{\mathrm{~d} z^{4}}+z^{2} \frac{\mathrm{~d} w}{\mathrm{~d} z}+e^{z} w=z$;
(b) $\frac{\mathrm{d}^{3} y}{\mathrm{~d} x^{3}}-2 x \frac{\mathrm{~d} y}{\mathrm{~d} x}=\sin (y)$.

Solution: fourth-order, linear.
Solution: third-order, nonlinear.
(2) [2] Give the interval of definition for the solution of the initial-value problem

$$
\frac{\mathrm{d} x}{\mathrm{~d} t}+\tan (t) x=\frac{1}{t^{2}-4}, \quad x(3)=7
$$

(You do not have to solve this equation to answer this question!)
Solution: This problem is linear in x and is already in normal form. The coefficient $\tan (t)$ is continuous everywhere except where $t=\frac{\pi}{2}+n \pi$ for some integer n, while the forcing $1 /\left(t^{2}-4\right)$ is continuous everywhere except at $t= \pm 2$. You can therefore read off that the interval of definition is $\left(2, \frac{3 \pi}{2}\right)$, the endpoints of which bracket the initial time 3 and are points where $1 /\left(t^{2}-4\right)$ and $\tan (t)$ respectively do not exist.
(3) [4] Solve the initial-value problem

$$
z^{2} \frac{\mathrm{~d} y}{\mathrm{~d} z}=y, \quad y(1)=e
$$

Solution: This is a homogeneous linear equation. Its normal form is

$$
\frac{\mathrm{d} y}{\mathrm{~d} z}-\frac{1}{z^{2}} y=0 .
$$

It has a general solution $y=e^{-A(z)} c$, where $A^{\prime}(z)=-1 / z^{2}$. Let $A(z)=1 / z$, so that $y=e^{-1 / z} c$. The initial condition then implies that $e=e^{-1 / 1} c$, which yields $c=e^{2}$. The solution of the initial-value problem is therefore

$$
y=e^{2-\frac{1}{z}} .
$$

Notice that its interval of definition is $(0, \infty)$.
Alternative Solution: This is also a separable equation. Its separated differential form is

$$
\frac{\mathrm{d} y}{y}=\frac{\mathrm{d} z}{z^{2}}
$$

Its solutions are given implicitly by $G(y)=F(z)+c$ where $G^{\prime}(y)=1 / y$ and $F^{\prime}(z)=$ $1 / z^{2}$. Let $G(y)=\log (|y|)$ and $F(z)=-1 / z$, so that $\log (|y|)=-1 / z+c$. The initial condition then implies that $\log (e)=-1 / 1+c$, which yields $c=1+\log (e)=1+1=2$. Hence, $\log (|y|)=2-\frac{1}{z}$. When you solve this for y you obtain $y= \pm e^{2-\frac{1}{z}}$. You then take the positive solution to match the initial condition.

