
AMSC660. Final exam.

Maria Cameron

December 15, 2023

1 Problem 1

Think about a maze similar to the one in Problem 5 of HW7. It is helpful to read the entire
statement of Problem 5 in HW 7 for solving this problem.

The maze consists of an n× n array of cells. The connectivity of the maze is described
by an adjacency matrix A of size N×N where N = n2: Aij = 1 if cells i and j are adjacent
and there is no wall between them, and Aij = 0 otherwise. We assume that the maze is
connected, i.e., there is a path between any pair of cells. In particular, there is a path
from the top left cell indexed by 1 and the bottom right cell indexed by N . Note that the
matrix A is symmetric.

As in problem 5 of HW7, we compute row sums of A and convert the adjacency matrix
A into a stochastic matrix P :

P = R−1A, where R = diag


N∑
j=1

A1j , . . . ,

N∑
j=1

ANj

 . (1)

1. (4 pts) Prove that all eigenvalues of P are real.

Hint: Start with the identity PV = V Λ where V is the matrix whose columns are the
eigenvectors of P and Λ is the diagonal matrix with the corresponding eigenvalues of
P along its diagonal.

2. (2 pts)The eigenvectors of P are, generally, not orthogonal with respect to the dot
product, i.e. V ⊤V ̸= I, where I is the N ×N identity matrix. Find a symmetric
positive definite matrix (?) such that V ⊤(?)V = IN×N where V is the matrix whose
columns are the eigenvectors of P , i.e., the eigenvectors of P are orthogonal with
respect to the (?)-inner product.

3. (4 pts) Evidently, the matrix L := P − I is not invertible because its row sums are
all equal to zero. However, in problem 5, HW7, we solved a linear system whose

1



matrix L̃ was obtained from L by removing the first and the last row and the first
and the last column of L:

L̃ := L2:(N−1),(2:N−1). (2)

Prove that the matrix L̃ is invertible.

Hint: Proceed from converse. Assume that there is x ∈ RN−2, x ̸= 0, such that
L̃x = 0, i.e., x is the eigenvector corresponding to the zero eigenvalue of L̃. Normalize
x so that its maximal entry in absolute value equals 1. Now observe that L̃x = 0 is
equivalent to x = P̃ x. Recall that P is irreducible, i.e., each pair of sites is connected
by a path in the maze (the maze can be thought of as a graph). This means that there
is a sequence connecting any pair of sites i and j,

(i, k1), (k1, k2), . . . , (ks, j)

such that the entries of P with subscripts in this sequence are positive.

2 Problem 2

Depicting graphs nicely is important as some properties of a graph can be first detected
by visual inspection.

(10 pts) We consider an approach based on minimizing an energy function for a graph.
An unweighted undirected graph G(V,E) consists of a set of vertices V = {1, . . . , N} a set
of edges E ⊂ {(i, j) | i, j ∈ V }. A graph G(V,E) can be defined by its adjacency matrix
A:

Ai,j =

{
1, (i, j) ∈ E

0, otherwise
, 1 ≤ i, j ≤ N. (3)

Since the graph is undirected, A is symmetric.
In a depiction of a graph, we want all linked vertices to be at a distance of 1 from each

other, while all unlinked vertices at a distance of at least as large as
√
3 of each other. The

value
√
3 is motivated by the distance between unlinked vertices in a right hexagon with

side 1. Motivated by this wish, we set up the following energy function

U(x,y) =
1

2

∑
(i,j)∈E

[√
(xi − xj)2 + (yi − yj)2 − 1

]2
(4)

+
1

2

∑
(i,j)/∈E

[√
(xi − xj)2 + (yi − yj)2 −

√
3

]2
−
,

where x,y ∈ RN , and[√
(xi − xj)2 + (yi − yj)2 −

√
3

]
−
= min

{√
(xi − xj)2 + (yi − yj)2 −

√
3, 0

}
(5)

2



The first sum is the sum of spring energies for all edges of the graph while the second sum
is the sum of all repelling spring energies of unlinked vertices. The corresponding force,

f(x,y) = −∇U(x,y),

is implemented in Matlab and Python functions called forces. To avoid large force when
the linked vertices are far from each other, these routines cap the absolute value of each
component of the attracting forces due to links by 1.

Task. Write a code that computes the positions of vertices of a graph and draws it.
You need to choose any appropriate deterministic optimizer except for the gradient descent
out of those that we have studied (BFGS line search, BFGS trust region, Nesterov, Adam,
Levenberg-Marquardt). The graph to test your code is defined by an adjacency matrix in
the file Adjacency_matrix.csv. The graph has N = 91 vertices. The initial positions of
the vertices can be chosen e.g. as Gaussian random variables with mean zero and standard
deviation N . You should obtain something like the graph in Fig. 1. My graph plotting

Figure 1: A depiction of the graph in Problem 2. This graph is a sample of the carbon
skeleton of a hydrocarbon molecule.

routines are provided in Matlab and Python functions plot_graph. Please feel free to
write your own plotting routine. In this case, make sure to set an equal aspect ratio and
turn the axes off. Also, you are welcome to modify the energy function in any reasonable
manner as soon as the resulting graph depiction satisfies the guideline highlighted in italics
above.

3



Submit the resulting figure of the graph, specify which optimizer you implemented, and
include the progress report for the optimizer. Plot the norm of the force versus iteration
number in log scale along the y-axis and print the norm of the residual every once in a
while. Link your code to your pdf file.

3 Problem 3.

(10 pts)

1. Consider a 2D Ising model on a square lattice with periodic boundary conditions.
Find the change in energy, ∆H = Hnew − H, resulting from flipping a spin at site
(i, j). Your expression should involve only the spin at (i, j) and its nearest neighbors.

2. Write a code to compute the mean magnetization µ(β) for the 2D Ising model by the
Metropolis algorithm. Use a 30 × 30 lattice with the periodic boundary conditions,
i.e., the nearest neighbors of site (i, j) where 0 ≤ i, j ≤ 29 are (i ± 1 mod 30, j ± 1
mod 30). Your program should compute the running mean and the running variance
of the magnetization. These quantities are defined, respectively, by

m̄k =
1

k

k∑
i=1

mi, [Var(m)]k =
1

k − 1

k∑
i=1

(mi − m̄i)
2,

where k is the current number of iterations. Note that you do not need to store all
values of the magnetization. You need only to update m̄k and Var(m̄)k using the
new value of m and the running mean m̄k at each iteration.

3. Recall that the analytic expression for the mean magnetization is

µ(β) =

{(
1− [sinh(2β)]−4

)1/8
, β > 1/Tc = 0.4408,

0, β < 1/Tc = 0.4408.
(6)

Use your code to calculate µ for the set of values of β = 0.2:0.01:1. Initially, set
all spins up for each value of β. Desirably, use kmax = 108 iterations for each value
of β. You can use a smaller number of iterations while debugging and then run your
code overnight with kmax = 108. If your computer is slow, please feel free to reduce
kmax appropriately.

Plot the graph of the computed mean magnetization as a function of β and superim-
pose it with the graph of µ(β) given by Eq. (6). Also plot m̄±

√
Var(m.

Submit your derivation for Question 1, your plot, and link your code to your pdf file.

4


	Problem 1
	Problem 2
	Problem 3.

