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1. Introduction

Monte Carlo methods are those where one evaluates something nonrandom using pseu-
dorandom numbers. More precisely, one evaluates a nonrandom quantity as the expected
value of a random variable. On the contrary, simulations produce random variables with
a certain distribution without the purpose of evaluating some expected value.

Typically, the error in Monte-Carlo methods decays as n−1/2 where n is the number of
samples that is worse than the error decay rate in most deterministic methods (it is usually
at least as good as n−1). So, why bother? The reason is that, in many cases, deterministic
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methods cannot be used due to the “curse of dimensionality” or the large scale of the
problem. In some of these cases, Monte-Carlo methods can be efficient.

For example, to find the mean magnetization in a 3D Ising model with N sites, one needs
to average the value of the magnetization over 2N different spin configurations. If we are
considering a 3D 10×10×10 grid, then N = 1000, and 21000 ∼ 10301, a huge number, that
makes the deterministic calculation infeasible. On the contrary, a Monte Carlo calculation
gives an accurate enough estimate in a reasonable time.

2. Pseudorandom numbers

Pseudorandom numbers are generated by pseudorandom number generators. A pseu-
dorandom number generator produces a deterministic sequence of numbers starting from
a seed state that can be specified by the user. Good pseudorandom number generators
produce sequences that cannot be distinguished from random numbers by simple tests.
In C, the operators rand() and random() produce a uniformly distributed pseudorandom
number in the interval [0 . . . RAND_MAX], where RAND_MAX is a constant defined in the library
stdlib.h. It is platform-dependent. In most modern computers,

RAND_MAX = 231 − 1 = 2147483647,

the maximal int in C. (The range of int in C is from−231 to 231−1.) However, the function
rand() produces a periodic sequence with period RAND_MAX while the sequence produced by
random() is indistinguishable from the sequence of random numbers uniformly distributed
between 0 and RAND_MAX for all practical purposes to the best of my knowledge. Below is a
C program generating pseudorandom numbers using random() and rand() and its output.
Note that the sequence generated by rand() is periodic with period RAND_MAX while the
sequence generated by random() is not. Therefore, you can use rand() only if you need the
number of samples significantly less that RAND_MAX. If RAND_MAX] = 2147483647 ∼ 2 · 109
as above, do not use rand() if you you need more that 107 samples.

#include <stdio.h>

#include <stdlib.h>

#include <time.h>

int main(void);

int main() {

int r;

int i;

printf("RAND_MAX = %i\n",RAND_MAX); // 2^31 - 1

printf("Using random():\n");

for(i = 0; i < RAND_MAX-1; i++) {

r = random(); /* Generate a random integer */

if( i < 10 ) printf("%i\n", r);

}

printf("\n");
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for(i = 0; i < RAND_MAX-1; i++) {

r = random(); /* Generate a random integer */

if( i < 10 ) printf("%i\n", r);

}

/* ... */

printf("\nUsing rand()\n");

for(i = 0; i < RAND_MAX-1; i++) {

r = rand(); /* Generate a random integer */

if( i < 10 ) printf("%i\n", r);

}

printf("\n");

for(i = 0; i < RAND_MAX-1; i++) {

r = rand(); /* Generate a random integer */

if( i < 10 ) printf("%i\n", r);

}

return 1;

}

Marias-iMac:Desktop mariacameron$ gcc RandomNumbers.c -lm -O3

Marias-iMac:Desktop mariacameron$ ./a.out

RAND_MAX = 2147483647

Using random():

1804289383

846930886

1681692777

1714636915

1957747793

424238335

719885386

1649760492

596516649

1189641421

377605215

52479496

850182889

2103788022

905904603

1692932299

1981079694

174340263

1245720282

1365390958
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Using rand()

16807

282475249

1622650073

984943658

1144108930

470211272

101027544

1457850878

1458777923

2007237709

16807

282475249

1622650073

984943658

1144108930

470211272

101027544

1457850878

1458777923

2007237709

Marias-iMac:Desktop mariacameron$

In order to generate a uniformly distributed random variable on (0, 1), i.e., η ∼ U(0, 1),
we code:

eta = (double)random()/RAND_MAX;

Matlab is excellent for programming prototypes of algorithms. It has a number of tools
to generate pseudorandom numbers:

• Function rand generates a random variable uniformly distributed in (0,1).
• Function randi generates a random integer uniformly distributed in the provided
interval.
• Function randn generates standard normal random variables, i.e., Gaussian random
variables with mean 0 and variance 1.
• Function randperm generates a random permutation of numbers from 1 to n where
n is user-supplied.

For more details, read
https://www.mathworks.com/help/matlab/random-number-generation.html.

Python has a lot of resources for generating random numbers and sampling from com-
monly used distributions.

• The module random: https://docs.python.org/3/library/random.html.

https://www.mathworks.com/help/matlab/random-number-generation.html
https://docs.python.org/3/library/random.html
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• Pseudorandom numbers in NumPy:
https://numpy.org/doc/stable/reference/random/index.html.
• statistical tools in SciPy: https://docs.scipy.org/doc/scipy/reference/stats.html.

3. Sampling random variables with given distribution

Typically, the goal of sampling is to evaluate an expected value of a random variable
(RV) η with a given pdf fη(x), i.e., the integral of the form

E[η] =

∫
xfη(x)dx.

If η is a vector random variable belonging to Rd with d > 3, the direct integration using
quadrature rules can be too expensive and too memory-demanding. Then Monte Carlo
integration becomes a reasonable choice. If we are able to generate N independent samples
of η, and η has a finite variance σ2, we can estimate E[η] as follows:

E[η] =

∫
xfη(x)dx ≈

1

N

N∑
i=1

ηi.

Recall that by the Central Limit Theorem,

1

N

N∑
i=1

ηi ∼ N
(
E[η],

σ2

N

)
.

Most programming languages have tools for generating a uniformly distributed random
variable ξ on the interval [0, 1]. Below we will discuss three approaches for sampling other
kinds of RVs.

3.1. Inversion. Suppose we need to sample a random variable η with a pdf f(x). Assume
that we can integrate f(x) analytically, i.e., have an analytic expression for the cumulative
distribution function (CDF) F (x). Assume that f(x) ≡ 0 for x < 0. We observe that∫ x

0
fη(y)dy = Fη(x) = ξ. Hence x = F−1

η (ξ),

where F−1
η (ξ) is the inverse function of Fη. It exists if Fη(x) is strictly increasing. If

ξ ∼ U(0, 1) is uniformly distributed on [0, 1] then F−1
η (ξ) has CDF Fη(x). Indeed, the

CDF of ξ ∼ U(0, 1) is

Fξ(x) = P(ξ ≤ x) =


1, x ≥ 1

x, 0 ≤ x < 1

0, x < 0

.

By definition of the CDF,
Fη(x) = P(η ≤ x).

On the other hand, if we replace η with F−1
η (ξ) where ξ ∼ U(0, 1), we get

P(η ≤ x) = P(F−1
η (ξ) ≤ x) = P(ξ ≤ Fη(x)) = Fξ(Fη(x)) = Fη(x).

https://numpy.org/doc/stable/reference/random/index.html
https://docs.scipy.org/doc/scipy/reference/stats.html
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Here we used the fact that Fξ(x) = x for 0 ≤ x ≤ 1.

Example 1 Suppose we need to generate an exponentially distributed
random variable η with pdf

(1) fη(x) =

{
ae−ax, x ≥ 0

0, x < 0,
where a > 0 is a constant.

The CDF of η is given by

Fη(x) = P(η ≤ x) =

∫ x

0
ae−aydy = 1− e−ax.

Let ξ ∼ U(0, 1). Then η can be generated from ξ by

η = F−1
η (ξ) = − 1

a log(1− ξ).

Observing that 1 − ξ is also a random variable uniformly distributed on
[0, 1], we can choose to generate η by

η = F−1
η (1− ξ) = − 1

a log(ξ).

The limitation of the inversion method is due to the fact that not all pdfs are analytically
integrable to CDFs.

3.2. The change of variables. The Box-Muller algorithm. The Box-Muller algo-
rithm for generating Gaussian random variables exemplifies the change of variables ap-
proach.

Suppose we need to generate a Gaussian random variable (RV) η with mean 0 and
variance σ2 (i.e., η ∼ N (0, σ2)) while we have a built-in function for generating a random
variable ξ uniformly distributed on [0, 1]. Unfortunately, the pdf of η

(2) f(x) =
1√
2πσ2

e−
x2

2σ2

is not analytically integrable. Therefore, we cannot use the inversion method directly.
However, we can generate pairs of independent jointly Gaussian RVs (η1, η2) given a pair
of independent RVs (ξ1, ξ2) uniformly distributed on [0, 1].

Let us elaborate this point. The joint pdf of two i.i.d. Gaussian RVs η1, η2 ∼ N (0, σ2)
is

(3) fη1,η2(x, y) = fη1(x)fη2(y) =
1

2πσ2
e−

x2+y2

2σ2 .

Now let us to switch to the polar coordinates

r =
√
x2 + y2 and θ =

{
arctan y

x , x ≥ 0,

π + arctan y
x , x < 0.

.

Respectively, x = r cos θ, y = r sin θ.
Let us recall the general formula for the variable change in a joint pdf. Suppose we have

RVs
(X1, . . . Xn) ∈ ΩX with the joint pdf fX1,...,Xn(x1, . . . , xn).



MONTE CARLO METHODS 7

The desired RVs (Y1, . . . , Yn) ∈ ΩY are functions of X1, ..., Xn:

Yi = gi(X1, . . . , Xn), i = 1, . . . , n.

To be able to compute the joint pdf for the RVs Y1, ..., Yn, we make the following assump-
tions.

• The system of equations yi = gi(x1, . . . , xn), i = 1, . . . , n is uniquely solvable for
x1, ..., xn for any given (y1, . . . , yn) ∈ ΩY , and the solution is given by xi =
hi(y1, . . . , yn), i = 1, . . . , n.
• The Jacobian

J(x1, . . . , x1) = det

[(
∂gi(x1, . . . , xn)

∂xj

)n

i,j=1

]
̸= 0 for all (x1, . . . , xn) ∈ ΩX .

Then the joint pdf for the RVs Y1, ..., Yn is given by

(4) fY1,...,Yn(y1, . . . , yn) = fX1,...,Xn(x1, . . . , xn)|J(x1, . . . , xn)|−1,

where xi = hi(y1, . . . , yn), i = 1, . . . , n.
Using formula (4), we obtain the joint pdf for the random variables R and Θ, the polar

radius and polar angle, from the joint pdf (3) for η1, η2 ∼ N (0, σ2):

(5) fR,Θ(r, θ) =
1

2πσ2
exp

{
− r2

2σ2

}
r,

where the factor r come from the calculation

|J(x, y)|−1 =

∣∣∣∣ ∂(r, θ)∂(x, y)

∣∣∣∣−1

=

∣∣∣∣∂(x, y)∂(r, θ)

∣∣∣∣ = r.

We observe that the pdf fR,Θ(r, θ) is independent of θ, hence the marginal pdf of θ is
uniform on [0, 2π]. Therefore, if ξ2 ∼ U(0, 1) then Θ can be set to 2πξ2. The marginal pdf
for R is found by integrating out Θ:

fR(r) =

∫ 2π

0
fR,Θ(r, θ)dθ =

1

σ2
e−

r2

2σ2 r.

We observe that the pdf fR(r) is analytically integrable:

FR(a) = P(r ≤ a) =
1

σ2

∫
√
r2≤a

e−
r2

2σ2 rdr =
1

σ2
σ2

∫ a2/(2σ2)

0
e−tdt = 1− e−a2/(2σ2).

Then we set:

FR(a) = 1− e−a2/(2σ2) = 1− ξ1,

where ξ1 ∼ U(0, 1), and use the fact that if ξ1 is uniformly distributed on [0, 1], then so is
1− ξ1. Inverting FR, we find:

(6) a =
√
−2σ2 log ξ1.
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In summary, to obtain η1, η2 ∼ N (0, σ2), i.i.d., we generate ξ1, ξ2 ∼ U(0, 1), i.i.d. and
set

(7)

{
η1 = a cos θ =

√
−2σ2 log ξ1 cos(2πξ2)

η2 = a sin θ =
√
−2σ2 log ξ1 sin(2πξ2)

Equation (7) is the Box-Muller formula for generating pairs of independent jointly Gaussian
random variables with mean 0 and variance σ2.

The method of variable change can be used in some other situations provided that we can
find a variable change such that the new variables have analytically integrable marginals
and hence can be obtained by the inversion method. The method of variable change is not
universal since there is no general recipe for finding such a variable change. However, it
does work beautifully for generating i.i.d. Gaussian RVs.

3.3. Acceptance-rejection method. Reference: note by Prof. K. Sigman (Columbia
University):
http://www.columbia.edu/∼ks20/4703-Sigman/4703-07-Notes-ARM.pdf.

Contrary to the inversion method and the method of variable change, the acceptance-
rejection method is universal in the following sense. Suppose we want to sample an RV
with pdf f(x). Suppose we can find an RV with pdf g(x) that we can sample and the pdf
g(x) is such that

(8) sup
x∈R

f(x)

g(x)
=: c <∞.

Then the rejection method will work. However, if c ≫ 1, the rejection method will be
wasteful.

Algorithm 1: The Acceptance-Rejection algorithm

Initialization:
Set accept = False

The main body:
while accept == False do

1: Generate a sample ξ of a random variable with pdf g(x)
2: Generate a sample of u ∼ U(0, 1)
3: if

u ≤ f(ξ)

cg(ξ)

then
4: Set η = ξ
5: Set accept = True

Algorithm 1 generates a single sample of a random variable η with pdf f(x). If you need
n samples of η, put the while-loop inside a for-loop.

http://www.columbia.edu/~ks20/4703-Sigman/4703-07-Notes-ARM.pdf
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The number of calls of step 1 in Algorithm 1 is a geometric random variable with the
probability of success

p = P
(
u ≤ f(ξ)

cg(ξ)

)
.

Therefore, the probability that the number of calls of step 1 is n is

P(N = n) = (1− p)n−1p.

The expected number of calls of step 1 required to generate a sample of η is

E[N ] =
∞∑
n=1

n(1− p)n−1p = p
∞∑
n=1

n(1− p)n−1 =
1

p
.

This sum was calculated using the observation that
∞∑
n=1

n(1− p)n−1 = − d

dp

∞∑
n=0

(1− p)n = − d

dp

(
1

1− (1− p)

)
= − d

dp

(
1

p

)
=

1

p2
.

Proposition 1. The expected number of calls of step 1 in Algorithm 1 is c.

Proof. Using the law of total probability we get

p = P
(
u ≤ f(ξ)

cg(ξ)

)
=

∫ ∞

−∞
P
(
u ≤ f(ξ)

cg(ξ)
ξ = y

)
g(y)dy

=

∫ ∞

−∞

f(y)

cg(y)
g(y)dy =

1

c

∫ ∞

−∞
f(y)dy =

1

c
.

□

The resulting random variable η has a conditional distribution of ξ conditioned on the
event

E :=

{
u ≤ f(ξ)

cg(ξ)

}
.

Now we will prove that the pdf of the random variable η generated by Algorithm 1 is
f(y).

Proposition 2. The pdf of the random variable η generated by Algorithm 1 is f(y).

Proof. We will prove that the cumulative distribution function (CDF) F (y) of η is equal
to

F (y) =

∫ y

−∞
f(t)dt.

By construction,

Fη(y) = P(η ≤ y) = P
(
ξ ≤ y u ≤ f(ξ)

cg(ξ)

)
.

Let A be the event that {ξ ≤ y}. Let B be the event that u ≤ f(ξ)
cg(ξ) . We will use Bayes’

theorem saying that

P(A|B) =
P(B|A)P(A)

P(B)
.

https://en.wikipedia.org/wiki/Geometric_distribution
https://en.wikipedia.org/wiki/Law_of_total_probability
https://en.wikipedia.org/wiki/Bayes%27_theorem
https://en.wikipedia.org/wiki/Bayes%27_theorem
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Therefore,

Fη(y) = P
(
ξ ≤ y u ≤ f(ξ)

cg(ξ)

)
=

P
(
u ≤ f(ξ)

cg(ξ) ξ ≤ y
)
P(ξ ≤ y)

P
(
u ≤ f(ξ)

cg(ξ)

) .

To compute F (y), we will take into account the following facts. First, P(ξ ≤ y) is he CDF

of ξ: G(y) = P(ξ ≤ y). Second, P
(
u ≤ f(ξ)

cg(ξ)

)
= 1

c by Proposition 1. Hence, we find:

Fη(y) = P
(
ξ ≤ y u ≤ f(ξ)

cg(ξ)

)
=

P
(
u ≤ f(ξ)

cg(ξ) ξ ≤ y
)
P(ξ ≤ y)

P
(
u ≤ f(ξ)

cg(ξ)

)
=

P
(
u ≤ f(ξ)

cg(ξ) & ξ ≤ y
)

1
c

= c

∫ y

−∞
P
(
u ≤ f(ξ)

cg(ξ)
ξ = t

)
g(t)dt

= c

∫ y

−∞

f(t)

cg(t)
g(t)dt =

∫ y

−∞
f(t)dt,

as desired. □

Example 2 The Acceptance-Rejection method can be used to generate
the standard Gaussian random variable from the exponential random vari-
able. Let η ∼ N (0, 1) be the Gaussian RV with mean 0 and variance 1.
The pdf of η is

(9) fη(y) =
1√
2π

e−
y2

2 .

Let ξ be the exponential RV with pdf g(y) = e−y. We can readily obtain
samples of ξ using the inversion method. Let u ∼ U(0, 1). then ξ =
− log(u).

First, we note that the Gaussian RV can have either sign while the ex-
ponential RV is nonnegative. Hence, for negative y, the ratio fη(y)/g(y) is
infinite. To overcome this difficulty, we will generate the RV |η| whose pdf
is

(10) f|η|(y) =

√
2

π
e−

y2

2 .

Since η is symmetric w.r.t y = 0, we can generate a Bernoulli RV s that
takes values ±1 with probability p = 1/2. This can be done by generating
v ∼ U(0, 1) and setting s = −1 if v ≤ 1/2 and s = 1 otherwise.

The ratio of pdfs of |η| and ξ is

r(y) =
f|η|(y)

g(y)
=

√
2

π
e−

y2

2
+y, y ≥ 0.
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Taking its derivative and setting it to zero we find that the maximum of
r(y) is achieved at y = 1 and is equal to

c =

√
2

π
e

1
2 .

Hence, the ratio that is compared with a sample of u ∼ U(0, 1) at step 2 of
Algorithm 1 is

f|η|(y)

cg(y)
= e−

y2

2
+y− 1

2 = e−
1
2
(y−1)2 .

Finally, we note that the inequality

u ≤ e−
1
2
(y−1)2 is equivalent to log u ≤ −1

2
(y − 1)2.

Below is a vectorized MATLAB code implementing the algorithm for sampling N (0, 1)
using exponential RV with pdf f(x) = e−x, x ≥ 0, and f(x) = 0 otherwise. Figure 1 is
generated by this code.

function AcceptRejectMethod()

%% Generate eta ~ N(0,1) using exp(-xi)

% see http://www.columbia.edu/~ks20/4703-Sigman/4703-07-Notes-ARM.pdf

N = 1e8; % the number of samples

v = rand(N,1);

xi = -log(v);

u = rand(N,1);

log_u = log(u);

% generate signs for eta

b = rand(N,1);

ind = b < 0.5;

s = ones(N,1);

s(ind) = -1;

%

log_ratio = -0.5*(xi - 1).^2;

ind = find(log_u <= log_ratio);

Na = length(ind); % the number of accepted RVs

eta = xi(ind).*s(ind);

fprintf(’N/Na = %d, C = sqrt(2*e/pi) = %d\n’,N/Na,sqrt(2*exp(1)/pi));

%

%% plot a histogram to test the distribution

nbins = 500; % the number of bins

etamax = max(eta);

etamin = min(eta);

nb1 = nbins + 1;

x = linspace(etamin,etamax,nb1);

h = x(2) - x(1); % bin width
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% xc = centers of bins

xc = linspace(etamin + 0.5*h,etamax - 0.5*h,nbins);

hh = zeros(nbins,1); % heights of the bins

for i = 1 : nbins

ind = find(eta >= x(i) & eta < x(i + 1));

hh(i) = length(ind);

end

hh = hh/(Na*h); % scale the histogram

f = exp(-0.5*x.^2)/sqrt(2*pi);

figure;

plot(x,f,’r’,’Linewidth’,2);

hold on;

plot(xc,hh,’b’,’Linewidth’,2);

grid;

set(gca,’Fontsize’,20);

xlabel(’x’,’Fontsize’,20);

ylabel(’f(x)’,’Fontsize’,20);

legend(’True N(0,1)’,’Generated N(0,1)’);

end

-6 -4 -2 0 2 4 6
x

0

0.1

0.2

0.3

0.4

f(
x)

True N(0,1)
Generated N(0,1)

Figure 1. Figure generated by the code in Section 3.3.

4. Monte-Carlo integration

Monte-Carlo integration means the use of sampling for evaluating integrals. It can be
used beyond the context of finding expected values of random variables.

Suppose we need to calculate an integral of the form

I =

∫ b

a
g(x)f(x)dx, where

f(x) ≥ 0, x ∈ [a, b], and

∫ b

a
f(x)dx = 1.
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Such integral can be interpreted as the expected value of the function g of the RV η with
the pdf f(x), i.e.,

I =

∫ b

a
g(x)f(x)dx =

∫ b

a
g(x)f(x)dx = Ef [g(η)].

Suppose we can sample i.i.d. RVs ηi each of which has the pdf f(x) and a finite variance.
According to the strong law of large numbers,

lim
n→∞

1

n

n∑
i=1

g(ηi) = Ef [g(η)] a.s.

The integral I is called the estimand, the random variable g(η) is called the estimator, and
the quantity

(11)
1

n

n∑
i=1

g(ηi)

is the estimate. This method of evaluating integrals is called the Monte Carlo integration.
According to the central limit theorem,

1

n

n∑
i=1

g(ηi) −→ N
(
Ef [g(η)],

Var(g(η))

n

)
in distribution.

Therefore, the error of the estimate (11) is of the order of

(12) err ∼
√

Var(g(η))√
n

.

Eq. (12) suggests two ways to reduce the error of the Monte-Carlo integration: (i) to
increase the number of samples n, and (ii) to reduce the variance in the numerator. In-

creasing the number of samples is simple but costly, as the error decays as n−1/2. A better
idea is to reduce the variance of g(η). One approach to the variance reduction is called the
importance sampling.

4.1. Importance sampling. Suppose we need to calculate the integral

I =

∫ b

a
g(x)dx.

In order to make the Var(g(η)) small we need to find a function h(x) with the following
properties:

(1) The integral

I1 =

∫ b

a
h(x)dx

is easy to evaluate;
(2) h(x) ≥ 0;

https://en.wikipedia.org/wiki/Central_limit_theorem
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(3) We can sample a random variable with the pdf

h(x)

I1
easily;

(4) g(x)/h(x) varies little.

Then we have

I =

∫ b

a
g(x)dx = I1

∫ b

a

g(x)

h(x)

h(x)

I1
dx

= I1Eh

[g
h
(η)

]
≈ I1

n

n∑
i=1

g(ηi)

h(ηi)
,

where η has the pdf h(x)/I1. See the example with

I =

∫ 1

0
cos(x/5)e−5xdx

in [2].

4.2. Monte Carlo integration in higher dimensions. Suppose we would like to eval-
uate the integral

(13) I =

∫
Ω
g(x)dx

where Ω ⊂ Rn. We proceed as we did in 1D. Let us generate a random variable η whose
pdf fη(x) is nonzero in Ω and zero elsewhere and rewrite Eq. (13) as

(14) I =

∫
Ω

g(x)

fη(x)
fη(x)dx

By the strong law of large numbers,

(15) I =

∫
Ω

g(x)

fη(x)
fη(x)dx = Eη

[
g(x)

fη(x)

]
≈ 1

N

N∑
i=1

g(ηi)

fη(ηi)
,

where ηi, 1 ≤ i ≤ N , are samples of the random variable η with pdf fη(x).
Suppose η is uniformly distributed in Ω. Then its pdf is given by

(16) fη(x) =

{
1
|Ω| , x ∈ Ω

0, x /∈ Ω,

where |Ω| is the volume of Ω. In this case, Eq. (17) becomes:

(17) I =

∫
Ω

g(x)

fη(x)
fη(x)dx ≈

|Ω|
N

N∑
i=1

g(ηi).
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Similarly we proceed when we need to calculate an integral over a k-dimensional hyper-
surface S embedded into Rn:

(18) I =

∫
S
g(x)dσ,

where dσ is a surface element. Let η be a random variable whose pdf is supported at the
hypersurface S, i.e. fη(x) > 0 if and only if x ∈ S. Then the integral is approximated by

(19) I =

∫
S
g(x)dσ ≈ 1

N

N∑
i=1

g(xi)

fη(xi)
,

where xi, 1 ≤ i ≤ N are samples of the random variable η. If η is uniformly distributed on
the hypersurface S, then

(20) I =

∫
S
g(x)dσ ≈ |S|

N

N∑
i=1

g(xi),

where |S| is the measure (k-dimensional area) of S:

(21) |S| =
∫
S
dσ.

Example 17 Consider the integral

(22) I =

∫
Sn−1

g(x)dσ,

where Sn−1 is the unit n− 1-dimensional sphere (n-sphere) embedded into Rn:

Sn−1 = {x = (x1, . . . , xn) ∈ Rn | x21 + . . .+ x2n = 1}.

Let us generate N samples of random variable η uniformly distributed on Sn. This can
be done as follows. First we generate an array N × n of independent Gaussian random
variables with mean 0 and variance 1. It is well-known that n independent Gaussian
random variables with mean zero and variance 1 have the joint pdf

(23) fη1,...,ηn(x1, . . . , xn) =
1

(2π)n/2
e−

x21+...+x2n
2 ≡ 1

(2π)n/2
e−

r2

2 ,

where r :=
√

x21 + . . .+ x2n. Let us treat each row of our array as a sample of a vector
random variable ξ with pdf given by Eq. (23). The distribution of ξ is spherically sym-
metric. Hence, we can obtain the desired random variable η uniformly distributed on the
unit sphere by normalizing the radius of ξ:

(24) η =
ξ√

ξ21 + . . .+ ξ2n
.

In matlab, N samples of a random variable η uniformly distributed on the unit n-sphere
can be generated by the following set of commands:

https://en.wikipedia.org/wiki/N-sphere


16 MARIA CAMERON

xi = randn(N, n);

aux = sqrt(sum(xi.^2, 2))*ones(1, n);

eta = xi./aux;

The surface area of the unit sphere Sn−1 is given by

(25) |Sn−1| =
2πn/2

Γ(n2 )
,

where

Γ(x) :=

∫ ∞

0
tx−1e−tdt

is the Gamma-function. Thus, the integral (22) can be estimated as

S = 2*pi^(n/2)/gamma(n/2);

I = sum(g(eta))*S/N;

where n, N , and the function y = g(x) must be provided. A table of exact integrals of
some functions over unit hypersphere are found here.

• For n = 4 and g(x) = x21x
2
2, the exact integral (22) is

I =

∫
S3

x21x
2
2dσ =

π2

12
= 0.8224670 . . . ,

while its estimate using 106 samples is 0.8227420, and its error estimate is 10−3.
• For n = 10 and g(x) = x21, the exact integral (22) is

I =

∫
S9

x21dσ =
π5

120
= 2.550164 . . . ,

while its estimate using 106 samples is 2.548990, and its error estimate is 3 · 10−3.

5. Motivating example. The Ising model

References:

• A. Chorin and O. Hald, “Stochastic Tools in Mathematics and Science”, Second
Edition, Springer, 2009.
• Harvey Gould and Jan Tobochnik, “Magnetic systems”. Lecture notes.

We will consider the Ising model in 2D. It is straightforward to promote it in 3D. For
simplicity, we consider a 2D N ×N mesh with periodic boundary conditions, i.e., each site
(i, j), 0 ≤ i, j ≤ N − 1, has four nearest neighbors:

(i− 1 mod N, j), (i+ 1 mod N, j), (i, j − 1 mod N), (i, j + 1 mod N).

The spin at each site (i, j) can be up, si,j = +1, or down, si,j = −1. The total energy of
the spin system is the sum of energies of the magnetic interactions of the spins si,j at the
nearest neighbors of the mesh:

(26) H({si,j}) = −
N−1∑
i,j=0

si,j [si+1,j + si,j+1] ,

https://en.wikipedia.org/wiki/Gamma_function
http://www.ebyte.it/library/docs/math05a/nDimSphereSurfaces05.html
https://umaryland.on.worldcat.org/oclc/656394942
https://umaryland.on.worldcat.org/oclc/656394942
http://stp.clarku.edu/notes/chap5.pdf
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where the addition in indices is modulo N .
The probability of each of the 2N

2
spin microstates is

(27) P({si,j}) =
1

Z
e−βH({si,j}),

where β−1 is the temperature times Boltzmann’s constant and Z is the normalization
constant:

Z =
∑
{si,j}

e−βH({si,j}).

A physical question of interest is finding the mean magnetization at the given β. The
magnetization of a microstate is the sum of the spins divided by the number of sites:

(28) m({si,j}) =
1

N2

N∑
i,j=0

si,j .

The mean magnetization is

(29) µ(β) = E [m({si,j})] =
∑
{si,j}

m({si,j})P({si,j}),

where m and P are given by equations (28) and (27) respectively.
The 2D Ising model is interesting because it exhibits a phase transition. If the temper-

ature β−1 is low, almost all spins are aligned up or down. Hence, the mean magnetization
µ is close to 1 or to −1. If β−1 > β−1

c = 2.269, (βc = 0.4407) the spins relatively easily
flip up and down and the resulting mean magnetization is zero. The exact formula for the
mean magnetization is due to C. N. Yang (1952):

(30) µ(β) =

{
±
(
1− [sinh(2β)]−4

)1/8
, β > βc

0, β < βc
.

The direct calculation of the mean magnetization by formula (29) is infeasible because

the number of terms in the sum is extremely large, 2N
2
. Moreover, the normalization

constant Z is unknown.
However, despite the number of terms the sum in (29) is huge, the overwhelming majority

of them is very small and do not contribute much to the sum. This suggests that we should
use some kind of importance sampling, i.e., an algorithm that samples the large terms in
the sum in (29). The Metropolis algorithm described below is such an algorithm. It is an
example of a Markov Chain Monte Carlo (MCMC).

6. Markov Chains

Reference: J. R. Norris “Markov Chains”, Cambridge, UK ; New York : Cambridge
University Press, 1998.

https://umaryland.on.worldcat.org/oclc/35043455
https://umaryland.on.worldcat.org/oclc/35043455
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7. Discrete-time Markov chains

Think about the following problem.

Example 3 (Gambler’s ruin). Imagine a gambler who has $1 initially.
At each discrete moment of time t = 0, 1, . . ., the gambler can play $1 if he
has it and win one more $1 with probability p or lose it with probability
q = 1− p. If the gambler runs out of money, he is ruined and cannot play
anymore. What is the probability that the gambler will be ruined?

The gambling process described in this problem exemplifies a discrete-time Markov chain.
In general, a discrete-time Markov chain is defined as a sequence of random variables
(Xn)n≥0 taking a finite or countable set of values and characterized by the Markov property:
the probability distribution of Xn+1 depends only of the probability distribution of Xn and
does not depend on Xk for all k ≤ n − 1. We will denote this discrete set of values by S
and call it the set of states.

Definition 1. We say that a sequence of random variables (Xn)n≥0, where

Xn : Ω→ S ⊂ Z,
is a Markov chain with initial distribution λ and transition matrix P = (pij)i,j∈S if

(1) X0 has distribution λ = {λi | i ∈ S} and
(2) the Markov property holds:

P(Xn+1 = in+1 | Xn = in, . . . , X0 = i0) = P(Xn+1 = in+1 | Xn = in) = pinin+1 .

We will denote the Markov chain by Markov(P, λ). Note that the ith row of P = (pij) is
the probability distribution for Xn+1 conditioned on the fact that Xn = i. Therefore, all
entries of the matrix P are nonnegative, and the row sums are equal to one:

pij ≥ 0,
∑
j∈S

P(Xn+1 = j | Xn = i) =
∑
j∈S

pij = 1.

A matrix P satisfying these conditions is called stochastic or Markov.
We will address the following questions about Markov chains:

• What is the equilibrium probability distribution, i.e., the one that is preserved from
step to step?
• Does the probability distribution of Xn tend to the equilibrium distribution?

Prior to addressing these question, we will go over some basic concepts.

7.1. Time evolution of the probability distribution. If the set of states S is finite,
i.e., if |S| = N , then Pn is merely the nth power of P . If S is infinite, we define Pn by

(Pn)ij ≡ p
(n)
ij =

∑
i1∈S

. . .
∑

in−1∈S
pii1pi1i2 . . . pin−1j .

Notation. Pi(Xn = j) denotes the probability that the Markov process starting at i at
time 0 will reach state j at time n:

Pi(Xn = j) := P(Xn = j | X0 = i).



MONTE CARLO METHODS 19

Theorem 1. Let (Xn)n≥0 be a Markov chain with initial distribution λ and transition
matrix P . Then for all n,m ≥ 0

(1) P(Xn = j) = (λPn)j;

(2) Pi(Xn = j) = P(Xn+m = j | Xm = i) = p
(n)
ij .

Proof. (1)

P(Xn = j) =
∑
i0∈S

. . .
∑

in−1∈S
P(Xn = j,Xn−1 = in−1, . . . , X0 = i0)

=
∑
i0∈S

. . .
∑

in−1∈S
P(Xn = j | Xn−1 = in−1, . . . , X0 = i0)P(Xn−1 = in−1, . . . , X0 = i0)

=
∑
i0∈S

. . .
∑

in−1∈S
P(Xn = j | Xn−1 = in−1)P(Xn−1 = in−1 | Xn−2 = in−1) . . .P(X0 = i0)

=
∑
i0∈S

. . .
∑

in−1∈S
λi0pi0i1 . . . pin−1j = (λPn)j .

(2) The second statement is proven similarly.
□

7.2. Communicating classes and irreducibility. We say that state i leads to state j
(denote it by i −→ j) if

Pi(Xn = j for some n ≥ 0) > 0.

If i leads to j and j leads to i we say that i and j communicate and write i ←→ j. Note
that i leads to j if and only if one can find a finite sequence i1, . . . , in−1 such that

pii1 > 0, pi1i2 > 0, . . . , pin−1j > 0.

This, in turn, is equivalent to the condition that p
(n)
ij > 0 for some n.

The relation ←→ is an equivalence relation as it is

(1) symmetric as if i←→ j then j ←→ i;
(2) reflective, i.e., i←→ i;
(3) transitive, as i←→ j and j ←→ k imply i←→ k.

Therefore, the set of states is divided into equivalence classes with respect to the relation
←→ called communicating classes.

Definition 2. We say that a communicating class C is closed if

i ∈ C, i −→ j imply j ∈ C.

Once the chain jumps into a closed class, it stays there forever.
A state i is called absorbing if {i} is a closed class. In the corresponding network, the

vertex i has either only incoming edges, or no incident edges at all.
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Example 4 Let us identify the states in the Gambler’s ruin Markov
chain 3 with the number of dollars at each of them. It is easy to see that
states {1, 2, . . .} =: C1 constitute a communication class. The class C1 is
not closed because state 1 ∈ C1 leads to state 0 /∈ C1. State 0 is a closed
communicating class {0} =: C0 and an absorbing state.

Definition 3. A Markov chain whose set of states S is a single communicating class is
called irreducible.

7.3. Invariant distributions and measures.

Definition 4. A measure on a Markov chain is any vector λ = {λi ≥ 0 | i ∈ S}. A
measure is invariant (a. k. a stationary or equilibrium) if

λ = λP.

A measure is a distribution if, in addition,
∑

i∈S λi = 1.

Theorem 2. Let the set of states S of a Markov chain (Xn)n≥0 be finite. Suppose that for
some i ∈ S

Pi(Xn = j) = p
(n)
ij → πj as n→∞ for all j ∈ S.

Then π = {πj | j ∈ S} is an invariant distribution.

Proof. Since p
(n)
ij ≥ 0 we have πj ≥ 0. Show that

∑
j∈S πj = 1. Since S is finite, we can

swap the order of taking limit and summation:∑
j∈S

πj =
∑
i∈S

lim
n→∞

p
(n)
ij = lim

n→∞

∑
i∈S

p
(n)
ij = 1.

Show that π = πP :

πj = lim
n→∞

p
(n)
ij = lim

n→∞

∑
k∈S

p
(n−1)
ik pkj =

∑
k∈S

lim
n→∞

p
(n−1)
ik pkj =

∑
k∈S

πkpkj .

□

Remark If the set of states is not finite, then the one cannot exchange summation and

taking limit. For example, limn→∞ p
(n)
ij = 0 for all i, j for a simple symmetric random walk

on Z. {πi = 0 | i ∈ Z} is certainly an invariant measure, but it is not a distribution.

The existence of an invariant distribution does not guarantee convergence to it. For
example, consider the two-state Markov chain with transition matrix

P =

(
0 1
1 0

)
.

The distribution π = (1/2, 1/2) is invariant as

(1/2, 1/2)

(
0 1
1 0

)
= (1/2, 1/2).
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However, for any initial distribution λ = (q, 1− q) where q ∈ [0, 1/2) ∪ (1/2, 1], the limit

lim
n→∞

Pn

does not exist as

P 2k = I, P 2k+1 = P.

In order to eliminate such cases, we introduce the concept of aperiodic states.

Definition 5. Let us call a state i aperiodic, if p
(n)
ii > 0 for all sufficiently large n.

Theorem 3. Suppose P is irreducible and has an aperiodic state i. Then for all states j

and k, p
(n)
jk > 0 for all sufficiently large n. In particular, all states are aperiodic.

Proof. Since the chain is irreducible, there exist such r and s that p
(r)
ji > 0 and p

(s)
ik > 0.

Then for sufficiently large n we have

p
(r+n+s)
jk =

∑
i1,...,in∈S

p
(r)
ji1

pi1i2 . . . pin−1inp
(s)
ink
≥ p

(r)
ji p

(n)
ii p

(s)
ik > 0.

□

Definition 6. We will call a Markov chain aperiodic if all its states are aperiodic.

Theorem 4. Suppose that (Xn)n≥0 is a Markov chain with transition matrix P and initial
distribution λ. Let P be irreducible and aperiodic, and suppose that P has an invariant
distribution π. Then

P(Xn = j)→ πj as n→∞ for all j.

In particular,

p
(n)
ij → πj as n→∞ for all i, j.

A proof of this theorem is found in [5]. In the case where the set of states is finite, this
result can be proven using linear algebra. A building block of this proof is the Perron-
Frobenius theorem.

Theorem 5. Let A be an N ×N matrix with nonnegative entries such that all entries of
Am are strictly positive for all m > M . Then

(1) A has a positive eigenvalue λ0 > 0 with corresponding left eigenvector x0 where all
entries are positive;

(2) if λ ̸= λ0 is any other eigenvalue, then |λ| < λ0.
(3) λ0 has geometric and algebraic multiplicity one.

Let P be the stochastic matrix for a Markov chain with N states. For sufficiently large
n, all entries of Pn for stochastic irreducible aperiodic matrices P become positive. The
proof of this fact is similar to the one of Theorem 3. Furthermore, the largest eigenvalue
of a stochastic matrix is equal to 1. Indeed, since the row sums of P are ones, λ0 = 1 is an
eigenvalue with the right eigenvector e = [1, . . . , 1]⊤.
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Now let us show that the other eigenvalues are less than λ0 = 1 in absolute value. Let
(λ, v) be an eigenvalue and a corresponding right eigenvector of a stochastic matrix Pn.
We normalize v so that

vi = max
k∈S
|vk| = 1.

Since

λ = λvi =
∑
k∈S

p
(n)
ik vk,

we have

|λ| =

∣∣∣∣∣∑
k∈S

p
(n)
ik vk

∣∣∣∣∣ ≤∑
k∈S

p
(n)
ik |vk| ≤

∑
k∈S

p
(n)
ik = 1.

Since all p
(n)
ik > 0 and

∑
k∈S p

(n)
ik = 1, the equality holds if and only if (i) all vk are of

the same sign and (ii) |vk| = 1, k ∈ S. Hence, if the eigenvector v ̸= [1, . . . , 1]⊤ then the
corresponding eigenvalue λ has absolute value |λ| < 1. Finally, we observe that if (µ, v) is
an eigenpair of P than (µn, v) is an eigenpair of Pn. Therefore, an irreducible and aperiodic
P has a unique eigenvalue λ0 = 1, and all other eigenvalues have absolute values less than
1.

Remark The fact that the eigenvalues of a stochastic matrix do not exceed 1 in absolute
value is an instance of the Gershgorin Circle Theorem.

Theorem 6. Every irreducible aperiodic Markov chain with a finite number of states N
has a unique invariant distribution π. Moreover,

(31) lim
n→∞

qPn = π

for any initial distribution q.

Proof. The Perron-Frobenius theorem applied to a finite stochastic irreducible aperiodic
matrix P implies that the largest eigenvalue of P is λ0 = 1 and all other eigenvalues are
strictly less than 1 in absolute value. The left eigenvector π, corresponding to λ0 has
positive entries and can be normalized so that they sum up to 1. Hence,

π = πP,
N∑
i=1

πi = 1.

Now let us establish convergence. First we consider the case when P is diagonalizable:

P = V ΛU,

where Λ is the matrix with ordered eigenvalues along its diagonal:

Λ =


1

λ1

. . .

λN−1

 , 1 > |λ1| ≥ . . . ≥ |λN−1|,

https://en.wikipedia.org/wiki/Gershgorin_circle_theorem
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V is the matrix of right eigenvectors of P : PV = V Λ, such that its first column is
e = [1, . . . , 1]⊤. U = V −1 is the matrix of left eigenvectors of P : UP = ΛU . The
first row of U is π = [π1, . . . , πN ]. One can check that if UV = IN , these choices of the
first column of V and the first row of U are consistent. Therefore, taking into account that∑N

i=1 qi = 1, we calculate:

lim
n→∞

qPn

= lim
n→∞

[q1 q2 . . . qN ]


1 ∗ ∗ ∗
1 ∗ ∗ ∗

. . .
1 ∗ ∗ ∗



1

λn
1

. . .

λn
N−1



π1 π2 . . . πN
∗ ∗ ∗ ∗

. . .
∗ ∗ ∗ ∗



= [1 0 . . . 0]


1

0
. . .

0



π1 π2 . . . πN
∗ ∗ ∗ ∗

. . .
∗ ∗ ∗ ∗


= [π1 π2 . . . πN ].

In the case when P is not diagonalizable, the argument is almost identical, just a bit
more tedious. We consider the Jordan decomposition of P

P = V JU

where U = V −1 and J is the Jordan form of of P , i.e., a block-diagonal matrix of the form:

J =


1

J1
. . .

Jr

 ,

with the first block being 1×1 matrix J0 ≡ 1, and respectively, the first column of V being
[1, . . . , 1]⊤, and the first row of U being π – the right and left eigenvectors corresponding
to the eigenvalue 1, and the other blocks Ji of sizes mi ×mi, where 1 ≤ mi ≤ N − 1 and
m1 + . . .+mr = N − 1, of the form

(32) Ji =


λi 1

λi 1
. . .

. . .

λi

 =: λiImi×mi + E.

Exercise (1) Check that the matrix E in Eq. (32) with ones right above the diagonal
and all other entries zero is nilpotent. More precisely, Emi = 0mi×mi .

(2) Check that the matrices λiImi×mi and E commute.
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(3) Check that

Jn
i =

mi−1∑
k=0

(
n
k

)
λn−k
i Ek.

(4) Argue that
lim
n→∞

Jn
i = 0mi×mi

provided that |λi| < 1.
(5) Now prove Eq. (31) for the case when P is not diagonalizable.

□

8. Time reversal and detailed balance

For Markov chains, the past and the future are independent given the present. This
property is symmetric in time and suggests looking at Markov chains with time running
backward. On the other hand, convergence to equilibrium shows that the behavior is
asymmetric in time. Hence, to complete the symmetry in time, we need to start with the
equilibrium distribution.

Theorem 7. Let (Xn)0≤n≤N be Markov(P, π), where P is irreducible and π is invariant.

Define Yn = XN−n. Then (Yn)0≤n≤N is Markov(P̂ , π) where the transition matrix P̂ = (p̂ij)
defined by

πjpji = πip̂ij for all i, j ∈ S.

Proof. Note that, since P is irreducible, all components of π are positive. We need to check
the following three facts.

(1) Check that P̂ is a stochastic matrix (i.e., all its entries are nonnegative and its row
sums are equal to 1):

p̂ij =
πj
πi

pji ≥ 0.∑
j∈S

p̂ij =
1

πi

∑
j∈S

πjpji =
πi
πi

= 1.

In the last equation, we used the fact that π is invariant for P .
(2) Check that π is invariant for P̂ , i.e., that πP̂ = π:∑

j∈S
πj p̂ji =

∑
j∈S

πipij = πi
∑
j∈S

pij = πi for all i ∈ S.

(3) Check that (Yn)0≤n≤N satisfies Markov property.

P(Y0 = i0, Y1 = i1, . . . , YN = iN ) = P(X0 = iN , X1 = iN−1, . . . , XN = i0)

=πiNpiN iN−1 . . . pi1i0 = p̂iN iN−1πiN−1piN−1iN−2 . . . pi1i0
= . . . = p̂iN−1iN . . . p̂i0i1πi0 .

Therefore, (Yn)0≤n≤N satisfies Markov property.

□
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Definition 7. The chain (Yn)0≤n≤N is called the time-reversal of (Xn)0≤n≤N .

Definition 8. A stochastic matrix P and a measure λ are in detailed balance if

λipij = λjpji.

Suppose the set of states S is finite, the matrix P is irreducible, and the system is
distributed according to the invariant distribution π. The condition of detailed balance
means the following. Let Ni→j(n) be the number of transitions from i to j observed by
time n. Then for all i, j ∈ S,

lim
n→∞

Ni→j(n)

Nj→i(n)
= 1,

if P is in detailed balance with π. In words, over large intervals of time, on average, one
observes equal numbers of transitions from i to j and from j to i for all i, j ∈ S given the
detailed balance.

The detailed balance condition gives us another way to check whether a given measure
λ is invariant.

Theorem 8. Let P and λ be in detailed balance. Then λ is invariant for P .

Proof.

(λP )i =
∑
j∈S

λjpji = λi

∑
j∈S

pij = λi.

Hence λP = λ. □

Definition 9. Let (Xn)n≥0 be Markov(P, λ) where P is irreducible. We say that (Xn)n≥0

is reversible if for all N ≥ 1, (XN−n)0≤n≤N is Markov(P, λ).

Theorem 9. Let P be an irreducible stochastic matrix and let λ be a distribution. Suppose
that (Xn)n≥0 is Markov(P, λ). Then the following are equivalent:

(1) (Xn)n≥0 is reversible;
(2) P and λ are in detailed balance.

Proof. Both (1) and (2) imply that λ is invariant for P . Then both (1) and (2) are

equivalent to the statement that P̂ = P . □

9. Metropolis and Metropolis-Hastings algorithms

Metropolis and Metropolis-Hastings algorithms exemplify the family of Markov Chain
Monte Carlo (MCMC) algorithms. In both, importance sampling is done via running a
Markov chain designed to have the stochastic matrix in detailed balance with the desired
invariant probability measure. Note that while an invariant measure f can be known, the
invariant distribution π = Z−1f can still be hard to find because it is hard to find the
normalization constant Z.
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We consider the problem of finding the expected value of g(η) in the case where the set
of outcomes Ω is finite but huge, i.e., |Ω| = N where N is huge. Let π(ω) be the probability
distribution on Ω, then

(33) E[g(η)] =
∑
ω∈Ω

g(η(ω))π(ω),

9.1. Metropolis algorithm. The Metropolis algorithm approximates the sum (33) by
finding a subset Ω′ ⊂ Ω such that the probabilities of the optcomes ω ∈ Ω′ are high and
summing only over those outcomes. Finding such a subset of outcomes and sampling from
it is achieved by constructing a discrete-time Markov chain (Xn)n≥0, Xn : Ω→ {1, . . . , N}
so that its invariant distribution is π(ω). In the Metropolis algorithm, such a Markov
chain is found with the help of the detailed balance. The stochastic matrix P for such a
Markov chain is designed using the claim of Theorem 8 that if P and π are in detailed
balance then π is invariant for P . In addition, P should be irreducible and aperiodic so that
the convergence of the probability distribution to the invariant distribution π is achieved
starting from any initial distribution.

Typically, we do not know π. Instead, we know an invariant measure f such that
π = Z−1f where Z is an unknown normalization constant.

The stochastic matrix P is constructed in two steps that A. Chorin describes as “we
first do something stupid and then improve it”.

(1) Suppose at time n, Xn = k. Propose a move from state k according to some
irreducible aperiodic transition matrix Q = (qij)ij∈S made-up by you. In the
original Metropolis algorithm, the matrix Q must be symmetric, i.e., qij = qji.
Suppose the proposed move is from state k to state l.

(2) To guarantee that the condition fipij = fjpji holds, accept the proposed move with
the probability

(34) α = min

{
fl
fk

, 1

}
.

I.e., if the proposed state l is more likely than the current state k, move to the
new state. Otherwise, move there with probability fl/fk or stay at state k with
probability 1− fl/fk.

As a result, the transition probabilities pij are given by

(35) pij = qij min

{
fj
fi
, 1

}
if i ̸= j, pii = 1−

∑
j ̸=i

qij min

{
fj
fi
, 1

}
.

Let us check that P is in detailed balance with f . Assume i ̸= j. Let fj/fi ≤ 1.
Then

fipij = fiqij
fj
fi

= fjqij = fjqji = fipji.

If fj/fi > 1 then

fipij = fiqij = fiqji = fipji
fj
fi

= fjpij .



MONTE CARLO METHODS 27

Therefore, we have constructed a discrete-time Markov chain converging to the
desired equilibrium distribution.

9.2. Importance sampling for the Ising model via Metropolis algorithm. For
the 2D Ising model described in Section 5, the initial magnetic configuration can be set
up arbitrarily. For example, all spins can be up, or each spin can be up or down with
probability 1/2 independently from the rest of the spins.

The matrix Q is usually chosen to make a flip of a random spin. It does not to be encoded
explicitly. Instead, we pick a random spin and propose to flip it. Then we evaluate the
energy difference between the current magnetic state and the proposed magnetic state.
The energy of a spin state is given by (26).

Exercise Find the energy difference between the current spin state {si,j}N−1
i,j=0 and the

proposed spin state at which the spin at site (k, l) is flipped while the rest of the spins are
the same.

The invariant measure for the Ising model is

f({si,j}) = exp (−βH({si,j})) .

Let H be the energy of the current state {si,j} and H ′ be the energy of the proposed state
{s′i,j}. Then the acceptance probability α in (34) is given by

α = min

{
f({s′i,j})
f({si,j})

, 1

}
= min

{
exp

(
−β(H ′ −H)

)
, 1
}
.

Therefore, if ∆H := H ′−H > 0, the proposed spin flip is accepted with probability α < 1,
while if ∆H := H ′ −H ≤ 0, the proposed spin flip is accepted for sure.

Thus, the mean magnetization µ(β) for the Ising model can be calculated using the
Metropolis algorithm as outlined in the pseudo-code in Algorithm 2.
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Algorithm 2: Calculation of the mean magnetization for the Ising model by the
Metropolis algorithm

Initialization:
Set up an initial magnetic configuration.
Choose the number of MCMC steps itermax.
Choose β.
Set iter = 0.
Find the magnetization m by (28).
Set mu = m.
The main body:
for iter = 1 : itermax do

1: Randomly pick a site (k, l) and propose to flip the spin at it.
2: Calculate the energy difference ∆H.
if ∆H < 0 then

3: Set accept = True

else
4: Generate u ∼ U(0, 1).
if u < exp(−β∆H) then

5: Set accept = True

else
6: Set accept = False

if accept == True then
6: Flip the spin that was proposed to flip.
7: Calculate the magnetization m of the new state.

8: Update the mean magnetization:

mu =
iter ∗ mu+m

iter+ 1
.

The mean magnetization for the 2D Ising model on a 30× 30 lattice is displayed in Fig.
2. The number of iterations was set to 108.

9.3. The Metropolis-Hastings algorithm. The Metropolis-Hastings algorithm is a gen-
eralization of the Metropolis algorithms for the case where the matrix Q is not symmetric,
i.e, qij ̸= qij for at least one pair of states (i, j). It differs from the Metropolis algorithm
only by the definition of the acceptance probability α: in the Metropolis-Hastings, α is
given by

(36) α = min

{
fl
fk

qlk
qkl

, 1

}
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Figure 2. The mean magnetization µ(β) calculated using Algorithm 2.
The blue curve is the analytical prediction by the formula (30). Red dots
are the computed values of the mean magnetization. The dashed red curves
are the computed magnetization ± standard deviation.

Therefore, the transition probabilities pij are

(37) pij = qij min

{
fj
fi

qji
qij

, 1

}
, pii = 1−

∑
j ̸=i

qij min

{
fj
fi

qji
qij

, 1

}
.

Exercise Check that P = (pij)i,j∈S and f are in detailed balance.
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