Quiz 6 Solutions, Math 246, Professor David Levermore Tuesday, 20 October 2009

(1) [3] Give the characteristic, degree, and multiplicity for each of the two forcing terms of the equation

$$
\mathrm{L} y=\mathrm{D}^{2} y-6 \mathrm{D} y+13 y=5 t^{2} e^{3 t} \sin (2 t), \quad \text { where } \quad \mathrm{D}=\frac{\mathrm{d}}{\mathrm{~d} t}
$$

Solution. The characteristic polynomial is $p(z)=z^{2}-6 z+13=(z-3)^{2}+2^{4}$, which has roots $3 \pm i 2$.
The forcing term $5 t^{2} e^{3 t} \sin (2 t)$ has characteristic $\mu+i \nu=3+i 2$, degree $d=2$, and multiplicity $m=1$.
(2) [4] Give a particular solution of the equation

$$
\mathrm{L} y=\mathrm{D}^{2} y-6 \mathrm{D} y+13 y=e^{2 t}, \quad \text { where } \quad \mathrm{D}=\frac{\mathrm{d}}{\mathrm{~d} t}
$$

Solution. The characteristic polynomial is $p(z)=z^{2}-6 z+13$. The forcing has characteristic $\mu+i \nu=2$, degree $d=0$, and multiplicity $m=0$.
KEY Identity Evaluation. Because $d+m=0$ you only need the KEY identity

$$
\mathrm{L}\left(e^{z t}\right)=\left(z^{2}-6 z+13\right) e^{z t}
$$

Upon evaluating this at $z=2$ we see that

$$
\mathrm{L}\left(e^{2 t}\right)=\left(2^{2}-6 \cdot 2+13\right) e^{2 t}=(4-12+13) e^{2 t}=5 e^{2 t}
$$

By dividing both sides of this by 5 you see that a particular solution is $y_{P}(t)=\frac{1}{5} e^{2 t}$. Undetermined Coefficients. Because $d+m=0$, there is a particular solution of the form

$$
y_{P}(t)=A e^{2 t}
$$

Because

$$
y_{P}^{\prime}(t)=2 A e^{2 t}, \quad y_{P}^{\prime \prime}(t)=4 A e^{2 t}
$$

you find that

$$
y_{P}^{\prime \prime}-6 y_{P}^{\prime}+13 y_{P}=4 A e^{2 t}-6 \cdot 2 A e^{2 t}+13 A e^{2 t}=(4-12+13) A e^{2 t}=5 e^{2 t}
$$

By setting $5 A=1$ you see that a particular solution is $y_{P}(t)=\frac{1}{5} e^{2 t}$.
(3) [3] Compute the Green function associated with the differential operator $\mathrm{L}=\mathrm{D}^{2}+9$.

Solution. The Green function $g(t)$ satisfies the initial-value problem

$$
g^{\prime \prime}+9 g=0, \quad g(0)=0, \quad g^{\prime}(0)=1
$$

The characteristic polynomial is $p(z)=z^{2}+9$, which has roots $\pm i 3$. Therefore $g(t)$ has the form

$$
g(t)=c_{1} \cos (3 t)+c_{2} \sin (3 t)
$$

Because $g(0)=c_{1} \cos (0)+c_{2} \sin (0)=c_{1}$, the first initial condition shows $c_{1}=0$. Then $g^{\prime}(t)=3 c_{2} \cos (3 t)$. Because $g^{\prime}(0)=3 c_{2} \cos (0)=3 c_{2}$, the second initial condition shows $3 c_{2}=1$, whereby $c_{2}=\frac{1}{3}$. The Green function $g(t)$ is therefore given by

$$
g(t)=\frac{1}{3} \sin (3 t) .
$$

