
AMSC661, Spring 2023 Maria Cameron

Take-home Final exam. Problem 1. Due May 18, 11:59 PM

• All codes must be written by you from scratch.

• Every student must work independently.

• You should submit a single pdf file with your solutions and link your codes
to it.

• You should type the analytical solutions. I will deduct 10% of your score
for a handwritten solution.

1. (10 pts) Consider the Schrödinger equation in 1D in free space:

ψt =
i

2
ψxx, (1)

where i is the imaginary unit. The initial condition is the wave packet

ψ(x, 0) =
1

(2πσ20)1/4
exp

(
− x2

4σ20
+ ik0x

)
. (2)

The function ψ(x, t) is called the wave function. Its absolute value squared, |ψ(x, t)|2
is the probability density function for finding the particle at time t at the position x.
Therefore,∫ ∞

−∞
|ψ(x, t)|2dx = 1 for all t. (3)

(a) Work out the derivation of the exact solution to (1) with the initial condition
(2) using the Fourier transform method. This procedure is sketched in Section
4.1 in these lecture notes. Show your calculations.

(b) Consider the numerical method for solving (1) described in this paper: the sec-
ond order central finite difference approximation of ψxx and time stepping using
RK4 (see the very end of this paper). We will call this method D2

0+RK4. Ob-
tain the modified equation for D2

0+RK4 neglecting the error in time integration
(assume that the time integration is done exactly). What kind of numerical
error do you expect to have for this method (extra dissipation, wrong speed of
propagation of Fourier modes, etc)?

(c) Propose a numerical method for obtaining a solution to (1)–(2) using discrete
Fourier transform. Note that this method is very simple because the PDE is
linear with constant coefficients. Detail this method in a pseudocode so that it
outputs the solution at times 0, t1, ..., tM .

2. (10 pts)

(a) Set k0 = 10 and σ0 = 0.1. Solve the Schrödinger equation (1) numerically
on the time interval 0 ≤ t ≤ Tmax = 0.4 in two ways: (i) using D2

0+RK4
and (ii) the spectral method that you proposed in the previous problem. Use
the interval −20 ≤ x ≤ 20 as the computational domain in x and periodic
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boundary conditions. Choose Nx = 4096 points in space and observe that the
exact solution visibly matches the numerical solution by both methods. Plot the
absolute value of the solution, |ψ(x, t)|, at times Tmax(j/5), j = 0, 1, 2, 3, 4, 5.
Check that (3) holds nearly exactly for each numerical solution nonetheless.

(b) Then take Nx = 256 points in space. Plot the absolute value of the exact
and numerical solution, |ψ(x, t)|, at times Tmax(j/5), j = 0, 1, 2, 3, 4, 5. The
numerical errors in both methods become apparent. Check that (3) still holds
nearly exactly to each numerical solution. Explain the nature of the error for
each method.

3. (10 pts) Read Section 10 and Appendix C in Jochen Alberty, Carsten Carstensen
and Stefan A. Funken, “Remarks around 50 lines of Matlab: short finite element
implementation” on the numerical solution of the Ginzburg-Landau equation using
the finite element method.

Let Ω = [−1, 1]2. Set ε = 0.01. Consider the following boundary-value problem for
the Ginzburg-Landau

ε∆u = u3 − u, x ∈ Ω, u = uD, x ∈ ∂Ω. (4)

Note that if u ≡ ±1 in Ω, then the right-hand side of the Ginzburg-Landau equation
is zero. Hence these are solutions to (4) provided that uD = ±1 respectively. u ≡ 0 is
also a solution if uD = 0, however, it is unstable with respect to small perturbations.

(a) Let v ∈ H1
0(Ω), i.e., any function whose weak gradient exists in Ω and which is

equal to zero on the boundary ∂Ω. Derive the weak formulation (15) in Alberty
et al.

(b) Starting from Newton’s iteration yn+1 = yn−J−1(yn)F (yn) for solving F (y) = 0,
where J is the Jacobian matrix for F , derive equations (17) and (18) in Alberty
et al.

(c) Triangulate the domain Ω. Take the mesh step about h = 0.04. Display your
mesh using the command triplot or similar.

(d) Set the boundary conditions uD = 0 and solve the Ginsburg-Landau equation.
If you keep the initial guess to be u ≡ −1 as in Appendix C in Alberty et al., you
will get the solution shown in Figure 5 (left) in Alberty et al. Use the command
trisurf or similar for visualization.

(e) Now take the frustrated boundary condition: uD = 1 at the left and right sides
of Ω and uD = −1 at the top and bottom sides of Ω. Compute the solution and
visualize it using trisurf or similar.
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