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1. What is a neural network?

A feed-forward fully connected neural network with l hidden layers is a composition of
functions of the form

(1) N(x; θ) = Ll+1 ○ σl ○ Ll ○ σl−1 ○ . . . ○ σ1 ○ L1.

The symbol Lk denotes the k’s affine operator of the form Lk(x) = Akx + bk, while σk
denotes a nonlinear function called an activation function. The activation functions are
chosen by the user. The matrices Ak and shift vectors (or bias vectors) bk are encoded
into the argument θ: θ = {Ak, bk}

l+1
k=1. The term training neural network means finding

{Ak, bk}
l+1
k=1 such that N(x; θ) satisfies certain conditions. These conditions are described

by the loss function chosen by the user. For example, one might want the neural network
to assume certain values fj at certain points xj , j = 1, . . . ,N . These points x are called the
training data. In this case, a common choice of the loss function is the least squares error:

(2) Loss(x; θ) =
1

N

n

∑
j=1

∥N(xj ; θ) − fj∥
2.

The activation functions σk can be arbitrary non-polynomial functions. Popular choices
are

● sigmoid:

σ(x) =
1

1 + e−x
;

● hyperbolic tangent tanh(x);
● rectified linear unit

ReLU(x) =

⎧⎪⎪
⎨
⎪⎪⎩

x, x ≥ 0

0, x < 0.
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There are many other possible choices for the activation functions.
There are many other types of neural networks – see e.g. the textbook “Deep Learning”

by I. Goodfellow, Y. Bengio, and A. Courville.

2. What is special about neural networks?

Neural networks with at least one hidden layer can approximate any continuous function
on a compact set provided that the activation function satisfies some nonrestrictive condi-
tions – see below. Moreover, they can approximate it together with its derivatives. The
approximation theory for neural networks has been a subject of active research starting
from the 1980s. A beautiful paper proving very important results and giving a compre-
hensive account of the work in this field is the one by Allan Pinkus (1999) available via
the UMD library. The key contributors to the development of the approximation theory
for neural networks in the late 1980s are

● Carrol and Dickinson,
● Cybenko,
● Hornik, Stinchcombe, and White,
● Funahashi.

The main result established by Hornik et al. (1989) is the following.

Theorem 1. The set

(3) M(σ) ∶= span{σ(a ⋅ x + b), a ∈ R2, b ∈ R}

and σ ∶ R→ [0,1] is a non-decreasing function such that limy→−∞ σ(y) = 0, limy→∞ σ(y) = 1,

is dense in the set of continuous functions C(Rd) on any compact set.

Note that the activation function σ does not need to be continuous. A suitable choice
of σ is the Heaviside function h(x) = 1 if x ≥ 0 and h(x) = 0 if x < 0.

The following theorems are proven in Pinkus (1999):

Theorem 2. Let σ be any continuous function on R. Then

M(σ) ∶= span{σ(a ⋅ x + b), a ∈ R2, b ∈ R}

is dense in C(Rd) in the topology of uniform convergence on compacta, if and only if σ is
not a polynomial.

It is easy to see why σ should not be a polynomial. Indeed, if σ is a polynomial of degree
r then M(σ) will be the set of all polynomials of degree ≤ r which is not dense in C(Rd).

Moreover, in the same work, Pinkus proved an approximation result with derivatives
which is a very important theoretical basis for looking for the solutions to PDEs in the
form of neural networks.

Theorem 3. If σ ∶ R→ R is m times continuously differentiable and σ is not a polynomial
then

M(σ) ∶= span{σ(a ⋅ x + b), a ∈ Rd, b ∈ R}

https://www.deeplearningbook.org
https://www.deeplearningbook.org
https://www.cambridge.org/core/journals/acta-numerica/article/abs/approximation-theory-of-the-mlp-model-in-neural-networks/18072C558C8410C4F92A82BCC8FC8CF9
https://www.academia.edu/6520737/Multilayer_feedforward_networks_are_universal_approximators
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is dense in Cm1,...,ms
(Rd), i.e., for any f ∈ Cm1,...,ms

(Rd), any compact set K ⊂ Rd, and
any ε > 0, there is g ∈M(σ) such that

max
x∈K

∣Dkf(x) −Dkg(x)∣ < ε

for all k ∈ Zn+ for which k ≤mi for some i.

This means that neural networks with just one hidden layer can approximate any con-
tinuous function together with its derivatives on a compact set provided that the activation
function is not a polynomial and is smooth enough, and the neural network is wide enough.

This does not mean that this approximation is efficient, i.e., that high accuracy can be
achieved with a few terms in the linear combination. Pinkus shows that it is advantageous
to use neural networks with two hidden layers because they can efficiently approximate
functions with compact supports.

The recent surge of the interest to neural network in the numerical PDE community
is caused by several factors, in particular by the fact that neural networks allow us to
approximate functions defined in high-dimensional domains. In this connection, the ques-
tion of great interest is whether there is the curse of dimensionality. More precisely, how
does the number of parameters of neural networks representing functions defined in high-
dimensional domains scale with the dimension of the domain? It is well-known that the
number of mesh points required for representing a function in a d-dimensional domain
scales as O(h−d) where h is the mesh step, i.e., exponentially.

Significant contributions to the approximation theory with regard to this question are
recently done by Haizhao Yang and collaborators. In Deep Network Approximation for
Smooth Functions, Lu et al. (2021), it is shown that the number of required parameters
for approximating a function f ∈ Cs([0,1]d) with a neural network with ReLU activation
function and L hidden layers of width N scales as

O (∥f∥Cs([0,1]d)N
−2s/dL−2s/d) .

This formula shows that the number of required parameters grows exponentially as d→∞.
On the other hand, in Neural network approximation: Three hidden layers are enough
by Shen et al. 2021, its is shown that if one takes advanced specially crafted activation
functions σ1, σ2, and σ3 and constructs a neural network with three hidden layers of width
N , then the number of required parameters scales as

√
d with the dimension d.

3. Application to solving PDEs

The idea of solving PDEs with the aid of neural networks is the following. We propose
a solution model for a PDE that involves a neural network. We choose an appropriate
loss function so that if the loss function is zero then the PDE is satisfied in a given set of
training points. Then we train the neural network.

This approach to solving ODEs and PDEs dates back to the work “Artificial Neural
Networks for Solving Ordinary and Partial Differential Equations” by I. Lagaris, A. Likas,
and D. Fotiadis (1998). At that time, this approach was far from the mainstream. A boom

https://epubs.siam.org/doi/10.1137/20M134695X
https://epubs.siam.org/doi/10.1137/20M134695X
https://www.sciencedirect.com/science/article/abs/pii/S0893608021001465
https://www.sciencedirect.com/science/article/abs/pii/S0893608021001465
https://www.cs.uoi.gr/~lagaris/papers/TNN-LLF.pdf
https://www.cs.uoi.gr/~lagaris/papers/TNN-LLF.pdf
https://www.cs.uoi.gr/~lagaris/papers/TNN-LLF.pdf
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of the development of neural network-based PDE solvers started from works by Weinan E
and collaborators in the late 2010s. The key contributors are:

● Weinan E and collaborators,
● Jianfeng Lu, Lexing Ying, Yehaw Khoo,
● George Karniadakis, Paris Perdikars, Maziar Raissi.

This boom is facilitated by the availability of packages for training neural networks that
encode the automatic differentiation the most popular of which are PyTorch and TensorFlow.

Neural network-based solvers have several advantages.

● Numerical solutions to PDEs found in the form of neural networks with smooth
activation functions are globally defined smooth functions unlike finite difference
and finite element solutions.

● Numerical solutions to PDEs can be easily differentiated.
● The neural network framework allows to construct loss functions that pick the

desired solutions in the case of multiple solutions.
● Neural networks allow us to approximate functions defined in high-dimensional

domains. Hence neural network-based PDE solvers are amenable to promotion to
high dimensions.

3.1. An application to solving PDEs using NNs. We consider Problem 5 from “Ar-
tificial Neural Networks for Solving Ordinary and Partial Differential Equations” by I.
Lagaris, A. Likas, and D. Fotiadis (1998). Consider the following BVP for the Poisson
equation:

uxx + uyy = φ(x, y), (x, y) ∈ Ω = [0,1]2,(4)

u(0, y) = f0(y), u(1, y) = f1(y), u(x,0) = g0(x), u(x,1) = g1(x).(5)

Lagaris, Likas, and Fotiadis (1998) proposed to look for the solution to (4)–(5) in the
following form:

(6) Ψ(x, y,w) = A(x, y) + h(x)h(y)N(x, y,w).

Here A(x, y) is a function satisfying boundary conditions (5) which can be written out
analytically:

A(x, y) = (1 − x)f0(y) + xf1(y) + (1 − y) [g0(x) − {(1 − x)f0(0) + xf1(0)}]

+ y [g1(x) − {(1 − x)f0(1) + xf1(1)}] .(7)

The function h is chosen to guarantee that the second term in the right-hand side in (6) is
zero on the boundary ∂Ω:

(8) h(t) = t(1 − t).

The function N(x, y,w) is a neural network (NN) with one hidden layer and a single linear
output unit:

(9) N(x, y,w) = v⊺σ(Wx + u), w ≡ (v,W,u),

https://en.wikipedia.org/wiki/Automatic_differentiation
https://www.cs.uoi.gr/~lagaris/papers/TNN-LLF.pdf
https://www.cs.uoi.gr/~lagaris/papers/TNN-LLF.pdf
https://www.cs.uoi.gr/~lagaris/papers/TNN-LLF.pdf
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where

x ≡ [
x
y

] , v ∈ RN , W = (wij) ∈ RN×2, u ∈ RN ,

and σ is a nonlinear function applied entry-wise. We will experiment with

σ(t) = (1 + exp(−t))−1 (sigmoid) and σ(t) = tanh(t).

I chose this example due to its simplicity. A one-layer NN is sufficient to achieve quite
impressive accuracy using just a few training points, and the derivatives of N with respect
to x, y, and parameters packed in w can be computed analytically without the use of
automatic differentiation.

As the form of the solution is set, the proposed parameter-dependent solution is plugged
into the differential operator, evaluated at a number of training points, and equated to
the corresponding values of the right-hand side of the differential equation. Then the
nonlinear least-squares problem (NLLS) is set up to minimize the sum of the squares of
the discrepancies by choosing an optimal set of the parameters. The nonlinear least-squares
problem for the PDE above is

(10) f(w) ∶=
1

2

n

∑
j=1

∣Ψxx(xj , yj ,w) +Ψyy(xj , yj ,w) − f(xj , yj)∣
2
→min .

Plugging Ψ into PDE (4) we get:

rj(w) = Ψxx(xj , yj ,w) +Ψyy(xj , yj ,w) − f(xj , yj)

= Axx +Ayy + [h(x)h′′(y) + h′′(x)h(y)]N

+ 2 [h′(x)h(y)Nx + h(x)h
′
(y)Ny]

+ h(x)h(y) [Nxx +Nyy] − f(xj , yj).(11)

Equation (11) shows that in order to solve the NLLS (10), one needs to calculate the first
derivatives of N , Nx, Ny, Nxx, and Nyy with respect to the components of v, W , and u.

For the convenience of programming, we write the neural network with one hidden layer
and n = 10 neurons of the form:

(12) N(x, y;w) =
n−1
∑
j=0

w3jσ (w0jx +w1jy +w2j) ,

where σ(z) is a nonlinear activation function acting entrywise. We will use σ(z) = tanh(z)
hyperbolic tangent. The total number of parameters to optimize is 4n.

It is easy to check that

Nx(x, y;w) =
n−1
∑
j=0

w3jw0jσ
′
(w0jx +w1jy +w2j) ,

Ny(x, y;w) =
n−1
∑
j=0

w3jw1jσ
′
(w0jx +w1jy +w2j) ,

https://en.wikipedia.org/wiki/Automatic_differentiation
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Nxx(x, y;w) =
n−1
∑
j=0

w3jw
2
0jσ

′′
(w0jx +w1jy +w2j) ,

Nyy(x, y;w) =
n−1
∑
j=0

w3jw
2
1jσ

′′
(w0jx +w1jy +w2j) .

The derivatives of N , Nx, Ny, Nxx, and Nyy with respect to the components of w are easily
found from these formulas.

We set the right-hand side and the boundary functions in (4)–(5) to:

φ(x, y) = e−x(x − 2 + y3 + 6y),

f0(y) = y
3, f1(y) = (1 + y3)e−1,

g0(x) = xe
−x, g1(x) = e

−1
(x + 1).

Then the exact solution is
u(x, y) = e−x(x + y3).

The training set is a 5×5 set of mesh points (see Fig. 1). The number of hidden units N is
set to 10. This makes the dimensionality of the parameter space equal to 40. The function
σ = tanh:

fun = @(x)tanh(x);

dfun = @(x)1./cosh(x).^2;

d2fun = @(x)-2*sinh(x)./cosh(x).^3;

d3fun = @(x)(4*sinh(x).^2-2)./cosh(x).^4;

The initial guess for parameter values was the vector of all ones. We solve the resulting
nonlinear least squares problem using the Levenberg-Marquardt (LM) algorithm. This is a
powerful deterministic optimizer of trust-region type for nonlinear least squares problems.
The test points are the 101 × 101 mesh points. Stopping criteria were: either the number
of iterations exceeds 120, or the norm of the gradient of the objective function decays to
10−4.
LM:

iter # 109: f = 0.00000002701552, |df| = 4.4645e-05

CPUtime = 1.260592e-01

max|err| = 1.301953e-06

L2 err = 4.449413e-05

https://en.wikipedia.org/wiki/Levenberg\OT1\textendash Marquardt_algorithm
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Figure 1. The solution (a) to the NLLS (10) and the error (b) committed
by Levenberg-Marquardt. While dots are the training points.
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