Take-home Final exam. Problem 1. Due May 17, 11:59 PM
Consider the following Boundary Value Problem (BVP) in 2D:

$$
\begin{align*}
\Delta u-\nabla V(x, y) \cdot \nabla u & =0, & & (x, y) \in \Omega \tag{1}\\
\frac{\partial u}{\partial n} & =0, & & u \in \Gamma_{N} \tag{2}\\
u(\partial A) & =0, & & u(\partial B)=1, \tag{3}
\end{align*}
$$

The domain Ω is bounded by the black circle and the two red circles shown in the figure. The boundary Γ_{N} is the black circle, while the boundaries ∂A and ∂B are the left and the right red circles, respectively. The level sets of the function $V(x, y)$, the "face potential", are color-coded.
$\partial A:$ center : $(-3,3)$, radius : $0.5 ;$
$\partial B:$ center $:(0,4.5)$, radius : $0.5 ;$
$\Gamma_{N}:$ center $:(-1,3)$, radius : 4.

The function $V(x, y)$ is given by:

```
xa=-3; ya=3;
xb=0; yb=4.5;
fac=10;
f=(1-x).^2+(y-0.25*x.^2).^2+1;
g1=1-exp(-0.125*((x-xa).^2+(y-ya). ^2));
g2=1-exp(-0.25*(((x-xb).^2+(y-yb).^2)));
g3=1.2-exp(-2.*((x+0).^2+(y-2).^2));
g4=1+exp(-2*(x+1.5). ^2-(y-3.5).^2-(x+1).*(y-3.5));
v1=f.*g1.*g2.*g3.*g4;
V=fac*atan(v1/fac);
```

Remark. The solution to this problem has the following probabilistic interpretation. Suppose a particle is moving inside the region Ω with reflecting boundary Γ_{N} according to the overdamped Langevin dynamics $\dot{z}=-\nabla V(z)+\sqrt{2} \eta$ where η is two-dimensional white noise. The potential force $-\nabla V(z)$ pushes it downhill while the white noise pushes it randomly in different directions. Suppose at time $t=0$ the particle is at the point $z:=(x, y)$. Then $u(x, y)$ is the probability that the particle will reach the region B before reaching region A. The function $u(x, y)$ has a special name: the committor function.

1. ($\mathbf{5} \mathbf{~ p t s}$) Show that Eq. (1) is equivalent to

$$
\begin{equation*}
\nabla \cdot\left(e^{-V(x, y)} \nabla u\right)=0 \tag{4}
\end{equation*}
$$

2. (5 pts) Let u be the solution of Eq. (4) with BCs (2)-(3) and u_{D} be a smooth function such that $u_{D}=1$ at ∂B and $u_{D}=0$ outside a small neighborhood of ∂B. Define $v:=u-u_{D}$. Note that v satisfies $v(\partial B)=v(\partial A)=0$ and $\frac{\partial v}{\partial n}=0$ on Γ_{N}. Show that then for any continuous and piecewise continuously differentiable function w defined on Ω such that $w(\partial A)=w(\partial B)=0$

$$
\begin{equation*}
\int_{\Omega} e^{-V(x, y)} \nabla v \cdot \nabla w d x d y=-\int_{\Omega} e^{-V(x, y)} \nabla u_{D} \cdot \nabla w d x d y . \tag{5}
\end{equation*}
$$

3. (10 pts)Triangulate the domain Ω and solve the BVP (4),(2),(3) using the finite element method (FEM). Plot the triangulation and the FEM solution.
4. ($\mathbf{1 0} \mathbf{~ p t s}$) To find the FEM solution, you need to solve a system on linear equations $A \mathbf{u}=\mathbf{b}$ where A is the stiffness matrix and \mathbf{b} is the load vector. Program the conjugate gradient algorithm with incomplete Cholesky preconditioner (see the Matlab function ichol) and use it to solve $A \mathbf{u}=\mathbf{b}$. Set the stopping criterion when the norm of the residual is less than tol $=1 \mathrm{e}-12$. Plot the residuals versus the iteration number. Use the log for the y-axis.

Submit a single pdf file with your report containing figures, calculations, specifications of methods used, and links to your codes.

Take-home Final exam. Problem 2. Due May 17, 11:59 PM

1. ($\mathbf{1 0} \mathbf{~ p t s}$) Consider the nonviscous Burgers equation

$$
\begin{equation*}
u_{t}+\left(\frac{u^{2}}{2}\right)_{x}=0, \quad 0 \leq x<4, \quad t \geq 0 \tag{1}
\end{equation*}
$$

with periodic boundary conditions $u(0, t)=u(4, t)$ and the initial condition

$$
u(x, 0)=u_{0}(x)= \begin{cases}1, & 0 \leq x \leq 1 \tag{2}\\ 0, & x \notin[0,1]\end{cases}
$$

Plot the shock diagram, i.e, characteristics and shock lines (curves), in the (x, t)domain $[0,4] \times[0,12]$. Provide equations for all shock lines and analytical solutions in each region bounded by shock lines.
2. ($\mathbf{1 0} \mathbf{~ p t s) ~ S o l v e ~ t h i s ~ p r o b l e m ~ n u m e r i c a l l y ~ a n d ~ p l o t ~ t h e ~ n u m e r i c a l ~ s o l u t i o n ~ a n d ~ t h e ~}$ analytical solution in the same figure at times $t=7$ and $t=11$. Include legend.
3. ($\mathbf{1 0} \mathbf{~ p t s}$) Now consider viscous Burgers equation

$$
\begin{equation*}
u_{t}+u u_{x}=0.01 u_{x x}, \quad 0 \leq x<4, \quad t \geq 0, \tag{3}
\end{equation*}
$$

in the same periodic domain and the same initial and boundary conditions. Solve this problem using the spectral method similar to the one you used for solving the Kuramoto-Sivashinsky equation. Plot the numerical solution at time $t=7$ and $t=11$ in the same figure as the plots from the previous task.

Submit a single pdf file with your report containing figures, calculations, and specifications of methods used, and links to your codes.

