Quiz 9 Solutions, Math 246, Professor David Levermore

 Tuesday, 17 November 2009(1) $[4]$ Let $\mathbf{A}=\left(\begin{array}{ll}4 & 3 \\ 3 & 2\end{array}\right), \quad \mathbf{B}=\left(\begin{array}{cc}1 & 5 \\ -5 & 2\end{array}\right)$.
(a) Compute $2 \mathbf{A}-\mathbf{B}$.

Solution:

$$
2 \mathbf{A}-\mathbf{B}=\left(\begin{array}{ll}
8 & 6 \\
6 & 4
\end{array}\right)-\left(\begin{array}{cc}
1 & 5 \\
-5 & 2
\end{array}\right)=\left(\begin{array}{cc}
7 & 1 \\
11 & 2
\end{array}\right)
$$

(b) Compute AB.

Solution:

$$
\mathbf{A B}=\left(\begin{array}{ll}
4 & 3 \\
3 & 2
\end{array}\right)\left(\begin{array}{cc}
1 & 5 \\
-5 & 2
\end{array}\right)=\left(\begin{array}{ll}
4-15 & 20+6 \\
3-10 & 15+4
\end{array}\right)=\left(\begin{array}{cc}
-11 & 26 \\
-7 & 19
\end{array}\right)
$$

(2) [2] Transform the equation $\frac{\mathrm{d}^{3} v}{\mathrm{~d} t^{3}}+t^{2} \frac{\mathrm{~d} v}{\mathrm{~d} t}-t^{3} v=e^{t}$ into a first-order system of ordinary differential equations.
Solution: Because the equation is third order, the first order system must have dimension three. The simplest such first order system is

$$
\frac{\mathrm{d}}{\mathrm{~d} t}\left(\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right)=\left(\begin{array}{c}
x_{2} \\
x_{3} \\
t^{3} x_{1}-t^{2} x_{2}+e^{t}
\end{array}\right), \quad \text { where } \quad\left(\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right)=\left(\begin{array}{c}
v \\
v^{\prime} \\
v^{\prime \prime}
\end{array}\right) .
$$

(3) [4] Consider the vector-valued functions $\mathbf{x}_{1}(t)=\binom{t^{3}+1}{t}, \mathbf{x}_{2}(t)=\binom{t^{2}}{1}$.
(a) Compute the Wronskian $W\left[\mathbf{x}_{1}, \mathbf{x}_{2}\right](t)$.

Solution.

$$
W\left[\mathbf{x}_{1}, \mathbf{x}_{2}\right](t)=\operatorname{det}\left(\begin{array}{cc}
t^{3}+1 & t^{2} \\
t & 1
\end{array}\right)=\left(t^{3}+1\right)-t^{3}=1
$$

(b) Find $\mathbf{A}(t)$ such that $\mathbf{x}_{1}, \mathbf{x}_{2}$ is a fundamental set of solutions to $\frac{\mathrm{d} \mathbf{x}}{\mathrm{d} t}=\mathbf{A}(t) \mathbf{x}$.

Solution. Let $\mathbf{X}(t)=\left(\begin{array}{cc}t^{3}+1 & t^{2} \\ t & 1\end{array}\right)$. Because $\frac{\mathrm{d} \mathbf{X}}{\mathrm{d} t}(t)=\mathbf{A}(t) \mathbf{X}(t)$, one has

$$
\begin{aligned}
\mathbf{A}(t) & =\frac{\mathrm{d} \mathbf{X}}{\mathrm{~d} t}(t) \mathbf{X}(t)^{-1}=\left(\begin{array}{cc}
3 t^{2} & 2 t \\
1 & 0
\end{array}\right)\left(\begin{array}{cc}
t^{3}+1 & t^{2} \\
t & 1
\end{array}\right)^{-1} \\
& =\left(\begin{array}{cc}
3 t^{2} & 2 t \\
1 & 0
\end{array}\right)\left(\begin{array}{cc}
1 & -t \\
-t^{2} & t^{3}+1
\end{array}\right)=\left(\begin{array}{cc}
t^{2} & 2 t-t^{4} \\
1 & -t^{2}
\end{array}\right) .
\end{aligned}
$$

