
AMSC661, Spring 2017 Maria Cameron

Take-home Final exam. Due May 18, 10 AM

1. Consider the following Boundary Value Problem (BVP) in 2D:

∆u = 0, (x, y) ∈ Ω, (1)

∂u

∂n̂

∣∣∣∣
ΓN

= 0, (2)

u|ΓD
= uD, (3)

where the domain Ω, its boundary ∂Ω = ΓN ∪ ΓD, and the Dirichlet boundary
condition function uD are shown in the figure below.

x

y

2-2
-2

2

0.25

-0.75

uD = 0

uD = 1

uD = 2

uD = 3
𝛺

𝛤N

𝛤D

0.5

Set up a linear system of algebraic equations for the FEM solution of this problem
and solve it using an iterative method studied in AMSC/CMSC661 (you need to write
the solver yourself). Use tol = 1e-12 for your linear solver. Make your program
plot the following figures:

• with the computed solution (use trisurf);

• with the residual plotted versus the iteration number for the linear solver. Set
’YScale’ logarithmic.

Submit a SINGLE(!) .m file with your code. Your .m file should include
all functions called except for, possibly, the one for triangulation if it is
mesh2d. Note, if you use mesh2d, your input vector with boundary points should not
contain repeated points ,.

1

2. Consider the following Initial and Boundary Value Problem (IBVP) in 2D:

ut = ∆u+ 1, (x, y) ∈ Ω = {(x, y) ∈ R2 | 1 < r < 2}, (4)

u|t=0 = r + cos(φ), (5)

u|r=1 = u|r=2 = 0, (6)

where r and φ are the polar coordinates. Solve this problem using the finite element
method and a scheme based on the trapezoidal rule:

un+1 = un + 1
2∆t (∆un+1 + ∆un) + ∆t.

(a) Derive equations for the weak and the FEM solutions of the IBVP (4)-(6) anal-
ogous to Eq. (13) and the two unnumbered equations right below it in Section
9 on page 127 in Remarks around 50 lines of Matlab: short finite element im-
plementation. Use time step dt = 0.01.

(b) Make your program plot the following figures:

• with the computed solution at t = 0.1 (use trisurf);

• with the computed solution at t = 1 (use trisurf);

• with the computed solution at time t = 1 as a function of r. You can do it
e.g., as follows:

u = U(:,N+1); % N+1 corresponds to t=1.

r = sqrt(coordinates(:,1).^2 + coordinates(:,2).^2);

[rsort,isort] = sort(r,’ascend’);

usort = u(isort);

plot(rsort,usort,’Linewidth’,2);

At t = 1, the function u will virtually reach the stationary solution ∆u+1 =
0 satisfying the BC (6). This stationary solution can be found exactly:

u(r) =
1− r2

4
+

3 log(r)

4 log 2
. (7)

Plot the graph of the exact stationary solution (7) in the same figure.

Submit a SINGLE(!) .m file with your code and a .pdf file with the
requested equations for FEM. Your .m file should include all functions
called except for, possibly, the one for triangulation if it is mesh2d. Note, if
you use mesh2d, your input vector with boundary points should not contain repeated
points ,.

2

https://www.math.hu-berlin.de/~cc/cc_homepage/download/1999-AJ_CC_FS-50_Lines_of_Matlab.pdf
https://www.math.hu-berlin.de/~cc/cc_homepage/download/1999-AJ_CC_FS-50_Lines_of_Matlab.pdf

3. (a) Write a matlab code that builds the Daubechies D4 scaling function φ by a
recursive procedure.

(b) and constructs the D4 wavelet ψ.

The D4 scaling function φ and the wavelet ψ are supported on the interval [0, 3]. The
low-pass filter coefficients are

h0 =
1 +
√

3

4
√

2
, h1 =

3 +
√

3

4
√

2
, h2 =

3−
√

3

4
√

2
, h3 =

1−
√

3

4
√

2
,

the high-pass filter coefficients are given by bk = (−1)kh3−k, k = 0, 1, 2, 3.

The recursive procedure for building φ can be devised e.g. as follows. Start with
φ(0)φ(3). Find φ(1) and φ(2) as explained in the notes by V. Balan and C.Condea.
Then, at the recursion level p, φ is found on the set Dp\Dp−1, where

Dp = {k ∗ 2−p | 1 ≤ k ≤ 3 ∗ 2p − 1}, p = 1, . . . , pmax,

using the formulas

φ(x) =
√

2
∑
k

hkφ(2x− k), ψk =
√

2
∑
k

bkφ(2x− k).

Use the maximal recursion level pmax = 12.

Normalize φ and ψ so that ∫ ∞
∞
|φ|2dx =

∫ ∞
∞
|ψ|2dx = 1.

Make your code plot graphs of φ and ψ on the same figure.

Submit a SINGLE(!) .m file with your code.

3

http://www-scf.usc.edu/~hbalan/wavelets.pdf

