Quiz 4 Solutions, Math 246, Professor David Levermore Tuesday, 6 October 2009

(1) [3] What is the interval of definition for the solution to the initial-value problem

$$(t^2 - 4)\frac{\mathrm{d}^4 w}{\mathrm{d}t^4} + 4tw = \frac{1}{\sin(t)}, \quad w(3) = w'(3) = w''(3) = w''(3) = 5.$$

Solution: The linear normal form is $\frac{d^4w}{dt^4} + \frac{4t}{(t+2)(t-2)}w = \frac{1}{(t+2)(t-2)\sin(t)}$. The coefficient is defined and continuous everywhere except t = -2 and t = 2. The forcing is defined and continuous everywhere except t = -2, t = 2, and $t = k\pi$ for some integer k. The initial time is t = 3. The interval of definition is therefore $(2, \pi)$.

(2) [3] Compute the Wronskian $W[Y_1, Y_2](t)$ of the functions $Y_1(t) = t + 1$ and $Y_2(t) = e^t$. (Evaluate the determinant and simplify.)

Solution: Because
$$Y'_1(t) = 1$$
 and $Y'_2(t) = e^t$, the Wronskian is
 $W[Y_1, Y_2](t) = \det \begin{pmatrix} Y_1(t) & Y_2(t) \\ Y'_1(t) & Y'_2(t) \end{pmatrix} = \det \begin{pmatrix} t+1 & e^t \\ 1 & e^t \end{pmatrix}$
 $= (t+1)e^t - 1e^t = te^t$.

(3) [3] Given that $\cos(4t)$ and $\sin(4t)$ are linearly independent solutions of $\frac{d^2y}{dt^2} + 16y = 0$, find the solution Y(t) that satisfies the initial conditions Y(0) = 3, Y'(0) = 8.

Solution: Let $Y(t) = c_1 \cos(4t) + c_2 \sin(4t)$. Then $Y'(t) = -4c_1 \sin(4t) + 4c_2 \cos(4t)$. To satisfy the initial conditions one needs

$$3 = Y(0) = c_1, \qquad 8 = Y'(0) = 4c_2$$

It follows that $c_1 = 3$ and $c_2 = 2$. The solution of the initial-value problem is therefore $Y(t) = 3\cos(4t) + 2\sin(4t)$.

(4) [1] Suppose that $Y_1(t)$, $Y_2(t)$, and $Y_3(t)$ are solutions of the differential equation

$$y^{\prime\prime\prime} + a(t)y^{\prime} = 0 \,,$$

where a(t) is continuous over (-4, 7). Suppose you know that $W[Y_1, Y_2, Y_3](0) = 2$. What is $W[Y_1, Y_2, Y_3](5)$?

Solution: Because the equation is third-order while the coefficient of y'' is zero, Abel's Theorem implies that $W[Y_1, Y_2, Y_3](t)$ is constant over (-4, 7). We can thereby conclude that $W[Y_1, Y_2, Y_3](5) = W[Y_1, Y_2, Y_3](0) = 2$.