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1. Linear Algebra: theory and conditioning

References:

• D. Bindel’s and J. Goodman’s book “Principles of Scientific Computing”, Chapter
4.
• J. Demmel, “Applied Numerical Linear Algebra”, Section 1.7 (vector and matrix

norms).

Linear algebra is one of the most important tools of modern computational science. In
recent years, the importance of numerical linear algebra has increased due to the need
to solve large-scale problems arising in data science. For example, numerous personal
recommendations that you encounter in such services as Netflix, Amazon, etc, are obtained
for you by solving certain large scale optimization problems by algorithms heavy on the
use of linear algebra. New methods for solving large-scale linear algebra problems have
been developed in recent years. These include, e.g., the butterfly algorithm for fast Fourier
transform, fast direct algorithms for solving structured linear systems, etc.

The operations of linear algebra include but not limited to:

• solving linear systems of algebraic equations;
• finding subspaces;
• matrix factorization (PLU, QR, SVD, CUR, etc);
• solving least squares problems;
• computing eigenvectors and eigenvalues.

In this section, we will go over the aspect of linear algebra that you should know as a
user of linear algebra software: basic concepts, basic theory, and conditioning. The last
item is extremely important as you should be aware of what can go wrong when you are
using some standard linear algebra operations.
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There are publicly available linear algebra libraries that you are strongly encouraged
to use: clapack (C/C++), lapack (Fortran). Matlab contains excellent linear algebra
commands for both dense and sparse matrices.

Standard linear algebra algorithms are backward stable. This means that the output
of any standard linear algebra algorithm is as accurate as the condition number for the
problem allows. Recall that

• an algorithm is backward stable if its output is the exact answer for a slightly
perturbed input;
• the condition number for the problem is the strict upper bound for the ratio of the

relative error in the output to the relative error in the input that caused it.

This means, in particular, that the error produced by a backward stable algorithm can be
large if the condition number of the problem being solved is large.

We start with reviewing basic concepts of linear algebra.

1.1. Vector spaces. Typically we are happy with the results of any numerical algorithm
if the produces error is small. If the error is multi- or infinite dimensional, in order to say
that it is small, we need some reasonable way to convert it to a single nonnegative number
and compare it with some threshold. That’s why we need the concept of norm.

A norm is defined as a function on vector spaces. Let’s recall what it is.

Definition 1. A vector space V is a set closed with respect to the operations of addition
“+”: V × V → V , and multiplication by a scalar “·α”: V → V The operations satisfy the
following properties.

(1) a + b = b + a,

(2) (a + b) + c = a + (b + c),

(3) α(a + b) = αa + αb,

(4) (α+ β)a = αa + βa,

(5) there is 0 ∈ V s.t. a + 0 = a for any a ∈ V,
(6) for any a ∈ V there is (−a) ∈ V s.t. a + (−a) = 0,

(7) α(βa) = (αβ)a,

(8) 1a = a for any a ∈ V.

Exercise Prove that for any a ∈ V 0a = 0 where 0 ∈ R while 0 ∈ V .

Below we remind some basic concepts. Please read Sections 4.2.1 and 4.2.2 in Bindel
and Goodman for more details.

• A subspace W of a vector space V is a subset of V that is a vector space itself with
respect to the same operations as in V , i.e., W is closed under addition and scalar
multiplication: for any w1, w2 ∈ W and α ∈ R or C, w1 +W2 ∈ W and αw1 ∈ W .
Therefore, to check is W is a subspace, it suffices to check if it closed under addition

https://cs.nyu.edu/courses/spring09/G22.2112-001/book/book.pdf
https://cs.nyu.edu/courses/spring09/G22.2112-001/book/book.pdf
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and scalar multiplication. The properties of the operations are inherited for those
in V .
• The span of vectors v1, ..., vn in V is the set of their all possible linear combinations.
• We say that vectors v1, ..., vn are linearly independent if any their zero linear

combination implies that all of its coefficients are zero.
• A basis of V is a subset of vectors {bi}i∈I such that:

(1) any v ∈ V can be represented as

v =
∑
i∈I

αibi,

(2) and the {bi}i∈I is minimal in the sense such that for any m ∈ I one can find
v ∈ V such that

v −
∑
i∈I\m

αibi 6= 0

for any set of values of αi, i ∈ I\{m}.
Recall a theorem in linear algebra saying that if there is a basis in V {bi}ni=1, then
any other basis in V also has n vectors.
• If the number of vectors in a basis of V is finite, this number is called the dimension

of V . Otherwise, the vector space is infinitely dimensional.
• A linear transformation or a linear map for a vector space V to a vector space W

is a map L : V →W such that for any v1, v2 ∈ V and any α ∈ R or C

L(v1 + v2) = L(v1) + L(v2) and L(αv1) = αL(v1).

Let B = {bi} be a basis in V and E = {ei} be a basis in W . Then by linearity we
have:

L(v) = L

∑
j

vjbj

 =
∑
j

vjL(bj) =
∑
j

vj
∑
i

aijei where L(bj) =
∑
i

aijei.

Therefore, we can define the matrix of the linear transformation

A =E [L]B = (aij).

Its columns are the images of the basis vectors in V written in the basis in W .
• A matrix product AB is defined if and only if the number of columns in A is equal

the number of rows in B. The matrix product AB corresponds to a composition of
linear transformations with matrices A and B. Matrix multiplication is associative
but not commutative.
• For a matrix A = (aij) the transpose is defined by A> := (aji). If A has complex

entries, than its adjoint is defined as its transpose with complex conjugation: A∗ :=
(āji) .

Now let us list some examples illustrating these concepts.

Example (1) Rn is an n-dimensional vector space. Its standard basis is {ei} where
ei is a vector with entry 1 at the ith place and the rest of entries being zeros. Its
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subset of vectors satisfying
∑n

i=1 ai = 0 is an n−1-dimensional subspace, while the
subset of vectors satisfying

∑n
i=1 ai = 1 is not a subspace as it is not closed under

addition and scalar multiplication.
(2) The set of polynomials of degree less or equal than n denoted by Pn is an (n+ 1)-

dimensional vector space. One basis in it is the set

X := {1, x, . . . , xn}.

(3) An example of linear transformation from Pn to Pn−1 is the differentiation:

d

dx
: Pn → Pn−1.

Its matrix in the basis X is

DX :=


0 1 0 . . . 0
0 0 2 . . .

. . .

0 . . . 0 n

 .
If we pick another basis, for example, Chebyshev’s basis, the differentiation matrix
will be different.

(4) Example of an infinite-dimensional space is the space of all polynomials, the space
of all continuous functions on an interval [a, b], the space of all continuous functions
on [a, b] satisfying the homogeneous boundary conditions f(a) = f(b) = 0, etc.

1.2. Vector norms.

Definition 2. Norm is a function defined on a vector space V :

N : V −→ R+ ≡ [0,+∞]

such that

(1) ‖a‖ ≥ 0, ‖a‖ = 0 iff a = 0,

(2) ‖αa‖ = |α|‖a‖,
(3) ‖a + b‖ ≤ ‖a‖+ ‖b‖.

Example The space of continuous functions on the interval [a, b] with the maximum norm

V = C([a, b]), ‖f‖ = sup
[a,b]
|f(x)|.

If the interval is finite, ‖f‖ = max[a,b] |f(x)|.
Example The space of continuous functions on the interval [a, b] with the maximum norm

V = Lp([a, b]), ‖f‖ =

(∫ b

a
|f(x)|pdx

)1/p

.
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Example The space V = lp of all sequences {ak}∞k=1 such that

‖{a}‖ :=

( ∞∑
k=1

|ak|p
)1/p

<∞.

In particular, l1 is the space of all absolutely convergent sequences as

|a| :=
∞∑
k=1

|ak| <∞.

Example The space V = l∞ of all sequences {ak}∞k=1 such that

‖{a}‖ := sup
k
|ak| <∞.

In other words, l∞ is the space of all bounded sequences.

The concept of orthogonality is generalized to vector spaces via the notion of the inner
product.

Definition 3. An inner product is a function (·, ·) : V × V −→ R or C satisfying

(1) (a,a) ≥ 0, (a,a) = 0 iff a = 0,

(2) (a,b) = (b,a),

(3) (a,b + c) = (a,b) + (a, c),

(4) (αa,b) = α(a,b).

The norm induced by an inner product is given by ‖f‖ =
√

(f, f). The norms that are
associated with inner products are especially important.

Example (1)

f, g ∈ L2([a, b]), (f, g) =

∫ b

a
f(x)g(x)dx.

(2) Chebyshev inner product.

f, g ∈ C([−1, 1]), (f, g) =

∫ b

a

f(x)g(x)√
1− x2

dx.

Suppose we are looking at the error e(x) = f(x)− p(x) where f is a given function
and p is its approximation. The Chebyshev norm puts more weight to the ends
of the interval, i.e., the error near the ends of the interval contributes more to the
norm than the error near its midpoint.

(3) Hermite inner product.

f, g ∈ C([−∞,∞]), (f, g) =

∫ ∞
−∞

f(x)g(x)e−x
2
dx.

Suppose we are looking at the error e(x) = f(x) − p(x) where f is a given func-
tion and p is its approximation. Only the error around the origin will contribute
significantly to the norm.
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1.3. Matrix norm.

Definition 4. The norm of a matrix associated with the vector norm ‖ · ‖ is defined as

(1) ‖A‖ = max
x 6=0

‖Ax‖
‖x‖

.

The geometric sense of the matrix norm is the maximal elongation of a unit vector as a
result of the corresponding linear transformation.

Example Let

A =

[
1 1
0 1

]
.

(1) Find ‖A‖1 associated with the vector 1-norm in R2: ‖x‖1 = |x1|+ |x2|.
Solution

Ax =

[
1 1
0 1

] [
x1

x2

]
=

[
x1 + x2

x2

]
.

On one hand,

‖A‖1 = max
|x1|+|x2|=1

(|x1 + x2|+ |x2|) ≤ max
|x1|+|x2|=1

(|x1|+ |x2|+ |x2|) = 1+ max
|x1|+|x2|=1

|x2| = 2.

On the other hand, ‖Ax‖1 = 2 if x =

[
0
1

]
. Hence

‖A‖1 = 2.

(2) Find ‖A‖∞ associated with the vector max-norm in R2: ‖x‖∞ = max{|x1|, |x2|}.
Solution
On one hand,

‖A‖∞ = max
{|x1|,|x2|}=1

max {(|x1 + x2|, |x2|} ≤ max
{|x1|,|x2|}=1

max {(|x1|+ |x2|, |x2|} ≤ 2.

On the other hand, ‖Ax‖∞ = 2 if x =

[
1
1

]
. Hence

‖A‖∞ = 2.

(3) Find ‖A‖2 associated with the 2-vector norm in R2: ‖x‖2 =
√
x2

1 + x2
2.

Solution
On one hand,

‖A‖2 = max√
x21+x22=1

√
|x1 + x2|2 + |x2|2.

Since
√
x2

1 + x2
2 = 1, x1 and x2 are cosine and sine of some angle t ∈ [−π, π].

Therefore, we can write

‖A‖2 = max
t∈[−π,π]

√
(cos t+ sin t)2 + sin2 t = max

t∈[−π,π]

√
1 + sin 2t+ 1

2(1− cos 2t).
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Here we used the trigonometric identities

2 sin t cos t = sin 2t and sin2 t = 1
2(1− cos 2t).

To find the maximum we differentiate the expression under the square root and set
it to zero:

d

dt

(
1 + sin 2t+ 1

2(1− cos 2t)
)

= 2 cos 2t+ sin 2t = 0.

Hence tan 2t = −2. This corresponds either to cos 2t = −1/
√

5 and sin 2t = 2/
√

5,
or to cos 2t = 1/

√
5 and sin 2t = −2/

√
5. The first pair gives maximum while the

second pair gives minimum of the expression under the square root. Hence

‖A‖2 =
√

3
2 + 2√

5
+ 1

2
√

5
=

√
3
√

5 + 5

2
√

5
=

√
3 +
√

5

2
=

1 +
√

5

2
.

Exercise Let A = (aij) be an m× n matrix, m ≥ n. Show that then:

(1) For the l1-norm,

‖A‖1 = max
j

∑
i

|aij |,

i.e., the maximal column sum of absolute values.
(2) For the max-norm or l∞-norm

‖A‖max = max
i

∑
j

|aij |,

i.e., the maximal row sum of absolute values

1.4. Eigenvalues and eigenvectors. Finding eigenvalues and eigenvectors is often very
useful in many different contexts. For example, the general analytic solution to a linear
system of ODEs ẋ = Ax is often written in terms of eigenvalues and eigenvectors of A.
The 2-norm of A is expressed in terms of eigenvalues of A>A.

1.4.1. Diagonalizable matrices. Recall that an n× n matrix A is called diagonalizable if it
has n linearly independent eigenvectors. In this case, A can we written as

(2) A = RΛR−1 ≡ RΛL =

[
r1 r2 · · · rn
↓ ↓ ↓

]
λ1

λ2

. . .

λn



l1 →
l2 →
...
ln →

 .
The columns of R are the right eigenvectors of A. They satisfy:

Arj = λjrj .

The rows of L := R−1 are the left eigenvectors of A satisfying

ljA = λjlj .

Even if A is real, eigenvectors and eigenvalues do not need to be real. they are complex in
the general case.
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1.4.2. Symmetric matrices. In the special case where A is real and symmetric, there always
exists an orthonormal basis of real eigenvectors, the eigenvalues are real, and the eigen-
vectors corresponding to distinct eigenvalues are orthogonal. Let us show this. First note
that if λ is an eigenvalue, and r is the corresponding unit right eigenvector, then r∗ := r̄>

is the left eigenvector for λ̄. Indeed, since A is real and symmetric, we have:

Ar = λr, hence (Ar)∗ = (λr)∗, i.e. r∗A = λ̄r∗,

which shows that r∗ is the left eigenvector for λ̄. Now we consider the number

r∗Ar = r∗Ar = λr∗r = λ‖r‖ = λ.

On the other , applying A to r∗, we get

r∗Ar = r∗Ar = λ̄r∗r = λ̄‖r‖ = λ̄.

Therefore, λ = λ̄, i.e., λ is real. Now we show that eigenvectors corresponding to distinct
eigenvalues are orthogonal. Let Ar1 = λ1r1 and Ar2 = λ2r2 with λ1 6= λ2. Then

r∗1Ar2 = λ1r
∗
1r2 = λ2r

∗
1r2.

Since λ1 6= λ2, r∗1r2 must be zero. Hence r1 and r2 are orthogonal. Note that we always
can pick real eigenvectors for real eigenvalues of a real symmetric matrix.

Exercise Let A = (aij) be an m × n matrix, m ≥ n. Show that then for the vector
l2-norm,

‖A‖2 =
√
ρ(A>A).

Solution Recall that the vector 2-norm is given by ‖x‖2 =
√
x>x. Using this we get

‖A‖2 = max
‖x‖2=1

‖Ax‖2 = max
x>x=1

√
x>A>Ax = max

x>x=1

√
x>A2x.

Since A>A is symmetric, its eigen-decomposition is given by

A>A = UΛU>,

where U is an orthogonal matrix (i.e., U>U = UU> = I, or U> = U−1) whose columns
are the eigenvectors of A, and Λ is a diagonal matrix whose diagonal entries are the
corresponding eigenvalues. Using this we continue:

‖A‖2 = max
x>x=1

√
x>UΛU>x = max

x>x=1

√
(U>x)>Λ(U>x).

Now we note that

‖x‖2 = ‖U>x‖2
because

‖x‖22 = x>x = x>UU>x = (U>x)>(U>x) = ‖U>x‖2.
Let us denote U>x by y. Then

‖A‖2 = max
y>y=1

√
y>Λy = max

y>y=1

√
y2

1λ1 + y2
2λ2 + . . .+ y2

nλn = max
j=1,...,n

√
|λn| ≡

√
ρ(A>A).
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Remark If A is a real symmetric matrix, then the eigenvalues of A>A are squares of the
eigenvalues of A. Hence the 2-norm of A is the spectral radius of A:

‖A‖2 = max
i
|λi| = ρ(A),

1.4.3. Defective matrices and the Jordan form. If matrix is not diagonalizable, it is called
defective. An example of such a matrix is

(3) A =

[
1 10
0 1

]
.

This matrix has eigenvalue 1 of algebraic multiplicity 1 and just one eigenvector [1, 0]>. In
linear algebra, the Jordan form is often considered for such matrices:

(4) A = V JV −1

where J is a block-diagonal matrix with blocks of the form

Jj :=


λj 1

λj 1
. . .

. . .

λj 1
λj

 .

There is a unique eigenvector vj corresponding to each block. The columns of V form the
Jordan basis.

Exercise Find the Jordan form and the Jordan basis for the matrix in (3).

In numerical linear algebra, the Jordan form is rarely computed. The reason is that it is
unstable with respect to small perturbations of A. For example, consider a 16× 16 matrix
A

(5) A :=


0 1

0 1
. . .

. . .

0 1
0

 .

It is already in the Jordan form consisting of a single block, and its unique eigenvalue of
algebraic multiplicity 16 is zero. Indeed,

det(λI −A) = λ16 = 0.
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Now consider a perturbation of A such that the zero at its bottom left corner is replaced
with 10−16:

(6) A+ δA :=


0 1

0 1
. . .

. . .

0 1
10−16 0

 .
The eigenvalues of A+ δA are the roots of

det(λI −A) = λ16 − 10−16 = 0.

There are 16 distinct complex eigenvalues located at the corners of the 16-gon in the
complex plane:

λk = 0.1ei2πk/16, k = 0, 1, . . . 15.

Hence, the Jordan form of A will be diag{λ0, . . . , λ15} which is not close to (6). Thus,
we see that a perturbation of the size of the machine epsilon has a dramatic effect on the
Jordan form and on the magnitudes of the eigenvalues of A.

1.4.4. The Schur form. For reasons indicated in Section 1.4.3 the Jordan form of a matrix
is rarely computed. Another eigenvalue revealing form is much more preferable: the Schur
form defined by:

A = QTQ>

where T is upper-triangular,

T =


λ1 t12 t13 . . . t1n

λ2 t23 . . . t2n
. . .

. . .

λn−1 tn−1,n

λn

 .
and Q is orthogonal (or unitary if it is complex), i.e., its columns form an orthonormal
basis, or Q∗Q = I. Often it is more preferable to deal with the so-called real Schur form in
which complex pairs of eigenvalues form 2× 2 blocks along the diagonal of T . Then both
Q and T are real. The Matlab command to compute the Schur form is

A = rand(10);

[Q,T] = schur(A);

If A is real, this command computes the real Schur form. If you would like the complex
Schur form, type

[Q,T] = schur(A,’complex’);

Exercise Let u + iv be a complex eigenvector of a real matrix A, and µ + iν be the
corresponding eigenvalue. Show that

(7) A[u, v] = [u, v]

[
µ ν
−ν µ

]
,
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i.e., the vectors u and v span a 2-dimensional invariant subspace of A.

1.5. Normal equations. Consider the overdetermined system of linear equations

Ax = b, Am×n, m ≥ n.

Such problems arise, for example, when we have want to find a line that best fits measured
data points (xi, yi), i = 1, . . . ,m, that ideally lie on a straight line ax + b = y. Thus, we
set up the following system:

(8)


x1 1
x2 1
...

...
xm 1


[
a
b

]
=


y1

y2
...
ym

 .
The system (8) typically does not have a solution unless the points happen to lie on the
same line. However, we always can find a line ax + b that fits the data best in the least
squares sense, the so called least squares solution.

Definition 5. We say that x∗ is the least squares solution of Ax = b, A is m×n , m ≥ n,
if

x∗ = arg min
x∈Rn

‖Ax− b‖.

Now we will show that x∗ is given by the formula

(9) x∗ = (A>A)−1A>b.

Note that x∗ is the solution of the so called normal equation that is obtained from Ax = b
by multiplication by A> from the left. If the matrix A has full rank, i.e., rank(A) = n, the
matrix A>A is symmetric positive definite. Write x = x∗ + e and consider ‖Ax− b‖2. We
want to show that it is minimal if and only if e = 0, i.e., x = x∗.

‖Ax− b‖2 = (Ax− b)>(Ax− b) = (Ax∗ +Ae− b)>(Ax∗ +Ae− b) =

‖Ae‖2 + ‖Ax∗ − b‖2 + 2(Ae)>(Ax∗ − b) =

‖Ae‖2 + ‖Ax∗ − b‖2 + 2e>(A>Ax∗ −A>b) =

‖Ae‖2 + ‖Ax∗ − b‖2 ≥ ‖Ax∗ − b‖2

The equality occurs if and only if e = 0, i.e., the norm ‖Ax − b‖ is minimal if and only if
x = x∗ given by Eq. (9). A good way to compute the QR decomposition is by using the
Householder reflections. We will discuss this later.

The geometric sense of the least squares solution is the following: the residual

r := Ax− b

is orthogonal to the space spanned by the columns of the matrix A, i.e., r dotted with any
column of A is zero, or

A>r = 0.
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1.6. The QR decomposition and Gram-Schmidt Algorithm.

Theorem 1. Let A be m × n, m ≥ n. Suppose that A has full column rank. Then
there exist a unique m × n orthogonal matrix Q, i.e., Q>Q = In×n, and a unique n × n
upper-triangular matrix R with positive diagonals rii > 0 such that A = QR.

Proof. The proof of this theorem is given by the Gram-Schmidt orthogonalization process.

Algorithm 1: Gram-Schmidt orthogonalization

Input : matrix A = [a1 a2 . . . an], m× n, rank(A) = n.
Output: orthogonal matrix Q m× n, Q>Q = In×n, and upper-triangular n× n

matrix R with rii > 0.
for i = 1, . . . , N do

qi = ai;

for j = 1, . . . , i− 1 do{
rji = q>j ai CGS

rji = q>j qi MGS
;

qi = qi − rjiqj ;
end

rii = ‖qi‖;
qi = qi/rii;

end

Here CGS and MGS stand for the Classic Gram-Schmidt and the Modified Gram-
Schmidt respectively. �

Unfortunately the classic Gram-Schmidt algorithm is numerically unstable when the
columns of A are nearly linearly dependent. The modified Gram-Schmidt is better but
still can result in Q that is far from orthogonal (i.e., ‖Q>Q − I‖ is much larger than the
machine ε) when A is ill-conditioned. There are numerically stable ways to compute the
QR-decomposition, i.e., by using the Householder reflections or Givens’ rotations. We will
consider the Householder reflections in homework exercises.

Exercise Show that the least squares solution of Ax = b is given by

x∗ = R−1Q>b,

where A = QR is the QR decomposition of A.

In Matlab, the least squares solution of Ax = b is found by A\b. The QR decomposition
per se can be obtained by [Q,R]=qr(A).

1.7. Singular Value Decomposition (SVD). The Singular Value Decomposition is a
very useful decomposition. It has numerous practical applications. Examples are image
compression and determination of effective dimensionality of a data set.

Theorem 2. Let A be an arbitrary m× n matrix with m ≥ n. Then we can write

A = UΣV >,
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where
U is m× n and U>U = In×n,

Σ = diag{σ1, . . . , σn}, σ1 ≥ σ2 ≥ . . . ≥ σn ≥ 0,

and V is n× n and V >V = In×n.

The columns of U , u1, ..., un, are called left singular vectors. The columns of V , v1, ...,
vn are called right singular vectors. The numbers σ1, ..., σn are called singular values. If
m < n, the SVD is defined for A>.

The geometric sense of this theorem is the following. Let us view the matrix A as a map
from Rn into Rm:

A : Rn → Rm, x 7→ Ax.

Then one can find orthogonal bases in Rn, v1, ... ,vn, and in Rm, u1, ..., um and numbers
σ1, ..., σn, such that

vj 7→ σjuj , j = 1, . . . , n.

Then for any x ∈ Rn we have:

if x =

n∑
j=1

xjvj then Ax =

n∑
j=1

xjσjuj .

Proof. We use induction in m and n. We assume that the SVD exists for (m− 1)× (n− 1)
matrices and prove it for m × n. We assume A 6= 0; otherwise we take Σ = 0 and U and
V are arbitrary orthogonal matrices.

The basic step occurs when n = 1 (since m > n). We write

A = UΣV > with U =
A

‖A‖
, Σ = ‖A‖, V = 1,

where ‖ · ‖ is the 2-norm.
For the induction step, choose v so that

‖v‖ = 1 and ‖A‖ = ‖Av‖ > 0.

Let

u =
Av

‖Av‖
,

which is a unit vector. Choose Ũ and Ṽ so that U = [u, Ũ ] and V = [v, Ṽ ] are m× n and
n× n orthogonal matrices respectively. Now write

U>AV =

[
u>

Ũ>

]
·A · [v Ṽ ] =

[
u>Av u>AṼ

Ũ>Av Ũ>AṼ

]
.

Then

u>Av =
(Av)>(Av)

‖Av‖
= ‖Av‖ := σ

and
Ũ>Av = Ũ>u‖Av‖ = 0.
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We claim that u>AṼ = 0 too because otherwise

σ = ‖A‖ = ‖U>AV ‖ ≥ ‖[1, 0, . . . , 0]U>AV ‖ = ‖[σ, u>AṼ ]‖ > σ,

a contradiction. Therefore,

U>AV =

[
σ 0

0 Ũ>AV

]
=

[
u>Av 0

0 Ã

]
.

Now we apply the induction hypothesis that

Ã = U1Σ1V
>

1 .

Hence,

U>AV =

[
σ 0
0 U1Σ1V

>
1

]
=

[
1 0
0 U1

] [
σ 0
0 Σ1

] [
1 0
0 V1

]>
or

A =

(
U

[
1 0
0 U1

])[
σ 0
0 Σ1

](
V

[
1 0
0 V1

])>
,

which is our desired decomposition.
�

The SVD has a large number of important algebraic and geometric properties, the most
important of which are summarized in the following theorem.

Theorem 3. Let A = UΣV > be the SVD of the m× n matrix A, m ≥ n.

(1) Suppose A is symmetric and A = UΛU> be an eigendecomposition of A Then the
SVD of A is UΣV > where σi = |λi| and vi = uisign(λi), where sign(0) = 1.

(2) The eigenvalues of the symmetric matrix A>A are σ2
i . The right singular vectors

vi are the corresponding orthonormal eigenvectors.
(3) The eigenvectors of the symmetric matrix AA> are σ2

i and m− n zeroes. The left
singular vectors ui are the corresponding orthonormal eigenvectors for the eigen-
values σ2

i . One can take any m − n orthogonal vectors as eigenvectors for the
eigenvalue 0.

(4) If A has full rank, the solution of

min
x
‖Ax− b‖ is x = V Σ−1U>b.

(5)
‖A‖2 = σ1.

If A is square and nonsingular , then

‖A−1‖2 =
1

σn
.

(6) Suppose
σ1 ≥ . . . ≥ σr > σr+1 = . . . = σn = 0.

Then
rank(A) = r,
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null(A) = {x ∈ Rn : Ax = 0 ∈ Rm} = span(vr+1, . . . , vn),

range(A) = span(u1, . . . , ur).

(7)

A = UΣV > =

n∑
i=1

σiuiv
>
i ,

i.e., A is a sum of rank 1 matrices. Then a matrix of rank k < n closest to A is

Ak =
k∑
i=1

σiuiv
>
i , and ‖A−Ak‖ = σk+1.

Example This example illustrates the low rank approximation of a large matrix. The
original image is shown in Fig. 1(a). The rank 3, 10, and 20 approximations are shown
in Figs. 1 (b), (c), and (d) respectively. The sequence of matlab commands to create an
approximation of rank m for a given image is the following.

>> clear all

>> im=imread(’IMG_1413.jpg’);

>> [m n k]=size(im)

m = 1600

n = 1200

k = 3

>> mimi=zeros(m,n);

>> mimi=sum(im,3);

>> fig=figure;

>> imagesc(mimi)

>> colormap gray

>> set(gca,’DataAspectRatio’,[1 1 1])

>> [U S V]=svd(mimi);

>> size(U)

ans = 1600 1600

>> size(V)

ans = 1200 1200

>> size(S)

ans = 1600 1200

>> fig=figure;

>> m=10;

>> rm=U(:,1:m)*S(1:m,1:m)*V(:,1:m)’;

>> colormap gray

>> set(gca,’DataAspectRatio’,[1 1 1])

2. Condition number

We start with making the definition of the condition number more precise. Let f(x) be
a generally vector-valued function that we need to evaluate. The condition number κ(f ;x)
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(a) (b)

(c) (d)

Figure 1. Low rank approximations of image. (a): original; (b): rank 3;
(c) rank 10; (d) rank 20.

is the ratio of the relative error in f caused by the relative error in x provided that the
change in x is small. Hence, we define κ as

(10) κ(f ;x) := lim
ε→0

max
‖∆x‖=ε

‖f(x+ δx)− f(x)‖/‖f(x)‖
‖∆x‖/‖x‖

.

2.1. Condition numbers for differentiable functions. Let us calculate the condition
numbers for differentiable functions. Let f(x) be a differentiable function f : Rn → R.
Then

f(x+ ∆x) = f(x) +∇f(x+ θ∆x)>∆x, where θ ∈ (0, 1).

Then

κ(f ;x) = lim
ε→0

max
‖∆x‖=ε

‖x‖|∇f(x+ θ∆x)>∆x|
|f(x)|‖∆x‖

.
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The maximum over ∆x ∈ Rn such that ‖∆x‖ = ε is achieved at

∆x =
∇f(x+ θ∆x)

‖∇f(x+ θ∆x)‖
ε.

Therefore,

κ(f ;x) =
‖∇f(x)‖‖x‖
|f(x)|

.

Now let f(x) be a differentiable vector-valued function f : Rn → Rm. Then

f(x+ ∆x) = f(x) + J(x+ θ∆x)∆x, where θ ∈ (0, 1),

and J is the jacobian matrix of f with entries:

Jij(x) :=
∂fi
∂xj

.

Then

κ(f ;x) = lim
ε→0

max
‖∆x‖=ε

‖x‖|J(x+ θ∆x)∆x|
‖f(x)‖‖∆x‖

.

The maximum over ∆x ∈ Rn such that ‖∆x‖ = ε is achieved if ∆x is parallel to the first
right singular vector v1 of J(x+ ∆x) = UΣV >. Therefore,

κ(f ;x) =
‖J‖‖x‖
‖f(x)‖

.

2.2. Condition number for matrix-vector multiplication. A particular case is when
f(x) is a linear function, i.e., f(x) = Ax where A is an m× n matrix. Then the Jacobian
matrix of f is constant and is equal to A. Hence, the condition number for matrix-vector
multiplication is

(11) κ(A;x) =
‖A‖‖x‖
‖Ax‖

= ‖A‖ ‖x‖
‖Ax‖

.

Identity (11) shows that the condition number will be large if

‖Ax‖
‖x‖

� ‖A‖,

i.e., if there is a vector y that is elongated by A by much larger factor than x. Let us
illustrate this phenomenon on a simple example from D. Bindel’s and J. Goodman’s book
“Principles of Scientific Computing”, Chapter 4, page 89. Let

A =

[
1000 0

0 10

]
, and x =

[
0
1

]
.

Then

Ax =

[
0
10

]
.

Suppose x is perturbed by

∆x =

[
ε
0

]
. Then A(x+ ∆x)−Ax = A∆x =

[
1000ε

0

]
.

https://cs.nyu.edu/courses/spring09/G22.2112-001/book/book.pdf
https://cs.nyu.edu/courses/spring09/G22.2112-001/book/book.pdf
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The error in x is amplified by the factor of 1000 that is 100 times larger than the elongation
of x. It is easy to check that for this example, κ(A;x) = 100.

2.3. Condition number for solving linear system. On the other hand, let us consider
the problem of solving a linear system Ax = b, i.e., f(x) = A−1b. We find:

(12) κ(A−1; b) = ‖A−1‖ ‖b‖
‖A−1b‖

= ‖A−1‖‖Ax‖
‖x‖

.

The condition number for the linear system Ax = b is large if some vector is stretched by
A much less than the solution x (recall that ‖A−1‖ = 1/σn, where σ is the smallest singular
value of A).

What we often call the condition number of a matrix A defined as

κ(A) = ‖A‖‖A−1‖
is the worst-case scenario condition number for either of the problems: matrix-vector mul-
tiplication and solving of linear system.

2.4. Condition numbers for eigenvalue problem. Read Section 4.3.3 from D. Bindel’s
and J. Goodman’s book “Principles of Scientific Computing”. The method of virtual
perturbations is described in the same book in Section 4.2.6.

https://cs.nyu.edu/courses/spring09/G22.2112-001/book/book.pdf
https://cs.nyu.edu/courses/spring09/G22.2112-001/book/book.pdf
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