Quiz 4 Solutions, Math 246, Professor David Levermore Tuesday, 6 October 2009

(1) [3] What is the interval of definition for the solution to the initial-value problem

$$
\left(t^{2}-4\right) \frac{\mathrm{d}^{4} w}{\mathrm{~d} t^{4}}+4 t w=\frac{1}{\sin (t)}, \quad w(3)=w^{\prime}(3)=w^{\prime \prime}(3)=w^{\prime \prime \prime}(3)=5
$$

Solution: The linear normal form is $\frac{\mathrm{d}^{4} w}{\mathrm{~d} t^{4}}+\frac{4 t}{(t+2)(t-2)} w=\frac{1}{(t+2)(t-2) \sin (t)}$. The coefficient is defined and continuous everywhere except $t=-2$ and $t=2$. The forcing is defined and continuous everywhere except $t=-2, t=2$, and $t=k \pi$ for some integer k. The initial time is $t=3$. The interval of definition is therefore $(2, \pi)$.
(2) [3] Compute the Wronskian $W\left[Y_{1}, Y_{2}\right](t)$ of the functions $Y_{1}(t)=t+1$ and $Y_{2}(t)=e^{t}$. (Evaluate the determinant and simplify.)

Solution: Because $Y_{1}^{\prime}(t)=1$ and $Y_{2}^{\prime}(t)=e^{t}$, the Wronskian is

$$
\begin{aligned}
W\left[Y_{1}, Y_{2}\right](t) & =\operatorname{det}\left(\begin{array}{cc}
Y_{1}(t) & Y_{2}(t) \\
Y_{1}^{\prime}(t) & Y_{2}^{\prime}(t)
\end{array}\right)=\operatorname{det}\left(\begin{array}{cc}
t+1 & e^{t} \\
1 & e^{t}
\end{array}\right) \\
& =(t+1) e^{t}-1 e^{t}=t e^{t} .
\end{aligned}
$$

(3) [3] Given that $\cos (4 t)$ and $\sin (4 t)$ are linearly independent solutions of $\frac{\mathrm{d}^{2} y}{\mathrm{~d} t^{2}}+16 y=0$, find the solution $Y(t)$ that satisfies the initial conditions $Y(0)=3, Y^{\prime}(0)=8$.

Solution: Let $Y(t)=c_{1} \cos (4 t)+c_{2} \sin (4 t)$. Then $Y^{\prime}(t)=-4 c_{1} \sin (4 t)+4 c_{2} \cos (4 t)$. To satisfy the initial conditions one needs

$$
3=Y(0)=c_{1}, \quad 8=Y^{\prime}(0)=4 c_{2} .
$$

It follows that $c_{1}=3$ and $c_{2}=2$. The solution of the initial-value problem is therefore

$$
Y(t)=3 \cos (4 t)+2 \sin (4 t)
$$

(4) [1] Suppose that $Y_{1}(t), Y_{2}(t)$, and $Y_{3}(t)$ are solutions of the differential equation

$$
y^{\prime \prime \prime}+a(t) y^{\prime}=0,
$$

where $a(t)$ is continuous over $(-4,7)$. Suppose you know that $W\left[Y_{1}, Y_{2}, Y_{3}\right](0)=2$. What is $W\left[Y_{1}, Y_{2}, Y_{3}\right](5)$?

Solution: Because the equation is third-order while the coefficient of $y^{\prime \prime}$ is zero, Abel's Theorem implies that $W\left[Y_{1}, Y_{2}, Y_{3}\right](t)$ is constant over $(-4,7)$. We can thereby conclude that $W\left[Y_{1}, Y_{2}, Y_{3}\right](5)=W\left[Y_{1}, Y_{2}, Y_{3}\right](0)=2$.

