Quiz 3 Solutions, Math 246, Professor David Levermore
 Tuesday, 22 September 2009

(1) [4] Consider the following MATLAB function M-file.
function $[\mathrm{t}, \mathrm{y}]=$ solveit $(\mathrm{ti}, \mathrm{yi}, \mathrm{tf}, \mathrm{n})$
$\mathrm{h}=(\mathrm{tf}-\mathrm{ti}) / \mathrm{n}$;
$\mathrm{t}=\operatorname{zeros}(\mathrm{n}+1,1)$;
$\mathrm{y}=\operatorname{zeros}(\mathrm{n}+1,1) ;$
$\mathrm{t}(1)=\mathrm{ti}$;
$y(1)=y i ;$
for $\mathrm{j}=1$: n
$\mathrm{t}(\mathrm{j}+1)=\mathrm{t}(\mathrm{j})+\mathrm{h}$;
$\mathrm{s}=\mathrm{t}(\mathrm{j})+\mathrm{h} / 2$;
$\mathrm{x}=\mathrm{y}(\mathrm{j})+\mathrm{h}^{*}\left(\mathrm{t}(\mathrm{j})^{\wedge} 2+\mathrm{y}(\mathrm{j})^{\wedge} 4\right) / 2 ;$
$\mathrm{y}(\mathrm{j}+1)=\mathrm{y}(\mathrm{j})+\mathrm{h}^{*}\left(\mathrm{~s}^{\wedge} 2+\mathrm{x}^{\wedge} 4\right) ;$
end
(a) What initial-value problem is being approximated numerically?
(b) What numerical method is being used?

Solution: The initial-value problem being approximated is

$$
\frac{\mathrm{d} y}{\mathrm{~d} t}=t^{2}+y^{4}, \quad y\left(t_{i}\right)=y_{i}
$$

The Heun-Midpoint method is being used.
(2) [2] Suppose you are using the Heun-Trapezoidal method to numerically approximate the solution of an initial-value problem over the time interval $[0,4]$. By what factor would you expect the global error to decrease when the number of time steps that you take is increased from 400 to 1200 .
Solution: When you increase the number of time steps by a factor of 3 , the time step h is reduced by a factor of 3 . Because the Heun-Trapezoidal method is second order, the global error will therefore decrease by a factor of $3^{2}=9$.
(3) [4] Find an implicit general solution of the exact differential form

$$
(2 x-y) d x+(2 y-x) d y=0 .
$$

Solution: Because this differential form is exact, we can find $H(x, y)$ such that

$$
\partial_{x} H(x, y)=2 x-y, \quad \partial_{y} H(x, y)=2 y-x
$$

Upon integrating the first equation with respect to x you find

$$
H(x, y)=\int 2 x-y \mathrm{~d} x=x^{2}-x y+h(y)
$$

When this is plugged into the left-hand side of the second equation you obtain $-x+$ $h^{\prime}(y)=2 y-x$, which yields $h^{\prime}(y)=2 y$. By taking $h(y)=y^{2}$, a general solution is then given by

$$
H(x, y)=x^{2}-x y+y^{2}=c .
$$

