Quiz 11 Solutions, Math 246, Professor David Levermore Tuesday, 1 December 2009

(1) [5] The 2×2 matrix \mathbf{A} has the real eigenpairs $\left(1,\binom{2}{1}\right)$ and $\left(3,\binom{-1}{2}\right)$.
(a) Sketch a phase portrait for the system $\frac{\mathrm{d} \mathbf{x}}{\mathrm{d} t}=\mathbf{A x}$. Indicate typical trajectories.
(b) For each portrait identify its type and state whether the origin is attracting, stable, unstable, or repelling.
Solution: Because the eigenvalues of \mathbf{A} are real and of have the same sign, the phase portrait is a nodal source. Because all trajectories move away from the origin as t increases, it is repelling (and therefore also unstable).

- Your phase portrait should indicate trajectories on the line $c_{1}\binom{2}{1}$ move away from the origin with arrows.
- It should indicate trajectories on the line $c_{2}\binom{-1}{2}$ move away from the origin with double arrows.
- It should also indicate a family of trajectories move away from the origin along curves that emerge from the origin tangent to the line $c_{1}\binom{2}{1}$ and further away become more parallel to the line $c_{2}\binom{-1}{2}$.
(2) [5] Let $\mathbf{A}=\left(\begin{array}{ll}-2 & 5 \\ -2 & 0\end{array}\right) \mathbf{x}$.
(a) Sketch a phase portrait for the system $\frac{\mathrm{d} \mathbf{x}}{\mathrm{d} t}=\mathbf{A x}$. Indicate typical trajectories.
(b) For each portrait identify its type and state whether the origin is attracting, stable, unstable, or repelling.
Solution: The characteristic polynomial of \mathbf{A} is

$$
p(z)=z^{2}-\operatorname{tr}(\mathbf{A}) z+\operatorname{det}(\mathbf{A})=z^{2}+2 z+10=(z+1)^{2}+3^{3} .
$$

The eigenvalues of \mathbf{A} are therefore $-1+i 3$ and $-1-i 3$, whereby the phase portrait is a spiral sink. Because $a_{21}=-2<0$ the spiral will be clockwise. Because all trajectories move towards the origin as t increases, it is attracting (and therefore also stable).

Your phase portrait should indicate a family of trajectories that spiral into the origin in a clockwise fashion.

