Quiz 5 Solutions, Math 246, Professor David Levermore Tuesday, 13 October 2009

(1) [5] Give a general solution of the equation

$$
(\mathrm{D}-5)^{2}(\mathrm{D}+7)\left(\mathrm{D}^{2}+9\right) y=0, \quad \text { where } \quad \mathrm{D}=\frac{\mathrm{d}}{\mathrm{~d} t}
$$

Solution. This is a fifth-order, homogeneous, linear equation with constant coefficients. Its characteristic polynomial is

$$
p(z)=(z-5)^{2}(z+7)\left(z^{2}+9\right)=(z-5)^{2}(z+7)\left(z^{2}+3^{2}\right),
$$

which has roots $5,5,-7, i 3$, and $-i 3$. A general solution of the equation is

$$
y(t)=c_{1} e^{5 t}+c_{2} t e^{5 t}+c_{3} e^{-7 t}+c_{4} \cos (3 t)+c_{5} \sin (3 t) .
$$

(2) [5] Given that e^{t} is a particular solution of the differential equation, solve the initial value problem

$$
y^{\prime \prime}-6 y^{\prime}+25 y=20 e^{t}, \quad y(0)=1, \quad y^{\prime}(0)=9
$$

Solution. This is a second-order, nonhomogeneous, linear equation with constant coefficients. Its characteristic polynomial is

$$
p(z)=z^{2}-6 z+25=(z-3)^{2}+16=(z-3)^{2}+4^{2},
$$

which has roots $z=3+i 4,3-i 4$. A general solution of the associated homogeneous equation is

$$
y_{H}(t)=c_{1} e^{3 t} \cos (4 t)+c_{2} e^{3 t} \sin (4 t) .
$$

Because a particular solution is $y_{P}(t)=e^{t}$, a general solution of the equation is

$$
y(t)=c_{1} e^{3 t} \cos (4 t)+c_{2} e^{3 t} \sin (4 t)+e^{t} .
$$

The initial condition $y(0)=1$ implies that

$$
1=y(0)=c_{1} e^{0} \cos (0)+c_{2} e^{0} \sin (0)+e^{0}=c_{1}+1
$$

Hence, $c_{1}=0$. Then because

$$
y^{\prime}(t)=3 c_{2} e^{3 t} \sin (4 t)+4 c_{2} e^{3 t} \cos (4 t)+e^{t},
$$

the initial condition $y^{\prime}(0)=9$ implies that

$$
9=3 c_{2} e^{0} \sin (0)+4 c_{2} e^{0} \cos (0)+e^{0}=4 c_{2}+1
$$

Hence, $c_{2}=2$. The solution of the initial-value problem is therefore

$$
y(t)=2 e^{3 t} \sin (4 t)+e^{t} .
$$

