
AMSC661, Spring 2023 Maria Cameron

Homework 1. Due Feb. 8

Please upload a single pdf file on ELMS. Link your codes to your pdf (i.e., put

your codes to dropbox, github, google drive, etc. and place links to them in

your pdf file with your solutions.

1. (3 pts) Solve Exercise 1 from my Lecture notes ODEsolvers.pdf (see Section 1.4).

Note, y(t) is a scalar function.

2. (3 pts) Solve Exercise 2 from my Lecture notes ODEsolvers.pdf (see Section 1.4).

Note, y(t) is a scalar function.

3. (3 pts) Solve Exercise 3 from my Lecture notes ODEsolvers.pdf (see Section 1.5).

4. (3 pts) Solve Exercise 5 from my Lecture notes ODEsolvers.pdf (see Section 3.4).

5. (3 pts) Show that the implicit midpoint rule (a symplectic method)

k = f

✓
tn +

h

2
, un +

h

2
k

◆
, un+1 = un + hk. (1)

is consistent (at least) of order 2.

6. (6pts)

(a) Use the method of undetermined coe�cients to determine a0, a1, b0, and b1 that
make the linear two-step explicit method consistent of as high order as possible:

un+1 � a0un � a1un�1 = h(b0fn + b1fn�1). (2)

(b) Show that this method is unstable by applying it to the ODE y0 = 0 and

mimicking the technique shown in Section 3.5.

(c) Apply this method to the 2D gravity problem with a unit-circle solution:

d

dt

2

664

x
y
u
v

3

775 =

2

664

u
v

� x
x2+y2

� y
x2+y2

3

775 ,

2

664

x
y
u
v

3

775 (0) =

2

664

1

0

0

1

3

775 (3)

Integrate the numerical solution for two periods. Show that the solution blows

up by reporting the norm of the solution at time 4⇡ for h = 2⇡/N with N = 20,

40, 80. Also plot the x and y components of the solution in the xy-plane.

1



AMSC661, Spring 2023 Maria Cameron

Homework 2. Due Feb. 15

Please upload a single pdf file on ELMS. Link your codes to your pdf (i.e., put

your codes to dropbox, Github, google drive, etc. and place links to them in

your pdf file with your solutions.

1. The goal of this exercise to become familiar with various ODE solvers available in
Matlab and/or Python and apply them to a few test problems.

(a) Read the description of available built-in ODE solvers in Matlab
https://www.mathworks.com/help/matlab/math/choose-an-ode-solver.html
and in Python
https://docs.scipy.org/doc/scipy/reference/generated/scipy.integrate.solve ivp.html
#scipy.integrate.solve ivp. (For Python, see also more syntaxis options here and
examples here)

(b) (5 pts) Test the ODE solvers available in Matlab or Python on the Van Der
Pol oscillator

• Matlab: ode45 (explicit Runge-Kutta method of order 5 DOPRI5(4)) and
ode15s (linear multistep method of variable order from 1 to 5 for

stiff problems);

• Python: RK45 (explicit Runge-Kutta method of order 5 DOPRI5(4)) and
LSODA (linear multistep method based on Adams and BDF with automatic
sti↵ness detection):

y01 = y2,

y02 = µ((1� y21)y2)� y1.

with µ = 10, 102, and 103. The greater is µ, the sti↵er is the problem. Set tmax
= 1000.0. Set error tolerances ✏ ⌘ atol ⌘ rtol, ✏ = 10�6, 10�9, and 10�12.
You can pick the initial condition y1(0) = 2, y2(0) = 0. Plot the solution on
the phase plane (y1, y2). For each value of µ, make a single plot of the solution.
Observe how the limit cycle changes at µ increases. Measure the CPU time TCPU

required to compute one cycle for each of the solvers for each of the values of µ
and plot log ✏ versus log(CPUtime). Comment on how the CPU time depends
on the error tolerance for each value of µ for each method. Try to explain your
observations.

(c) (5 pts) Now test appropriate ODE solvers on the Arenstorf problem. More
details are found in this note on pages 3–4. Use exactly the same values for the
parameters and the initial conditions as in the note. First set the Tmax equal to
the period, compute the periodic orbit using DOPRI5(4), and plot it (x vs y).

Then set Tmax = 100. Set error tolerance ✏ ⌘ atol ⌘ rtol = 10�12.

1

https://www.mathworks.com/help/matlab/math/choose-an-ode-solver.html
https://docs.scipy.org/doc/scipy/reference/generated/scipy.integrate.solve_ivp.html#scipy.integrate.solve_ivp
https://docs.scipy.org/doc/scipy/reference/generated/scipy.integrate.solve_ivp.html#scipy.integrate.solve_ivp
https://docs.scipy.org/doc/scipy/reference/integrate.html#module-scipy.integrate
https://pundit.pratt.duke.edu/wiki/Python:Ordinary_Differential_Equations/Examples
https://en.wikipedia.org/wiki/Van_der_Pol_oscillator
https://en.wikipedia.org/wiki/Van_der_Pol_oscillator
https://www.johndcook.com/blog/2020/02/08/arenstorf-orbit/
http://www.cmap.polytechnique.fr/~massot/MAP551_web_20182019/Notes/MAP551_PC9_3A_MassotSeries_2018_2019.pdf
http://www.cmap.polytechnique.fr/~massot/MAP551_web_20182019/Notes/MAP551_PC9_3A_MassotSeries_2018_2019.pdf


• If you program in Matlab, compute the numerical solution using ode45,
ode78, and ode89.

• In Python, use RK45, DOP853, and Radau.

Measure CPU times and plot the orbit of the satellite for each solver. Comment
on the CPU times and plots that you are observing and compare the solvers.

2. (5 pts) On the same coordinate plane, plot the regions of the absolute stability for
the following methods ERK methods:

• Forward Euler;

• Midpoint rule with Euler Predictor (this is the example in my code RK_RAS.ipynb
available on ELMS in Files/Codes);

• Kutta’s method (three-stage, third order) (see the last page of this PDF file);

• the standard 4-stage, fourth order Runge-Kutta method (see the first method
in this Wiki article);

• DOPRI5(4) – see the last page of this PDF file). Use ŷ for the method of order
5.

3. (5 pts) Prove convergence for the backward Euler method from scratch. You should
mimic the general proof of convergence for one-step methods, but simplify and adapt
it for backward Euler.

2

https://en.wikipedia.org/wiki/Runge-Kutta_methods


0
1
2

1
2

1 �1 2

1
6

2
3

1
6

Table 1: Kutta’s method

0
1
3

1
3

2
3 0 2

3

1
4 0 3

4

Table 2: Heun’s method

0

1
5

1
5

3
10

3
40

9
40

4
5

44
45 �56

15
32
9

8
9

19372
6561 �25360

2187
64448
6561 �212

729

1 9017
3168 �355

33
46732
5247

49
176 � 5103

18656

1 35
384 0 500

1113
125
192 �2187

6784
11
84

y1
35
384 0 500

1113
125
192 �2187

6784
11
84 0

ŷ1
5179
57600 0 7571

16695
393
640 � 92097

339200
187
2100

1
40

Table 3: Embedded Runge-Kutta Method: Dormand and Prince 5(4).

3



AMSC661, Spring 2023 Maria Cameron

Homework 3. Due Feb. 22

Please upload a single pdf file on ELMS. Link your codes to your pdf (i.e., put

your codes to dropbox, Github, google drive, etc. and place links to them in

your pdf file with your solutions.

1. (5 pts) Solve exercise 13 in my lecture notes ODEsolvers.pdf.

2. (5 pts) Solve exercise 14 in my lecture notes ODEsolvers.pdf.

3. (6 pts) There is a curious phenomenon called order reduction observed when DIRK

methods are applied to sti↵ problems with time steps h such that h� where �� is

the largest negative eigenvalue of the linear part of the right-hand side of an ODE is

not small – see papers by B. Seibold’s group https://arxiv.org/pdf/1712.00897.pdf

and https://arxiv.org/pdf/1811.01285.pdf. The goal of this exercise is to examine

the performance of DIRK methods of orders 2 and 3 from the previous exercises on

the Prothero-Robinson problem, plot the maximum absolute error as a function of

the time step, and observe the two orders of convergence for each method, one for

large hL, and one for small hL. You need to plot graphs similar to those in Fig. 2

in https://arxiv.org/pdf/1811.01285.pdf.

Consider the Prothero-Robinson problem

y0 = �L(y � �(t)) + �0
(t), y(0) = y0 (1)

with L = 10
4
and �(t) = sin(t+ ⇡/4). Set the time interval 0  t  Tmax = 10. The

exact solution to this problem is

y = e�Lt
(y0 � �(0)) + �(t). (2)

(a) Pick the initial condition y(0) = sin(⇡/4). Compute the numerical solution using

DIRK2 on the interval [0, Tmax] with time step h for each h from the following

set:

h = 10
�p, where p 2 {1, 1 + d, 1 + 2d, . . . , 6}, d = 5/24. (3)

Plot the numerical error e(h) = max0tnTmax |un � y(tn)| vs h. Use the log-log

scale. Observe error decay e = C1h and e = C2h2 for large and small values of

h, respectively. For reference, plot lines with slopes 1 and 2, i.e., e = C1h and

e = C2h2 where you need to choose C1 and C2 so that the plot looks nice. Do

the same for the DIRK of order 3. What orders of error decay do you observe?

Also, plot reference lines.

1

https://arxiv.org/pdf/1712.00897.pdf
https://arxiv.org/pdf/1811.01285.pdf
https://arxiv.org/pdf/1811.01285.pdf


(b) Repeat the task with y(0) = sin(⇡/4) + 10. You will obtain a bit puzzling set of

graphs. To understand what is going on, plot |e(t)| for each method where e(t)
is the di↵erence between the numerical and the exact solutions for three values

of h: h = 10
�1

, h = 10
�2

, and h = 10
�3

. Set the log scale in the y-axis. Do so

for Tmax = 10 and Tmax = 1.

(c) Summarize what you have learned about the behavior of the error for DIRK2
and DIRK of order 3 from the numerical experiments in this problem.

4. (5 pts) Derive a three-step Adams-Moulton method with a variable timestep. Then

compute its coe�cients for the case where the timestep is constant.

2



AMSC661, Spring 2023 Maria Cameron

Homework 4. Due March 1

Please upload a single pdf file on ELMS. Link your codes to your pdf (i.e., put

your codes to dropbox, Github, google drive, etc. and place links to them in

your pdf file with your solutions.

1. (4 pts) Solve exercise 16 in my lecture notes ODEsolvers.pdf.

2. (4 pts) Solve exercise 17 in my lecture notes ODEsolvers.pdf.

3. (4 pts) Solve exercise 18 in my lecture notes ODEsolvers.pdf.

4. (4 pts) Solve exercise 19 in my lecture notes ODEsolvers.pdf.

5. (5 pts)

(a) Derive the following formula for the 2-step BDFmethod with a variable timestep:

un+1 �
(1 + !)2

1 + 2!
un +

!2

1 + 2!
un�1 = hn

1 + !

1 + 2!
f(tn+1, un+1), (1)

where hn := tn+1 � tn, ! = hn/hn�1.

(b) Prove that this method is stable provided that !n < 1+
p
2. Hint: use the main

theorem for methods with constant stepsize and Vieta’s formulas for quadratic

equations.

6. (5 pts) Solve the sti↵ Robertson’s problem on the time interval [0, 40] using the
2-step BDF method programmed from scratch. Use fixed timestep. I am providing
my code RobertsonDIRK2.ipynb where this task is accomplished using DIRK2 from
the previous homework with a fixed timestep h = 10�3. You can merely add to my
code. If you prefer Matlab, please feel free to rewrite it in Matlab. To initialize
BDF2, you will need to make the first step by DIRK2. Plot the three components of
the solution in di↵erent figures as they have very di↵erent scales. Measure the CPU
time for Robertson’s problem for DIRK2 and BDF2 with the same timestep.

1

https://brilliant.org/wiki/vietas-formula/
https://brilliant.org/wiki/vietas-formula/
https://openmdao.github.io/dymos/examples/robertson_problem/robertson_problem.html
https://en.wikipedia.org/wiki/Backward_differentiation_formula


AMSC661, Spring 2023 Maria Cameron

Homework 5. Due March 8

Please upload a single pdf file on ELMS. Link your codes to your pdf (i.e., put

your codes to dropbox, Github, google drive, etc. and place links to them in

your pdf file with your solutions.

1. (10 pts) Solve exercise 2 in my lecture notes SymplecticMethods.pdf.

2. (10 pts) Consider the motion in the gravitational field with the Hamiltonian

H(u, v, x, y) =
1

2
u
2
+

1

2
v
2 � 1p

x2 + y2
, (1)

where x, y are the coordinates and u, v are the momenta in the reduced units.

(a) Write the Hamiltonian equations of motion. Set the initial conditions to u(0) =

0, v(0) =
1
2 , x(0) = 2, y(0) = 0. Check that the total energy is negative, hence

the motion will follow an elliptic trajectory.

The exact motion according to these Hamiltonian equations with the initial

conditions u(0) = 0, v(0) =
1
2 , x(0) = 2, y(0) = 0 occurs by the elliptical orbit

with one focus at the origin, the major semiaxis a = 4/3, eccentricity e = 1/2,

and the exact period of revolution T = 2⇡a
3/2

= 9.673596609249161. Hence,

for the exact orbit, xmax = a(1 + e) = 2, and xmin = �a(1� e) = �2/3.

(b) Integrate the system for 10 revolutions using the implicit midpoint rule. Proceed

as follows. Define

z :=

2

664

u

v

x

y

3

775 , f(z) :=
dz

dt
;

then

k = f(zn +
h
2k), zn+1 = zn + hk.

At each time step, you will need to solve the 4D nonlinear system

F (k) := k � f(zn +
h
2k) = 0. (2)

Find the initial approximation for k by linearizing f and solving the linear

system:

k = f(zn) +
h
2Df(zn)k,

whereDf(zn) is the Jacobian matrix of f evaluated at zn. Then find the solution

of Eq. (2) using Newton’s iteration. Plot x and y components of your numerical

solutions on the same xy-plane. Plot the Hamiltonian versus time for your

numerical solution. Do this task with time steps such that there are 100, 1000,

and 10000 steps per period. You should generate a total of 6 figures.

1



(c) Integrate the same system using the Stoermer-Verlet method described in the

previous problem using the same time steps and generate the same plots.

(d) Conclude which method is more accurate, while both of them are 2nd order.

3. (3 pts) Find the region of absolute stability of the implicit midpoint rule described

in the previous problem.

2



AMSC661, Spring 2023 Maria Cameron

Homework 6. Due March 15

Please upload a single pdf file on ELMS. Link your codes to your pdf (i.e., put

your codes to dropbox, github, google drive, etc. and place links to them in

your pdf file with your solutions.

1. (10 pts.) To be done on paper. Consider Laplace’s equation uxx+uyy = 0 in the

given domain ⌦ with the given boundary conditions (BCs). Discretize the problem

on the specified mesh using the 5-point stencil and write out an appropriate system

of linear algebraic equations Au = f for the numerical solution u as it is done in

elliptic.pdf. Highlight the block structure of the matrix A.

(a) ⌦ = [0, 1]⇥ [0, 1], the mesh and the BCs are shown in Fig. (a).

(b) ⌦ = [0, 1]⇥ [0, 1], the mesh and the BCs are shown in Fig. (b).

(c) ⌦ = [0, 1]⇥[0, 1], the mesh and the BCs are shown in Fig. (c). (BCs are periodic

in y and Dirichlet on the left and right boundaries.)

(d) ⌦ = [0, 1]⇥ [0, 1], the mesh and the BC are shown in Fig. (d). (BCs are periodic

in x and Dirichlet on thetop and bottom boundaries.)

(e) ⌦ is the L-shaped domain shown in Fig. (e). Assume that the left and the

bottom boundaries have length 1. The mesh and the BCs are shown in Fig. (e)

as well.

2. (10 pts.) A programming task. Suppose an empty cylindric tin covered with an

insulating top is standing on ice. The sun located low above the horizon is shining

on one side of the tin as shown in the figure.

Assume that the height of the cylinder is 2 and the radius is 1. Take all physical

constants such as the heat conductance and the intensity of the sun shine equal to 1.

Then the stationary heat distribution satisfies the equation

uxx + uyy =

(
� cos(x), �⇡/2  x  ⇡/2,

0, otherwise,

1



�⇡  x  ⇡, 0  y  2. Pick adequate boundary conditions and write down the

boundary value problem (BVP). Solve the BVP numerically and find the stationary

temperature distribution. Plot a figure showing the distribution.

Submit the formulation of the BVP, the figure with the stationary heat distribution,

and a printout of your code.

(a)

u=1 u=0

uy=0

uy=0

1

14

13

12

11

10

9

8

7

6

5

4

3

2

15

(b)

u=1

u=0

ux=0 ux=0

1

14

13

12

11

10

9

8

7

6

5

4

3

2

15

(c)

u=1 u=0

u(x,1) = u(x,0)!
uy(x,1) = uy(x,0)

1

12

11

10

9

8

7

6

5

4

3

2

(d)

u=0

u=1

u(1,y) = u(0,y)!
ux(1,y) = ux(0,y)

1

12

11

10

9

8

7

6

5

4

3

2

(e)

1

16

15

14

13

12

11

10

9

8

7

6

5

4

3

2

u=0

u=0

u=0

u=0

u=1

u=1

ny=5

nx=2

px=3

py=2

nmesh = nx∗ny+px∗py

2



AMSC661, Spring 2022 Maria Cameron

Homework 7. Due March 29

1. (5 pts) Consider a 1D boundary-value problem

� d

dx

✓
k(x)

d

dx
u

◆
= 0, a < x < b, u(a) = ua, u(b) = ub, (1)

where the heat conductance coe�cient k(x) is the following piecewise constant func-
tion

k(x) =

(
k1, a  x < c

k2, c < x  b
. (2)

It follows from the integral form of Fourier’s law that the temperature u and the heat
flux k(x)ux must be continuous at x = c.

(a) Find the exact solution to this problem analytically.

(b) Set ua = 0, ub = 10, k1 = 10, k2 = 1, a = 0, b = 10, c = 4. Choose h = 1.0. Use
the finite di↵erence scheme

LhUP = � 1

h2
(UWkw + UEke � UP (ke + kw)) (3)

where W is to the left of P , E is to the right of P , and e and w are the
midpoints between E and P and W and P respectively. You need to evaluate
k(x) at these midpoints. In this case, it is not a problem that k(x) is not defined
at c. Compute the numerical solution U using this scheme. Plot it and also plot
the exact solution in the same figure. You should see that these solutions exactly
coincide.

2. (5 pts) Triangular mesh generation using distmesh2d.m by P.-O. Persson. Read
[1], at least its first 12 pages (at least up to Section 6 “Mesh Generation in Higher
Dimensions”).

If you prefer Matlab, download the distmesh package distmesh.zip available at
http://persson.berkeley.edu/distmesh/.

If you prefer Python, you can download my Python version of P.-O. Persson’s code
available at GitHub, user mar1akc, package transition_path_theory_FEM_distmesh,
file distmesh.py.

Mesh the shapes in the Figure below using distmesh2d.m following examples in [1].

1

http://persson.berkeley.edu/distmesh/
https://github.com/mar1akc/transition_path_theory_FEM_distmesh


You can pick arbitrary sizes as soon as topologies are preserved, and you can do
uniform meshing.

3. 5 pts Consider the following BVP in 1D:

�uxx = f(x), 0 < x < 1, u(0) = u(1) = 1.

Work out all steps of the FEM on it.

(a) Let w(x) be a twice continuously di↵erentiable function on (0, 1) such that
w(0) = w(1) = 0. Use integration by parts to reduce the BVP to an integral
equation.

(b) Partition the interval [0, 1]:

0 = x0 < x1 < . . . < xN < xN+1 = 1.

Define the basis functions �i(x), 1  i  N as shown in the figure below
(�i(xi) = 0, �i(xj) = 0, j 6= i, �i is piecewise linear).

xxj-1

y

10 xj xj+1

!j

… …

�i(x) =

8
><

>:

0, x  xi�1, x � xi+1,
x�xi�1

xi�xi�1
, xi�1 < x  xi,

xi+1�x
xi+1�xi

, xi < x < xi+1.

Calculate the sti↵ness matrix and the load vector.

2



(c) In what case the FEM solution would coincide with the finite di↵erence solution
using the central di↵erence scheme?

4. (5 pts)

(a) Let ⌘1, ⌘2, and ⌘3 be linear functions in a triangle T with vertices (x1, y1),
(x2, y2), and (x3, y3) such that ⌘j = 1 at (xj , yj) and ⌘j = 0 and the other two
vertices of T , j = 1, 2, 3. Prove that the matrix G introduced in Section 5 in [2]
is equal to

G =

2

64

@⌘1
@x

@⌘1
@y

@⌘2
@x

@⌘2
@y

@⌘3
@x

@⌘3
@y

3

75 . (4)

(b) Let u be a finite element solution to some problem. This means that u is
continuous, piecewise linear, and linear within each mesh triangle. Let T be a
mesh triangle with vertices (x1, y1), (x2, y2), and (x3, y3), and u(xj , yj) = uj ,
j = 1, 2, 3. Suppose that we need to compute the gradient of u. Find an exact
expression forru within the mesh triangle in terms of (xj , yj) and uj , j = 1, 2, 3.

References

[1] P.-O. Persson, G. Strang, A Simple Mesh Generator in MATLAB. SIAM Review,
Volume 46 (2), pp. 329-345, June 2004 (PDF)

[2] Jochen Alberty, Carsten Carstensen and Stefan A. Funken, Remarks around 50
lines of Matlab: short finite element implementation

3

http://persson.berkeley.edu/distmesh/persson04mesh.pdf
http://persson.berkeley.edu/distmesh/persson04mesh.pdf
https://www.math.hu-berlin.de/~cc/cc_homepage/download/1999-AJ_CC_FS-50_Lines_of_Matlab.pdf
https://www.math.hu-berlin.de/~cc/cc_homepage/download/1999-AJ_CC_FS-50_Lines_of_Matlab.pdf


AMSC661, Spring 2023 Maria Cameron

Homework 8. Due Wednesday, April 5

Please upload a single pdf file on ELMS. Link your codes to your pdf (i.e., put

your codes to dropbox, Github, google drive, etc. and place links to them in

your pdf file with your solutions.

1. (10 pts) You can use Python or Matlab. If you choose Matlab, you can modify the

code MyFEMcat.m. If you choose Python, you can modify FEM TPT.py and any

ipynb notebook available on my GitHub: Github.

Consider the problem of finding the density of the electric current in a thin square
plate ⌦ made out of two metals with di↵erent conductivities a = a1 and a = a2 as
shown in Fig. 1. The voltage u = 0 at the left side of the square, and u = 1 on the
right side. Use the finite element method (FEM) to find the voltage and the density
of the electric current inside the plate. Plot the voltage and the absolute value of the
current density. Consider two cases: (a): a1 = 1.2 and a2 = 1; (b): a1 = 0.8 and
a2 = 1. Comment on the distribution of the current in the plate. Link your codes to
your pdf file.

0 3

3

0
x

y

a = a1

a = a2

D0 D1

�

�

r = 1

(1.5,1.5)

Figure 1: The conducting plate. An illustration to Problem 1.

The voltage is the solution to the following boundary value problem (BVP):
8
>>>><

>>>>:

�r · (a(x, y)ru) = 0, (x, y) 2 ⌦ := [0, 3]2,

u = 0, (x, y) 2 D0,

u = 1, (x, y) 2 D1,

@u
@n = 0, (x, y) 2 �.

(1)

1

https://github.com/mar1akc/transition_path_theory_FEM_distmesh


Note that the solution must satisfy the flux continuity condition: at the boundary
separating the regions where a(x, y) = a1 and a(x, y) = a2, the voltage u and the
current density a(x, y)ru must be continuous. This condition is automatically satis-
fied if you generate the mesh so that a(x, y) is continuous in each mesh triangle and
then solve the BVP using FEM. This can be easily achieved using e.g. distmesh2d.m
requiring the points on the boundary separating these two regions to be fixed.

Once you have computed the voltage u, you can find the current density:

j = �a(x, y)ru.

Use the formula for the gradient found in HW7, Problem 4(b). As a result, you
have the gradient evaluated at the centers of the mesh triangles. Then compute the
absolute value of the density of the current. In order to visualize it using trisurf

you need to recompute it at the vertices of the mesh triangles. This can be done by
averaging over all triangles adjacent to a given vertex:

abs_current_verts = zeros(Npts,1);

count_tri = zeros(Npts,1);

for j = 1:Ntri

abs_current_verts(tri(j,:)) = abs_current_verts(tri(j,:)) ...

+ abs_current_centers(j);

count_tri(tri(j,:)) = count_tri(tri(j,:)) + 1;

end

abs_current_verts = abs_current_verts./count_tri;

2. (8 pts) The goal of this problem is to show that the FEM solution of the Poisson
equation is the linear interpolant of the exact solution. We will examine only the 1D
case. This problem is a composite of problems 2.2a, 2.4, and 5.4 from [2].

Consider the BVP

� u
00 = f(x), 0 < x < 1, u(0) = u(1) = 0, (2)

where f(x) is a given function integrable on [0, 1].

(a) Verify that the solution of Eq. (2) is given by

u(x) =

Z 1

0
G(x, y)f(y)dy, (3)

where G(x, y) is Green’s function defined in [0, 1]2 by

G(x, y) =

(
(1� x)y, 0  y  x  1,

x(1� y), 0  x  y  1.
(4)

2



(b) Verify that for any function v(x) 2 H
1
0 ([0, 1]), the following identity holds:

Z 1

0
v
0(y)

d

dy
G(x, y)dy = v(x). (5)

Conclude that since the exact solution u of Eq. (2) belongs to H
1
0 ([0, 1]), Eq.

(5) holds for u for all x 2 [0, 1].

(c) The linear interpolant of the exact solution u(x), denoted by Ihu, is a function
that is equal to u at the nodes

0 ⌘ x0 < x1 < . . . < xn < xn+1 ⌘ 1,

and is linear in each interval [xj , xj+1], j = 0, 1, . . . , n. (We do not assume that
the nodes are equispaced.) Write Ihu as a linear combination of the basis func-
tions shown in fig. below.

xxj-1

y

10 xj xj+1

!j

… …

(d) Show that the set of functions  j(y) := G(xj , y) is a basis in Sh(x) = span{�1, . . . ,�n}.
(e) Show that for the linear interpolant Ihu,

Z 1

0
[Ihu]

0(y)
d

dy
G(xj , y)dy = u(xj). (6)

(f) Write out the definition of the FEM solution. Prove, using all the facts above
that the FEM solution

U
FEM (x) =

nX

j=1

U
FEM
j �j(x)

coincides with Ihu.

3. (5 pts) This problem suggests a way to modify a non-self-adjoint elliptic equation
to make it amenable for solving using FEM.

(a) Let ⌦ be a compact domain in 2D. The boundary of ⌦ can be decomposed as
@⌦ = �D [ �N . Consider the following boundary-value problem:

8
><

>:

�
�1�u+ b(x) ·ru = 0, x 2 ⌦

u = uD x 2 �D
@u
@n = g, x 2 �N .

(7)

3



Let b be a smooth vector field and � be a constant. Suppose it can be decom-
posed into curl-free and divergence-free components:

b = �rV (x) + f(x). (8)

The curl-free component is rV and the divergence-free component is f : r ·f =
0. Show that BVP (7) is equivalent to

8
><

>:

r ·
�
e
��V (x)ru

�
+ �e

��V (x)
f(x) ·ru = 0, x 2 ⌦

u = uD x 2 �D
@u
@n = g, x 2 �N .

(9)

(b) Consider the Maier-Stein drift field

b(x, y) =


x� x

3 � 10xy2

�(1 + x
2)y

�
. (10)

Decompose b(x, y) into divergence-free and curl-free components. Find the po-
tential function V (x, y).

References

[1] Jochen Alberty, Carsten Carstensen and Stefan A. Funken, Remarks around 50 lines
of Matlab: short finite element implementation

[2] S. Larsson and V. Thomee, Partial Di↵erential Equations with Numerical Methods,
Springer-Verlag Berlin Heidelberg, 2003, 2009 (soft cover)

4

https://www.math.hu-berlin.de/~cc/cc_homepage/download/1999-AJ_CC_FS-50_Lines_of_Matlab.pdf
https://www.math.hu-berlin.de/~cc/cc_homepage/download/1999-AJ_CC_FS-50_Lines_of_Matlab.pdf


AMSC661, Spring 2023 Maria Cameron

Homework 9. Due Wednesday, April 12

Please upload a single pdf file on ELMS. Link your codes to your pdf (i.e., put

your codes to dropbox, Github, google drive, etc. and place links to them in

your pdf file with your solutions.

1. (10 pts) Set up and solve Problem 6 from Lagaris, Likas, and Fotiadis (1998), a
boundary-value problem for the Poisson equation

uxx + uyy = f(x, y) where f(x, y) = (2 � ⇡2y2) sin(⇡x), (x, y) 2 [0, 1]2, (1)

with mixed boundary conditions:

<latexit sha1_base64="jqylwcxBagMhesCQ8VFOWEkScmo=">AAAB6HicbVDLTgJBEOzFF+IL9ehlIjHxRHYNUY9ELx4hkUcCGzI79MLI7OxmZtZICF/gxYPGePWTvPk3DrAHBSvppFLVne6uIBFcG9f9dnJr6xubW/ntws7u3v5B8fCoqeNUMWywWMSqHVCNgktsGG4EthOFNAoEtoLR7cxvPaLSPJb3ZpygH9GB5CFn1Fip/tQrltyyOwdZJV5GSpCh1it+dfsxSyOUhgmqdcdzE+NPqDKcCZwWuqnGhLIRHWDHUkkj1P5kfuiUnFmlT8JY2ZKGzNXfExMaaT2OAtsZUTPUy95M/M/rpCa89idcJqlByRaLwlQQE5PZ16TPFTIjxpZQpri9lbAhVZQZm03BhuAtv7xKmhdl77JcqVdK1ZssjjycwCmcgwdXUIU7qEEDGCA8wyu8OQ/Oi/PufCxac042cwx/4Hz+AOknjQU=</latexit>x

<latexit sha1_base64="+uQyNRflh6ZfpBt0Osl+e4sjuBk=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0mkqMeiF48t2FpoQ9lsJ+3azSbsboQS+gu8eFDEqz/Jm//GbZuDtj4YeLw3w8y8IBFcG9f9dgpr6xubW8Xt0s7u3v5B+fCoreNUMWyxWMSqE1CNgktsGW4EdhKFNAoEPgTj25n/8IRK81jem0mCfkSHkoecUWOl5qRfrrhVdw6ySrycVCBHo1/+6g1ilkYoDRNU667nJsbPqDKcCZyWeqnGhLIxHWLXUkkj1H42P3RKzqwyIGGsbElD5urviYxGWk+iwHZG1Iz0sjcT//O6qQmv/YzLJDUo2WJRmApiYjL7mgy4QmbExBLKFLe3EjaiijJjsynZELzll1dJ+6LqXVZrzVqlfpPHUYQTOIVz8OAK6nAHDWgBA4RneIU359F5cd6dj0VrwclnjuEPnM8f6quNBg==</latexit>y

(0,0) (1,0)

(1,1)(0,1)

<latexit sha1_base64="HcBILwOSf7WalbH7vvq2zFtm5RA=">AAAB8XicbVBNS8NAEJ3Ur1q/oh69LBahgpREinoRil48VrAf2Iay2W7apZtN2N0IIfRfePGgiFf/jTf/jds2B219MPB4b4aZeX7MmdKO820VVlbX1jeKm6Wt7Z3dPXv/oKWiRBLaJBGPZMfHinImaFMzzWknlhSHPqdtf3w79dtPVCoWiQedxtQL8VCwgBGsjfSYVJyz9BRdI6dvl52qMwNaJm5OypCj0be/eoOIJCEVmnCsVNd1Yu1lWGpGOJ2UeomiMSZjPKRdQwUOqfKy2cUTdGKUAQoiaUpoNFN/T2Q4VCoNfdMZYj1Si95U/M/rJjq48jIm4kRTQeaLgoQjHaHp+2jAJCWap4ZgIpm5FZERlphoE1LJhOAuvrxMWudV96Jau6+V6zd5HEU4gmOogAuXUIc7aEATCAh4hld4s5T1Yr1bH/PWgpXPHMIfWJ8/AK6PLw==</latexit>

u(0, y) = 0

<latexit sha1_base64="dlgcxG5aQAui8dJHI7/ZfrkdYOI=">AAAB8XicbVBNSwMxEJ31s9avqkcvwSJUkLIrRb0IRS8eK9gPbJeSTbNtaDZZkqxYlv4LLx4U8eq/8ea/MW33oK0PBh7vzTAzL4g508Z1v52l5ZXVtfXcRn5za3tnt7C339AyUYTWieRStQKsKWeC1g0znLZiRXEUcNoMhjcTv/lIlWZS3JtRTP0I9wULGcHGSg9J6enUPUFXyO0Wim7ZnQItEi8jRchQ6xa+Oj1JkogKQzjWuu25sfFTrAwjnI7znUTTGJMh7tO2pQJHVPvp9OIxOrZKD4VS2RIGTdXfEymOtB5Fge2MsBnoeW8i/ue1ExNe+ikTcWKoILNFYcKRkWjyPuoxRYnhI0swUczeisgAK0yMDSlvQ/DmX14kjbOyd16u3FWK1essjhwcwhGUwIMLqMIt1KAOBAQ8wyu8Odp5cd6dj1nrkpPNHMAfOJ8//6aPLg==</latexit>

u(x, 0) = 0

<latexit sha1_base64="Izh70X1WIpZitruZc07+1RSbzvk=">AAACAHicbVDLSsNAFJ34rPUVdeHCzWARWpCSlKJuhKIblxXsA5oQJtNJO3QyCTMTaQjd+CtuXCji1s9w5984bbPQ1gMXDufcy733+DGjUlnWt7Gyura+sVnYKm7v7O7tmweHbRklApMWjlgkuj6ShFFOWooqRrqxICj0Gen4o9up33kkQtKIP6g0Jm6IBpwGFCOlJc88Try0PD63K/Aa1hxJedmJKRxXPLNkVa0Z4DKxc1ICOZqe+eX0I5yEhCvMkJQ924qVmyGhKGZkUnQSSWKER2hAeppyFBLpZrMHJvBMK30YREIXV3Cm/p7IUChlGvq6M0RqKBe9qfif10tUcOVmlMeJIhzPFwUJgyqC0zRgnwqCFUs1QVhQfSvEQyQQVjqzog7BXnx5mbRrVfuiWr+vlxo3eRwFcAJOQRnY4BI0wB1oghbAYAKewSt4M56MF+Pd+Ji3rhj5zBH4A+PzB5q3lIA=</latexit>

uy(x, 1) = 2 sin(⇡x)

<latexit sha1_base64="AO4H9Ermo1tk4/bmbeZjuEYJDR8=">AAAB8XicbVBNS8NAEJ3Ur1q/oh69LBahgpREinoRil48VrAf2Iay2W7apZtN2N0IIfRfePGgiFf/jTf/jds2B219MPB4b4aZeX7MmdKO820VVlbX1jeKm6Wt7Z3dPXv/oKWiRBLaJBGPZMfHinImaFMzzWknlhSHPqdtf3w79dtPVCoWiQedxtQL8VCwgBGsjfSYVNyz9BRdI6dvl52qMwNaJm5OypCj0be/eoOIJCEVmnCsVNd1Yu1lWGpGOJ2UeomiMSZjPKRdQwUOqfKy2cUTdGKUAQoiaUpoNFN/T2Q4VCoNfdMZYj1Si95U/M/rJjq48jIm4kRTQeaLgoQjHaHp+2jAJCWap4ZgIpm5FZERlphoE1LJhOAuvrxMWudV96Jau6+V6zd5HEU4gmOogAuXUIc7aEATCAh4hld4s5T1Yr1bH/PWgpXPHMIfWJ8/AjmPMA==</latexit>

u(1, y) = 0

The exact solution to this problem is given by

uex(x, y) = y2 sin(⇡x). (2)

To solve this problem, you can mimic the provided codes for Problem 5 from Lagaris
et al.:

• Lagaris5.zip, a Matlab package written by me from scratch, or

• Lagaris5.ipynb, a Python code written by me from scratch, or

• Lagaris Margot.ipynb, a Python written by Margot Yuan (AMSC) with the
use of automatic di↵erentiation and built-in Adam optimizer.

Use a neural network with one hidden layer and n = 10 neurons of the form:

N (x, y; w) =
n�1X

j=0

w3j� (w0jx + w1jy + w2j) , (3)

1

https://www.dropbox.com/s/kh3i9h5sa1dosyg/Lagaris1998.pdf?dl=0


where �(z) = tanh(z) acts entrywise. The total number of parameters to optimize is
4n.

The proposed form of the solution U(x, y; w) is given in Lagaris et al. in Eqs. (24)–
(25). Take Ntr = 49 training points forming a uniform 7 ⇥ 7 meshgrid in [0, 1]2 (set
a 9 ⇥ 9 meshgrid and strip its boundaries). Set up the least squares loss function

L(w) =
1

2

Ntr�1X

i=0

|Uxx(xi, yi; w) + Uyy(xi, yi; w) � f(xi, yi)|2 . (4)

Plot the computed solution and the numerical error using level sets or a heatmap.
Plot the loss function versus the iteration number using a log scale for the y-axis.

2. (5 pts) Consider the following IBVP for the heat equation:

ut = uxx, 0  x  ⇡, t � 0, (5)

u(x, 0) = x, (6)

u(0, t) = 0, the left end is kept at temperature 0, (7)

ux(⇡, t) = 0, the right end is insulated. (8)

Solve Eq. (5)-(8) analytically using the method of separation of variables (if you are
not familiar with it look it up e.g. in Wikipedia). You will obtain the solution of the
form of infinite series involving sines sin[(n + 1/2)x], n = 0, 1, 2, . . .. Calculate the
coe�cients for each harmonic of this series. Plot graphs of the sums of the first m
terms of the series at time 0 and time 2 for m = 1, 2, 5, 10, 100. Find the maximum
norm of the di↵erence of the sum of the first 100 terms of the series at time 0 and
the function x = u(x, 0).

2

https://en.wikipedia.org/wiki/Separation_of_variables


AMSC661, Spring 2023 Maria Cameron

Homework 10. Due April 19

1. (5 pts) Consider the heat equation in the unit square [0, 1]2

ut = �u, (x, y) 2 [0, 1]2. (1)

Impose the homogeneous Dirichlet boundary conditions: u = 0 on @⌦. Consider the
uniform square mesh (J+1)⇥(J+1) in the unit square [0, 1]2 and discretize Laplace’s
operator to this mesh using central di↵erences and taking the boundary conditions
into account. The resulting “method of lines” equation will be of the form

d

dt
U = AU, (2)

where A is the discretized operator �, an (J � 1)2 ⇥ (J � 1)2 matrix.

(a) Verify that the eigenvectors of A are

vkx,ky(xr, ys) = sin(kxxr) sin(kyys), kx, ky = ⇡, 2⇡, . . . , (J � 1)⇡, (3)

where (xr, ys) are the mesh points. Find the corresponding eigenvalues.

(b) Suppose we are applying the forward Euler time discretization to (2). Find
the relationship between the time step �t and the mesh step h such that this
method is stable for all J .

2. (10 pts) Consider the following Initial and Boundary Value Problem (IBVP) in 2D:

ut = �u+ 1, (x, y) 2 ⌦ = {(x, y) 2 R2 | 1 < r < 2}, (4)

u|t=0 = r + cos(�), (5)

u|r=1 = u|r=2 = 0, (6)

where r and � are the polar coordinates. Solve this problem using the finite element
method and a scheme based on the trapezoidal rule:

un+1 = un + 1
2�t (�un+1 +�un) +�t.

(a) Derive equations for the weak and the FEM solutions of the IBVP (4)-(6) anal-
ogous to Eq. (13) and the two unnumbered equations right below it in Section
9 on page 127 in Remarks around 50 lines of Matlab: short finite element im-
plementation. Use time step dt = 0.01.

(b) Make your program plot the following figures:

• with the computed solution at t = 0.1 (use trisurf);

1

https://www.math.hu-berlin.de/~cc/cc_homepage/download/1999-AJ_CC_FS-50_Lines_of_Matlab.pdf
https://www.math.hu-berlin.de/~cc/cc_homepage/download/1999-AJ_CC_FS-50_Lines_of_Matlab.pdf


• with the computed solution at t = 1 (use trisurf);

• with the computed solution at time t = 1 as a function of r. You can do it
e.g., as follows:

u = U(:,N+1); % N+1 corresponds to t=1.

r = sqrt(coordinates(:,1).^2 + coordinates(:,2).^2);

[rsort,isort] = sort(r,’ascend’);

usort = u(isort);

plot(rsort,usort,’Linewidth’,2);

At t = 1, the function u will virtually reach the stationary solution �u+ 1 = 0
satisfying the BC (6). This stationary solution can be found exactly:

u(r) =
1� r2

4
+

3 log(r)

4 log 2
. (7)

Plot the graph of the exact stationary solution (7) in the same figure.

Hint: You might find helpful my code MyFEMheat.m implementing the Backward

Euler time integrator described in “Remarks around 50 lines of Matlab: ...”. This

code is found on ELMS in Files/Codes/Elliptic/MyFEMcat.

2



AMSC661, Spring 2023 Maria Cameron

Homework 11. Due April 26

Reading:

• [1], Chapter 10, in particular, Section 10.9 (Modified equations) and Appendix E3

(Fourier analysis).

• My lecture notes Hyperbolic.pdf.

1. (15 pts) Consider the wave equation of an infinite line:

utt = a2uxx, (1)

u(x, 0) = �(x), ut(x, 0) =  (x).

The parameter a > 0 is the speed of wave propagation.

(a) Verify that the solution is given by d’Alembert’s formula

u(x, t) =
1

2
(�(x+ at) + �(x� at)) +

1

2a

Z x+at

x�at
 (s)ds. (2)

(b) The domain of influence of a point x0 is the set of points on the (x, t)-plane such
that u(x, t) depends on the initial conditions at the point x0. More precisely,

a point (x, t) belongs to the domain of influence of x0, if for any neighborhood

of x0 there exist perturbations of the initial conditions supported within this

neighborhood such that the solution changes at the point (x, t) due to these

perturbations.

Plot the domain of influence of a point x0 on the (x, t)-plane.

The domain of dependence of a point (x, t) is the minimal set of points on the

line (x, 0) such that the solution at the point (x, t) is completely determined by

the initial conditions restricted to this set. (The word minimal in the clause

“minimal set satisfying some conditions” means that no its proper subset satis-

fies these conditions.)

Plot the domain of dependence of a point (x, t).

(c) Rewrite Eq. (1) as a hyperbolic system. Proceed as follows. Introducing the

new vector-function

w =


ut
ux

�
.

Derive the equation for w: wt = Awx, where

A =


0 a2

1 0

�
.

Express the initial conditions for w in terms of � and  .

1



(d) Diagonalize the matrix A, i.e., find its eigenvalues and eigenvectors (�1, v1)
and (�2, v2) and rewrite it of the form A = C⇤C�1

, where C = [v1, v2], ⇤ =

diag{�1,�2}. Introduce the new variable

y =


⇠
⌘

�
⌘ C�1w.

Observe that the system for y is decoupled into two independent advection

equations:

⇠t = �1⇠x, ⌘t = �2⌘x. (3)

Obtain the initial conditions for ⇠ and ⌘ in terms of � and  .

(e) Set � = max{1� |x|, 0},  = 0, a =
p
2, h = 0.05, and a reasonable time step k.

Pick the numerical domain �6  x  6 and periodic boundary conditions. Solve

the equations for ⇠ and ⌘ numerically using Lax-Friedrichs, appropriate Upwind

(left for one and right for the other depending on signs of �), Lax-Wendro↵,

and appropriate Beam-Warming methods. Return to the variable w and then

to the original variable u. Plot the numerical solutions u obtained using each

of the methods at times t = 1/(2a), t = 1/a, t = 2/a, and t = 4/a as well as

the exact solution at these times given by Eq. (2). Write a summary of your

observations.

2. (15 pts)

Consider the advection equation

ut + aux = 0, u(x, 0) = �(x), �1 < x < 1, t � 0. (4)

Assume that a > 0.

(a) Derive the modified equations for the Lax-Friedrichs method (LaxFr), the Leapfrog

(LF) and the Left Beam Warming (BWL) method (Eq. (10.26) in [1]). For con-

venience, you can introduce the parameter ⌫ := ak/h where k ⌘ �t is the step in

t, h is the step in x and make coe�cients the modified equations more compact

using it.

(b) Consider the modified equations for the Upwind Left (UL), Lax-Wendro↵ (LW)

(derived in class, see [1]) and the ones that you derived for LaxFr, LF, and

BWL. UL and LaxFr are first order, while LW, LF, and BWL) are second order.

Use their modified equations for determining which of the first-order methods

is most accurate and which of the second-order methods is the most accurate.

Comment on the choice of the time step k given a and space step h that would

lead to the smallest numerical error in each of these five methods.

2



(c) Apply the Fourier transform (Eq. (E.18) in Appendix E in [1]) to the modified

equations for UL, LaxFr, LW, LF, and BWL. Solve them in the Fourier space

(i.e., sole the ODEs for û. Comment on the behavior of the Fourier modes

û(⇠, t) as t ! 1. Obtain the dispersion relations (Eq. (E.48) in [1]) and find

the phase and group velocities. What are the phase and the group velocity for

the original advection equation? Run the code advection.m available on ELMS.

The choice of method is controlled by the variable method in the code. Explain

the appearance and the location of oscillations produced by these methods using

their modified equations.

References

[1] R. J. LeVeque, Finite Di↵erence Methods for Ordinary and Partial Di↵erential Equa-

tions, SIAM 2007 (Chapter 10, Appendix E)

3

http://epubs.siam.org.proxy-um.researchport.umd.edu/doi/book/10.1137/1.9780898717839
http://epubs.siam.org.proxy-um.researchport.umd.edu/doi/book/10.1137/1.9780898717839


AMSC661, Spring 2023 Maria Cameron

Homework 12. Due May 3.

1. (10 pts) Consider the Greenberg tra�c model

⇢t + [�⇢ log(⇢)]x = 0, ⇢(x, 0) = ⇢0(x). (1)

Here, ⇢ is the density of cars, and the velocity v depends on the density according to

v(⇢) = vmax log

⇣
⇢max
⇢

⌘
, where vmax and ⇢max are set to be 1 for convenience.

(a) Find the formula for the characteristic x(t) of Eq. (1) starting at the point

(x = x0, t = 0) (the curve x(t) passing through (x = x0, t = 0) along which ⇢ is

constant, i.e.,
d
dt⇢(x(t), t) = 0).

(b) Plot the characteristics and the shock line on the xt-plane for the Riemann

problem

⇢0(x) =

(
0.1, x < 0,

0.9, x > 0.

(c) Suppose

⇢0(x) = 0.5 +
0.9

⇡
arctan(x). (2)

Find the time when the shock appears. Then find the eventual shock speed.

References

[1] R. J. LeVeque, Numerical Methods for Conservation Laws, Second Edition,

Birkh auser, Basel, Boston, Berlin, 1992

[2] M. Cameron’s notes burgers.pdf available on ELMS.

1

https://www.win.tue.nl/casa/meetings/seminar/previous/_abstract091015_files/seminar.pdf
https://pdfs.semanticscholar.org/1470/c6f43c769572c4cfc94ffc9c5710484ff1e5.pdf
https://pdfs.semanticscholar.org/1470/c6f43c769572c4cfc94ffc9c5710484ff1e5.pdf


AMSC661, Spring 2023 Maria Cameron

Homework 13. Due Monday, May 10

1. (5 pt)

(a) Show that MacCormack’s method

U⇤
j = Un

j � k

h

⇥
f(Un

j+1)� f(Un
j )

⇤
,

Un+1
j =

1

2

�
Un
j + U⇤

j

�
� k

2h

⇥
f(U⇤

j )� f(U⇤
j�1)

⇤
, (1)

reduces to the Lax-Wendro↵ method for f(u) ⌘ au.

(b) Show that MacCormack’s method is second-order consistent on smooth solutions.

(c) Determine a numerical flux function for MacCormack’s method that allows us to rewrite

it in the conservative form. Rewrite it in the conservative form. Show that the method

is consistent.

2. (5 pts) Consider Godunov’s method for solving ut+[f(u)]x = 0. In class we have established

that if f(u) is convex (if f is twice di↵erentiable then f 00
(u) > 0), the following four cases

exhaust all possibilities:

(a) f 0
(uL) � 0 and f 0

(uR) � 0. Then u⇤ = uL.

(b) f 0
(uL)  0 and f 0

(uR)  0. Then u⇤ = uR.

(c) f 0
(uL) � 0 � f 0

(uR). Then

u⇤ =

(
uL, if

f(uL)�f(uR)
uL�uR

> 0,

uR, if
f(uL)�f(uR)

uL�uR
< 0.

(2)

(d) f 0
(uL) < 0 < f 0

(uR). Then u⇤ = us (transonic rarefaction), where the value us is such

that f 0
(us) = 0. It is called the sonic point. For example, for the Burgers equation

ut + [u2/2]x = 0, us = 0.

In the first three cases, the value u⇤ is either uL and uR, and it can be simply determined

by Eq. (2). Note that in Cases 1 and 2, u⇤ is the same whether the physically correct

weak solution to the Riemann problem is a shock wave or a rarefaction. Only in Case 4, the

transonic rarefaction, the value of u⇤ di↵ers from the one determined by Eq. (2). This is the

value of u for which the characteristic speed is zero.

Verify that the numerical flux determined by Cases 1 - 4 can be rewritten more compactly as

F (uL, uR) =

(
minuLuuR f(u), if uL  uR,

maxuRuuL f(u), if uL > uR.
(3)

Remark: It was proven that the numerical flux given by Eq. (3) gives the physically correct

flux for scalar conservation laws even if f(u) is non-convex.

1



3. (5 pts) Consider the Burgers equation ut+[
1
2u

2
]x = 0 with the initial condition u0(x) = 1 on

[0, 1] and u0(x) = 0 otherwise. Implement the following methods for conservation laws: Lax-

Friedrichs, Richtmyer, MacCormack, and Godunov and apply them to the problem above.

Compute the numerical solution by each of the methods with the same time step and plot it

at times t = 0, 1, 2, 3, 4, 5, 6. Plot the exact solution as well. It is found in Hyperbolic.pdf

in Section 8.3.

4. 5 pts Read an article on the Kuramoto-Sivashinsky equation available at

http://people.maths.ox.ac.uk/trefethen/pdectb/kuramoto2.pdf. A detailed description of

the method can be found in Kassam&Trefethen (2005).

Solve the equation

ut + uxxxx + uxx +
1
2(u

2
)x = 0, u(x, 0) = cos(x/16)(1 + sin(x/16)) (4)

on the interval [0, 32⇡] with periodic boundary condition. Proceed as follows. Assume first

that you need to solve

ut = �uxxxx � uxx := Lu. (5)

Write

u(x, t) =
1X

k=�1
uk(t)e

ikx/16.

Plug this into the equation and obtain an exact solution u(x, t) of Eq. (5). Define the solution

operator etL so that u(x, t) = etLu(x, 0). Now return to Eq. (4). Note that ut = Lu+N(u)
where N(u) := �1

2(u
2
)x. Define a new unknown function v(x, t) by u(x, t) = etLv(x, t). Plug

this into ut = Lu+N(u) and obtain the following equation for v(x, t):

vt = e�tLN(etLv). (6)

Solve Eq. (6) using 4th order Runge-Kutta method on the time interval [0,200]. Plot the

surface u(x, t) using the command imagesc. Compare it with the one in the article above.

Hint: modify the program KdVrkm.m that solves the Korteweg-de Vries equation

ut + uxxx +
1
2(u

2
)x = 0

using the proposed approach.

2

http://people.maths.ox.ac.uk/trefethen/pdectb/kuramoto2.pdf
https://epubs.siam.org/doi/pdf/10.1137/S1064827502410633

