
AMSC661, Spring 2016 Maria
Cameron

Contents

1. Linear Elliptic PDEs 1
1.1. Definition 1
1.2. Where linear elliptic PDEs come from 2
1.3. Strong and weak maximum principles 5
2. Finite difference approach. A model problem 7
2.1. Numerical solution 7
2.2. Error Analysis 11
3. Handling different types of boundary conditions and non-constant coefficients 13
3.1. Homogeneous Neumann and Nonhomogeneus Dirichlet boundary conditions 13
3.2. Example: finding the electric potential on a plate with varying conductivity 15
4. Finite Element Method (FEM) 23
4.1. An illustration of the general idea of the FEM on a model problem 23
4.2. Mesh generation 27
4.3. Quadrature for FEM 28
4.4. A simple basic FEM code with an example 28
4.5. Complete FEM packages 34
4.6. Error analysis 34
References 38

1. Linear Elliptic PDEs

1.1. Definition. Linear elliptic PDEs (partial differential equations) are those of the form

(1) −tr (M(x)∇∇u(x)) + b(x) · ∇u+ c(x)u(x) = f(x), x ∈ Ω ⊂ Rn

where ∇u and ∇∇u denote the gradient and the Hessian of the function u:

∇u :=


∂u
∂x1
...
∂u
∂xn

 , ∇∇u :=


∂2u
∂x21

· · · ∂2u
∂x1∂xn

...
. . .

...
∂2u

∂xn∂x1
· · · ∂2u

∂x2n

 .
The n × n matrix function M(x) is continuously differentiable such that for all x ∈ Ω
M(x) = M(x)> and

(2) x>M(x)x ≥ α‖x‖22 for some α > 0,

b(x) is a continuously differentiable vector function, c(x) is continuous scalar function, and
f(x) is a given scalar function. Eq. (2) is called the uniform ellipticity condition. Note

1

2

that tr (M(x)∇∇u(x)) is the sum of all entries of the entry-wise matrix product:

tr (M(x)∇∇u(x)) ≡
n∑

i,j=1

Mij(x)
∂2u

∂xi∂xj
.

Typically, the models leading to equations of the form (1) imply some boundary condi-
tions. The task to solve an equation supplemented only with boundary conditions is called
a Boundary Value Problem (BVP).

We will assume that the domain Ω is connected and bounded. We will consider three
types of boundary conditions: Dirichlet, Neumann, and periodic. Dirichlet conditions are:

(3) u(x) = g(x), x ∈ ∂Ω,

Neumann conditions are

(4)
du(x)

dν
≡ ∇u · ν = g(x), x ∈ ∂Ω,

where ν is the unit outer normal to the boundary ∂Ω. Periodic conditions are often imposed
when one or more components of x are angles. Let the first component of x be an angle
ranging between 0 and 2π: 0 ≤ x1 ≤ 2π. Then the periodic boundary conditions are given
by

(5) u(0, x2, . . . , xn) = u(2π, x2, . . . , xn), ∂
∂x1

u(0, x2, . . . , xn) = ∂
∂x1

u(2π, x2, . . . , xn).

If the boundary ∂Ω consists of several disjoint pieces then different types of boundary
conditions can be prescribed on each connected component of the boundary.

1.2. Where linear elliptic PDEs come from.

1.2.1. Stationary heat distribution. The stationary heat (or temperature) distribution in
the domain Ω with a heat conductance coefficient equal to 1 is given by the solution of the
Poisson equation

(6) −∆u = f(x),

where the symbol ∆ denotes the Laplacian

∆u :=
∂2u

∂x2
1

+ . . .+
∂2u

∂x2
n

,

f(x) is a given function representing the heat source, i.e., amount of heat supplied per unit
time in a small neighborhood of x divided by the volume of the neighborhood. The term
stationary or, steady-state, means that the distribution does not change with time.

If f(x) ≡ 0 then Eq. (6) becomes Laplace’s equation

(7) ∆u = 0.

3

If the domain Ω is insulated, i.e., there is no heat flux through its boundary, then one
should pick the homogeneous Neumann boundary conditions

(8)
du(x)

dν
≡ ∇u · ν = 0, x ∈ ∂Ω.

If the temperature distribution on the boundary of Ω is enforced to be g(x) then one should
pick the Dirichlet boundary condition (3).

If the heat conductance coefficient κ(x) is variable, then the stationary heat distribution
is the solution to the equation

(9) ∇ · (κ(x)∇u) + f(x) = 0.

Eq. (9) can be rewritten as

(10) ∇κ(x) · ∇u+ κ(x)∆u+ f(x) = 0.

1.2.2. Electrostatics. The electric potential φ(x) and the electric field E are related via

E = −∇φ.

The first Maxwell equation is Gauss’s law, ∇ · E = 4πρ(x), where ρ(x) is the density of
the electric charges. Rewriting it in terms of the electric potential one obtains the Poisson
equation

(11) −∆φ = 4πρ(x).

If Eq. (11) is solved in an infinite domain without boundary, its solution is nonunique.
For example, −∇2φ = 0, x ∈ R2 has infinitely many linearly independent solutions, e.g.,
φ1(x) = x2

1−x2
2, φ2(x) = cos(x1)ex2 , etc. Typically, one seeks solutions bounded at infinity.

This condition still determines the function φ(x) up to an additive constant.

1.2.3. Electrodynamics. Let us consider a continuous medium Ω with conductivity σ(x),
where the unit voltage is applied between the given surfaces (or curves) ∂A and ∂B. Then
the electric potential φ can be defined so that

φ(∂A) = 1 and φ(∂B) = 0.

According to Kirchhoff’s generalization of Ohm’s law, the density of electric current in the
region ΩAB := Ω\(A ∪B) is given by

(12) j(x) = −σ(x)∇φ(x).

According to the generalization of Ampere’s law,

(13) ∇ · j(x) = −∂p
∂t
,

where p(t) is the density of electric charges in the medium. We assume that the electric
current is stationary, hence the density of the electric charges is independent of time. Then

(14) ∇ · j(x) = 0.

4

Plugging Eq. (12) into Eq. (14) we obtain

(15) ∇ · (σ(x)∇φ(x)) ≡ ∇σ(x) · ∇φ(x) + σ(x)∆φ(x) = 0.

The boundary conditions on ∂A and ∂B are given by

(16) φ(∂A) = 1, φ(∂B) = 0.

The Neumann boundary conditions ∇φ ·ν on ∂Ω mean that no charges escape from Ω, i.e.,
the current at ∂Ω is tangent to it.

1.2.4. Stochastic processes. Consider a particle evolving according to a stochastic differen-
tial equation (SDE) of the form

(17) dXt = b(Xt)dt+ σ(Xt)dWt, X0 = x, x ∈ Ω ⊂ Rn,

where b is a continuously differentiable vector function, σ is a continuously differentiable
matrix function, and dWt is the increment of the standard Brownian motion. Let f(Xt)
be a function. The family of transfer operators Pt, t ≥ 0, is defined by

(18) (Ptf)(x) = E[f(Xt) | X0 = x].

Now we can define a function

(19) u(x, t) := (Ptf)(x) ≡ E[f(Xt) | X0 = x].

Then its time evolution is given by the backward Kolmogorov equation

(20)
∂u

∂t
= lim

s→0

(Pt+sf)(x)− (Ptf)(x)

s
=: LPtf ≡ Lu.

The derivative of the transfer operator in Eq. (20) is called its infinitesimal generator.
Applying Ito’s formula to SDE (17) one can calculate L explicitly:

(21) L = b(x) · ∇+
1

2
tr (Σ(x)∇∇) , Σ(x) := σ(x)σ(x)>.

Now we consider some particular choices of the function f(Xt).

• Let A ⊂ Rn and B ⊂ Rn be some regions. The committor function q(x) (a.k.a. the
equilibrium potential or the capacitor) is defined as the probability that the process
starting at the point x will first reach B rather than A. Let us derive a boundary-
value problem for the committor. It is clear that q(∂A) = 0 and q(∂B) = 1. For
x ∈ (A∪B)c it is clear that the committor does not depend on time explicitly, i.e.,

∂q

∂t
= 0.

Therefore, using Eqs. (20) and (21) we obtain the boundary-value problem for it:

b(x) · ∇q +
1

2
tr (Σ(x)∇∇q) = 0, x ∈ (A ∪B)c, q(∂A) = 0, q(∂B) = 1.

https://en.wikipedia.org/wiki/Brownian_motion
http://ocw.mit.edu/courses/sloan-school-of-management/15-070j-advanced-stochastic-processes-fall-2013/lecture-notes/MIT15_070JF13_Lec17.pdf

5

• Let A ⊂ Rn be some region. The first passage time to A, τA, is defined as

τA = inf{t ≥ 0 | Xt ∈ A}.
Let u(x, t) be the expected first passage time to A for the process Xt starting at x
and evolving according to SDE (17), i.e.,

u(x, t) = E [τA | Xt = x] .

We note that
∂

∂t
u(x, t) = 1 and u(∂A) = 0.

Plugging this into Eq. (20) and using Eq. (21) and taking care of the re-definition
of u(x, t) (compare it with Eq. (19)) one can derive the following boundary value
problem for u(x, t):

(22) b(x) · ∇u+
1

2
tr (Σ(x)∇∇u) = −1, x /∈ A, u(∂A) = 0.

• If Xt ∈ Ω ⊂ Rn, then the homogeneous Neumann boundary condition of ∂Ω

∂u

∂ν
= 0 for x ∈ ∂Ω

means that the particle is reflected from the boundary ∂Ω whenever it reaches it.

1.3. Strong and weak maximum principles. It is important to have a clue about how
solutions of elliptic equations behave. The most important result that is easy to check by
visual inspection of the plotted solution is the strong maximum principle. For brevity, we
will denote the linear elliptic operator by L:

(23) Lu := −tr (Σ(x)∇∇u) + b(x) · ∇u+ c(x)u.

We chose the sign “−” in front of the first term in L following the common practice.
It makes the corresponding matrix obtained via a spatial discretization of L symmetric
positive definite provided that the discretization is fine enough. We will get to it later.

We assume that M , b, and c are as described in Section 1.1. We assume that the function
u is defined in a connected, open and bounded domain Ω ⊂ Rn and on its boundary ∂Ω,
and u ∈ C2(Ω) ∩ C(∂Ω).

Theorem 1. The Strong Maximum Principle

(1) Let c(x) ≡ 0 in Ω.
(a) Let Lu ≤ 0 in Ω and attains its maximum over Ω̄ in its interior point, then u

is constant within Ω̄.
(b) Let Lu ≥ 0 in Ω and attains its minimum over Ω̄ in its interior point, then u

is constant within Ω̄.
(2) Let c(x) ≥ 0 in Ω.

(a) Let Lu ≤ 0 in Ω and attains its nonnegative maximum over Ω̄ in its interior
point, then u is constant within Ω̄.

(b) Let Lu ≥ 0 in Ω and attains its nonpositive minimum over Ω̄ in its interior
point, then u is constant within Ω̄.

6

The proof of this theorem is found e.g. in [4].
Theorem 1 implies the weak maximum principle.

Theorem 2. (1) Let c(x) ≡ 0 in Ω.
(a) Let Lu ≤ 0 in Ω. Then

max
Ω̄

u = max
∂Ω

u.

(b) Let Lu ≥ 0 in Ω. Then

min
Ω̄
u = min

∂Ω
u.

(c) If Lu = 0 in Ω then

max
Ω̄
|u| = max

∂Ω
|u|.

(2) Let c(x) ≥ 0 in Ω.
(a) Let Lu ≤ 0 in Ω. Then

max
Ω̄

u ≤ max
∂Ω

max{u, 0}.

(b) Let Lu ≥ 0 in Ω. Then

min
Ω̄
u ≥ min

∂Ω
min{u, 0}.

We will prove the first claim of the weak maximum principle.

Proof. Case Lu < 0.
First, we will consider the case with a stronger assumption: Lu < 0 in Ω. Let x0 be an

interior maximum. Then ∇u(x0) = 0 and ∇∇u(x0) is nonpositive definite. Since M(x0)
is symmetric positive definite, it can be decomposed as M(x0) = ODO> where D is a
diagonal matrix with positive entries and O is an orthogonal matrix, i.e., O> = O−1.
Next, we recall the cyclic property of trace. Therefore,

tr (M(x0)∇∇u(x0)) = tr
(
M(x0)1/2∇∇u(x0)M(x0)1/2

)
= tr

(
D1/2O>∇∇u(x0)OD1/2

)
.

The matrix O>∇∇u(x0)O is symmetric nonnegative definite. Hence its trace i.e., the sum
of its diagonal entries, which is the sum of eigenvalues of O>∇∇u(x0)O is nonpositive.

The trace of D1/2O>∇∇u(x0)OD1/2 is the the linear combination of diagonal entries of
O>∇∇u(x0)O with coefficients being the diagonal entries of D.

Remark The fact that M(x0)1/2∇∇u(x0)M(x0)1/2 is nonpositive definite follows imme-
diately from Sylvester’s law of inertia.

Hence

tr (M(x0)∇∇u(x0)) = tr
(
D1/2O>∇∇u(x0)OD1/2

)
≤ 0.

https://en.wikipedia.org/wiki/Trace_(linear_algebra)
https://en.wikipedia.org/wiki/Sylvester%27s_law_of_inertia

7

Therefore,

Lu(x0) = −tr (M(x0)∇∇u(x0)) + b · ∇u(x0) = −tr (M(x0)∇∇u(x0)) ≥ 0.

On the other hand, by assumption, Lu(x0) < 0 in Ω. This contradicts to the established
fact that Lu(x0) ≥ 0. Hence maximum cannot be achieved at an interior point of Ω if
Lu < 0 in Ω.

Case Lu ≥ 0. To carry out a proof for this case, we will define a family of slightly
modified functions uε(x) such that Luε > 0, use the previously proven case, and then take
a limit ε→ 0. We define the following family of functions u:

(24) uε(x) := u(x) + εeλx1 ,

where x1 is the first component of x and λ > 0 will be selected below. Next, we calculate
Luε

(25) Luε = Lu+ εL(eλx1) ≤ εeλx1
[
−λ2M11 + λb1

]
,

where b1(x) is the first component of b(x) and M11(x) is the (1, 1)-entry of M(x). Since
M is symmetric positive definite and obeys the strong ellipticity condition (2), M11 ≥ α.
Therefore,

(26) Luε ≤ εeλx1
[
−λ2α+ λmax

Ω̄
|b1|
]
< 0 x ∈ Ω if λ >

1

α
max

Ω̄
|b1|.

By our proof above,
max

Ω̄
uε = max

∂Ω
uε.

Letting ε→ 0 we find that
max

Ω̄
u = max

∂Ω
u.

�

2. Finite difference approach. A model problem

We start with a simple model problem, the Poisson equation in 2D in a unit square
Ω = {0 ≤ x ≤ 1, 0 ≤ y ≤ 1} with Dirichlet boundary conditions:

uxx + uyy − f(x, y) = 0, (x, y) ∈ Ω,(27)

u = 0, (x, y) ∈ ∂Ω.(28)

2.1. Numerical solution. Let us introduce a mesh with step h = 1/J and approximate
Eq. (27) with the central difference scheme with a 5-point stencil (Fig. 1):

(29)
1

h2
(UN + US + UW + UE − 4UP) = fP .

Each mesh point is naturally indexed with two indices (i, j) where i, j ∈ {0, 1, . . . , J},
i.e., J + 1 points in each direction in total. I prefer to index them in the same order as
the matrix entries are indexed (Fig. 1). The function u is known to be 0 at all boundary
points of the mesh: u0j = ui0 = uJj = uiJ = 0, i, j ∈ {0, 1, . . . , J}. Therefore, we need to
find uij , 1 ≤ i, j ≤ J − 1. To do it, we set up a linear system for uij of the form Au = f .

8

P

N

S

EW

1

9

85

7

6

4

3

2

(4,0) (4,4)(4,3)(4,2)(4,1)

(3,4)(3,3)(3,1) (3,2)(3,0)

(2,4)(2,3)(2,2)(2,1)(2,0)

(1,4)(1,3)(1,2)(1,1)(1,0)

(0,4)(0,3)(0,2)(0,1)(0,0)

Figure 1. An illustration for the 5-point stencil and indexing of mesh points.

The matrix A will be (J − 1)2× (J − 1)2. We start with casting uij , 1 ≤ i, j ≤ J − 1 into a
vector column-wise as shown in Fig. 1. This indexing is consistent with Matlab’s operator
(:) and its inverse operator reshape illustrated in the following example.

>> a = [1 4 7; 2 5 8; 3 6 9]

a =

1 4 7

2 5 8

3 6 9

>> a1 = a(:)

a1 =

1

2

3

4

5

6

7

8

9

>> a2 = reshape(a1,3,3)

9

a2 =

1 4 7

2 5 8

3 6 9

For the example in Fig. 1 we obtain the following linear system.

Au = 1
h2

1 2 3 4 5 6 7 8 9
1 -4 1 1
2 1 -4 1 1
3 1 -4 1
4 1 -4 1 1
5 1 1 -4 1 1
6 1 1 -4 1
7 1 -4 1
8 1 1 -4 1
9 1 1 -4

u1

u2

u3

u4

u5

u6

u7

u8

u9

=

f1

f2

f3

f4

f5

f6

f7

f8

f9

From this example, it is easy to catch the block structure of the matrix A, where each
block is (J − 1)× (J − 1):

(30) A =
1

h2


T I
I T I

. . .
. . .

. . .

I T

 , where T =


−4 1
1 −4 1

. . .
. . .

. . .

1 −4

 ,
and I is the (J − 1)× (J − 1) identity matrix.

Matlab has two types of matrices: full, where all entries are kept in memory, and sparse,
where only nonzero entries and their indices are kept in memory. Each row of A in Eq. (30)
has at most 5 nonzero entries, hence it is worthwhile to set it up as sparse. Note that if you
set it up as full, Matlab will be able to solve your system for at most J = 150 or so depending
on your computer. It can handle much larger values of J if you set up A as sparse. Look
how A is set up in the code below. The command kron(A,B) gives the Kronecker product
of matrices A and B. The code below solves Eq. (27) with f(x, y) = sin(2πx) sin(2πy)
for J = 2k, k ∈ {3, 4, . . . , 10}. The exact solution is uexact = −f(x, y)/(8π2). At the end,
it finds the constant C and the power q for the error estimate of the form: er = Chq:
C = 0.04274, q = 2.0045. The plots of the solution and the error distribution for J = 1024
are shown in Figs. 2(a,b). The plot of the maximal norm error versus h in the log-log scale
is shown in fig. 2(c).

function poisson()

for k = 1 : 8

n = 2^(k + 2) + 1;

n2 = n - 2;

t = linspace(0,1,n);

https://en.wikipedia.org/wiki/Kronecker_product

10

[x,y] = meshgrid(t,t);

f = sin(2*pi*x).*sin(2*pi*y);

f1 = f(2 : n - 1,2 : n - 1);

f_aux = f1(:);

h(k) = 1/(n - 1);

u = zeros(n);

% Set up the matrix A

I = speye(n2); % n2-by-n2 sparse identity matrix

e = ones(n2,1);

T = spdiags([e -4*e e],[-1:1],n2,n2); % set up sparse T as in Eq. 27

S = spdiags([e e],[-1 1],n2,n2); % set up sparse S with ones along

% the first sub- and super-diagonal

A = (kron(I,T) + kron(S,I))/h(k)^2; % kron is the Kronecker product

% Solve the linear system

u_aux = A\f_aux;

u(2:n-1,2:n-1) = reshape(u_aux,n2,n2);

u_exact = -f/(8*pi^2);

er(k) = max(max(abs(u - u_exact)));

end

% plot the solution

figure(1);

clf; hold on; grid;

ma = max(max(u));

mi = min(min(u));

contourf(x,y,u,linspace(mi,ma,20));

% plot the error

figure(2);

clf; hold on; grid;

imagesc(t,t,u - u_exact);

% find C and q for the error estimate of the form er = C*h^q

figure(3);

clf; hold on; grid;

plot(h,er,’.’,’Markersize’,20);

plot(h,er);

set(gca,’XScale’,’log’,’YScale’,’log’);

p = polyfit(log(h),log(er),1);

11

fprintf(’Error(h) = (%d)*h^(%d)\n’,exp(p(2)),p(1));

end

(a)

0 0.2 0.4 0.6 0.8 10

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

x

y

−0.01

−0.005

0

0.005

0.01

(b)

0 0.2 0.4 0.6 0.8 10

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

x

y

−3

−2

−1

0

1

2

3

x 10−8

(c)
10−4 10−3 10−2 10−1 100

10−8

10−7

10−6

10−5

10−4

10−3

h

Er
ro
r

Figure 2. Illustration to the numerical solution of Eq. (27) with f(x, y) =
sin(2πx) sin(2πy). (a) The numerical solution on 1025 × 1025 mesh. (b)
The error distribution of the numerical solution on 1025 × 1025 mesh. (c)
The maximal norm error maxi,j |uij − uij,exact| versus h.

2.2. Error Analysis. In this section, we will denote the exact solution by u and the
numerical solution by U . Substituting the exact solution u into the finite difference Eq.
(29) and Taylor expanding u at the point P we obtain the truncation error

(31) Tp :=
1

h2
(uN + uS + uW + uE − 4uP)− fP =

h2

12
(uxxxx + uyyyy)P + o(h2)

12

Now we define the discrete differential operator

(32) (LhU)P ≡ LhUP :=
1

h2
(UN + US + UW + UE − 4UP)

at all interior mesh points P . The set of all mesh points will be denoted by Ωh. Then for
the numerical and the exact solutions we have:

LhUP − fP = 0,(33)

LhuP − fP = TP .(34)

Subtracting Eq. (34) from Eq. (33) we obtain the equation for the error eP := UP − uP :

(35) LheP = −TP .
Note that eP is zero at all boundary points.

To obtain a bound on eP we will use a comparison function and a discrete maximum
principle. The comparison function is chosen to be quadratic so that the discrete differential
operator is exact on it (see Eq. (31)) and constant at every point:

(36) ΦP := (xP − 1
2)2 + (yP − 1

2)2.

Then

(37) LhΦP = 4.

The discrete maximum principle for the operator Lh defined in Eq. (32) is given in the
following lemma.

Lemma 1. A Discrete Maximum Principle
Let Lh be the discrete differential operator defined in Eq. (32).

(1) Let ψP be a mesh function defined on Ωh such that

(38) LhψP ≥ 0 for all P ∈ Ωh.

Then

(39) max
P∈Ωh

ψP = max
P∈∂Ωh

ψP .

(2) Let ψP be a mesh function defined on Ωh such that

(40) LhψP ≤ 0 for all P ∈ Ωh.

Then

(41) min
P∈Ωh

ψP = min
P∈∂Ωh

ψP .

Proof. We prove Statement (1). Statement (2) is proven similarly. Assume that P is an
interior point of Ωh and ψP > max{ψN , ψS , ψW , ψE}. Then

LhψP = h−2(ψN + ψS + ψW + ψE − 4ψP) < 0,

which is in a contradiction with Eq. (38). Hence, either every interior point has at least
one nearest neighbor with a greater value of ψ, or ψP = ψN = ψS = ψE = ψW . This
implies Eq. (39). �

13

Now we define a function

ψP := eP + 1
4TΦP , where T := max

p∈Ωh

|TP |.

Then ψ satisfies Eq. (38):

LhψP = −TP + T ≥ 0 for all P ∈ Ωh.

By Lemma 1 part (1), the maximum of ψh is achieved on the mesh boundary ∂Ωh. Since
eP = 0 on ∂Ωh, this maximum is equal to

max
P∈∂Ωh

1
4TΨP = 1

8T.

Hence

(42) eP ≤ eP + 1
4TΦP ≡ ψP ≤ 1

8T.

Similarly, we define a function

ψP = eP − 1
4TΦP , where T := max

p∈Ωh

|TP |.

Then ψ satisfies Eq. (40):

LhψP = −TP − T ≤ 0 for all P ∈ Ωh.

By Lemma 1 part (2), the minimum of ψh is achieved on the mesh boundary ∂Ωh. Since
eP = 0 on ∂Ωh, this minimum is equal to

min
P∈∂Ωh

−1
4TΨP = −1

8T.

Hence

(43) eP ≥ eP − 1
4TΦP ≡ ψP ≥ −1

8T.

Combining Eqs. (42) and (43) and decoding T we get the following error bound:

(44) |eP | ≤
h2

96

(
max

(x,y)∈Ω
|uxxxx|+ max

(x,y)∈Ω
|uyyyy|

)
.

Eq. (44) shows that the error is proportional to h2 and the constant is largely determined
by fourth derivatives of the solution.

3. Handling different types of boundary conditions and non-constant
coefficients

3.1. Homogeneous Neumann and Nonhomogeneus Dirichlet boundary condi-
tions. Consider the BVP for Laplace’s equation

uxx + uyy = 0, (x, y) ∈ Ω = (0, 1)× (0, 1),(45)

u(0, y) = 1, u(1, y) = 0,(46)

uy(x, 0) = uy(x, 1) = 0.(47)

Exercise Show that the solution of the BVP (45)-(47) is u(x, y) = 1− x.

14

u=1 u=0

uy=0

uy=0

1

14

13

12

11

10

9

8

7

6

5

4

3

2

15

Figure 3. The method of “ghost” points for handling the homogeneous
Neumann boundary conditions.

Set up a mesh as shown in Fig. 3. The numbered points marked by shaded circles are those
where we need to compute the solution. The points marked by transparent circles are the
so called “ghost points”. We do not add them to the mesh but imagine them in order to
write the finite difference equations for the top and bottom boundary mesh points. For
the boundary mesh points lying on the top and on the bottom (points 1, 6, 11, and 5, 10,
15) Northern and Southern neighbors are absent respectively. We imagine ghost points in
places of these absent neighbors and write

1

h2
(uN,i + uS,i + uE,i + uW,i − 4uP,i) = 0, i = 1, 6, 11, 5, 10, 15.

For points 1, 6, and 11, uN,is are the ghost points. The BCs

uy(x, 0) = 0 ≈ 1
2h(uS,i − uN,i)

imply that uN,i ≈ uS,i. Motivated by that we set uN,i = uS,i and get

1

h2
(2uS,i + uE,i + uW,i − 4uP,i) = 0, i = 1, 6, 11.

Furthermore, for point 1, uW,1 = 1. Hence

1

h2
(2uS,1 + 1 + uE,1 − 4uP,1) = 0,

which is equivalent to
1

h2
(2uS,1 + uE,1 − 4uP,1) = − 1

h2
.

For point 11, uE,11 = 0. Hence

1

h2
(2uS,11 + uW,11 − 4uP,11) = 0.

Equations for points 5, 10, 15 are derived in a similar manner.

15

Exercise Write explicitly the system of linear algebraic equations of the form Au = f for
this problem (see HW1, Problem 1(a)).

3.2. Example: finding the electric potential on a plate with varying conductiv-
ity. Imagine a conducting plate [0, 1]× [0, 1] with conductivity distribution

a(x, y) = 2.1 + sin(2πx) + cos(3πy)

(see Fig. 4(a)) bent into a cylinder around the y-axis. The unit voltage is applied between

(a)
0 0.2 0.4 0.6 0.8 10

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

x

y

0.5

1

1.5

2

2.5

3

3.5

B

C

(b)

1

14

13

12

11

10

9

8

7

6

5

4

3

2

15

ny

nx

20

19

18

17

16

B

C

Figure 4. (a): The conductivity a(x, y) of the conducting plate. (b): The mesh.

the regions B := {(x, y) | (x − 0.3)2 + (y − 0.2)2 ≤ 0.12} and C := {(x, y) | (x − 0.7)2 +
(y− 0.8)2 ≤ 0.12}. We can assume that the potential in B is 0, while it is 1 in C. We need
to find the distributions of the electric potential u(x, y). The electric current is defined
according to Ohm’s law

j(x, y) := −a(x, y)∇u(x, y).

We pose the following BVP. According to Ampere’s law,

(48) ∇ · (a(x, y)∇u) = 0.

The boundary conditions are periodic in x, i.e.

(49) u(0, y) = u(1, y), ux(0, y) = ux(1, y).

Also, since there is no current through the top and bottom boundaries of the plate, we
impose the homogeneous Neumann on them:

(50) uy(x, 0) = uy(x, 1) = 0.

Furthermore, the applied voltage can be accounted for by the following boundary condi-
tions:

(51) u = 0, (x, y) ∈ B, u = 1, (x, y) ∈ C.

16

Now we discuss how one can solve the BVP given by Eqs. (48)-(51) in Matlab. First we
set up an ny × nx mesh with steps and hy and hx and number the points with unknown
values of u column-wise. For now, we ignore the regions B and C. We include the points
on the left, top, and bottom boundaries and do not include those on the right (see Fig.
4(b)). We discretize Eq. (48) using the following finite difference scheme:

(52)
as

uS−uP
hy − an uP−uNhy

hy
+
ae

uE−uP
hx − aw uP−uWhx

hx
= 0,

where an, as, ae, and aw are the values of a at the mid-mesh points as shown in Fig. 5. It
is convenient to approximate these values as

an = 1
2(aP + aN), as = 1

2(aP + aS), ae = 1
2(aP + aE), aw = 1

2(aP + aW).

Reorganizing terms in Eq. (52) we get:

P

N

S

EW
n

w

s

e

Figure 5. The stencil for the difference scheme (52).

(53) cSuS + cNuN + cEuE + cWuW + cPuP = 0.

where

cS :=
as
hy2

, cN :=
an
hy2

, cE :=
ae
hx2

, cW :=
aw
hx2

,

cP := −
(
an + as
hy2

+
ae + aw
hx2

)
.

Now we start writing a matlab code for solving Eqs. (48)-(51) on n×n mesh. First we set
up the mesh.

n = 201;

xaux = linspace(0,1,n);

[x,y] = meshgrid(xaux,xaux);

17

u = zeros(n);

ny = n;

nx = n - 1;

hx = 1/nx;

hy = 1/(ny - 1);

aaux = 2.1 + sin(2*pi*x) + cos(3*pi*y);

a = aaux(:,1 : nx);

nxy = nx*ny;

Now we set up the matrices of coefficients for the difference scheme (53) and convert them
into column vectors.

cN = 0.5*(a + circshift(a,[1 0]))/(hy^2);

cS = 0.5*(a + circshift(a,[-1 0]))/(hy^2);

cW = 0.5*(a + circshift(a,[0 1]))/(hx^2);

cE = 0.5*(a + circshift(a,[0 -1]))/(hx^2);

cP = -(cE + cW + cN + cS);

% Conversion to column vectors

cn = cN(:); cs = cS(:); cw = cW(:); ce = cE(:); cp = cP(:);

As in the example in Section 2.1, we first write out the matrix A of the linear system to
be solved on a small mesh. This allows us to understand its sparsity pattern and extend
it for any mesh. We get that A consists of nx× nx blocks each of which is ny × ny:

A =


T1 E1 0 . . . 0 W1

W2 T2 E2 . . . 0 0
. . .

. . .
. . .

. . . 0 Wnx−1 Tnx−1 Enx−1

Enx 0 . . . 0 Wnx Tnx

 ,
where Tk are tridiagonal matrices of the form

Tk =



cP,k1 2cS,k1
cN,k2 cP,k2 cS,k2
. . .

. . .
. . .

. . .
. . .

. . .

cN,kny−1 cP,kny−1 cS,kny−1

2cN,kny cP,kny


,

ki = (k − 1) · ny + i, i = 1, . . . , ny, and CW,k and CE,k are diagonal matrices

Ek = diag{cE,k1 , . . . , cE,kny}, Wk = diag{cW,k1 , . . . , cW,kny}.

To set up the matrix A we will use the commands circshift and spdiags. The following
example demonstrate how they work.

>> a = [1 2 3 4]’

18

a =

1

2

3

4

>> circshift(a,[1 0])

ans =

4

1

2

3

>> circshift(a,[-1 0])

ans =

2

3

4

1

>> b=spdiags([a a a a a],[-2 : 2],4, 4)

b =

(1,1) 1

(2,1) 1

(3,1) 1

(1,2) 2

(2,2) 2

(3,2) 2

(4,2) 2

(1,3) 3

(2,3) 3

(3,3) 3

(4,3) 3

(2,4) 4

(3,4) 4

(4,4) 4

19

>> bfull = full(b)

b =

1 2 3 0

1 2 3 4

1 2 3 4

0 2 3 4

We see that spdiags places the same indices of the diagonal vectors in the same column.
We will need to set up A with coefficients of the same indices in each row. We can do it
with the aid of circshift:

>> b=spdiags([circshift(a,[-2,0]),circshift(a,[-1,0]),a,...

circshift(a,[1,0]),circshift(a,[2,0])],[-2 : 2],4, 4)

b =

(1,1) 1

(2,1) 2

(3,1) 3

(1,2) 1

(2,2) 2

(3,2) 3

(4,2) 4

(1,3) 1

(2,3) 2

(3,3) 3

(4,3) 4

(2,4) 2

(3,4) 3

(4,4) 4

>> b = full(b)

b =

1 1 1 0

2 2 2 2

3 3 3 3

0 4 4 4

Now we are ready to set up the matrix A.

20

A = spdiags([circshift(cw,[-ny 0]),circshift(cn,[-1 0]),cp,...

circshift(cs,[1 0]),circshift(ce,[ny 0])],[-ny,-1,0,1,ny],nxy,nxy);

% Take care of the Neumann BCs: u_y(x,0) = u_y(x,1) = 0

for j = 1 : nx - 1

A(ny*j,ny*j - 1) = 2*A(ny*j,ny*j - 1) ;

A(ny*j,ny*j + 1) = 0;

A(ny*j + 1,ny*j + 2) = 2*A(ny*j + 1,ny*j + 2);

A(ny*j + 1,ny*j) = 0;

end

A(1,2) = 2*A(1,2);

A(nxy,nxy - 1) = 2*A(nxy,nxy - 1) ;

% Take care of the periodic BCs: u(0,y) = u(1,y), u_x(0,y) = u_x(1,y);

A1 = spdiags(circshift(ce,[-nxy + ny, 0]),-nxy + ny,nxy,nxy);

A2 = spdiags(circshift(cw,[nxy - ny, 0]),nxy - ny,nxy,nxy);

A = A + A1 + A2;

Now it remains to take care of the regions B and C. We will split the set of indices of
the mesh points into three subsets: iB and iC are the indices of the mesh points lying in
B and C respectively, and inBC are the indices of the rest of the mesh points.

% Regions B and C are balls centered at (x1,y1) and (x2,y2) of radii r1 and

% r2 respectively

x1 = 0.3;

y1 = 0.2;

r1 = 0.1;

x2 = 0.7;

y2 = 0.8;

r2 = 0.1;

iB = find((x - x1).^2 + (y - y1).^2 < r1^2);

iC = find((x - x2).^2 + (y - y2).^2 < r2^2);

% Set the RHS due to the BC’s at C

uc = zeros(nxy,1);

uc(iC) = 1;

rhs = -A*uc;

% Remove rows and columns corresponding to iBC

iBC = [iB;iC];

inBC = [1 : nxy]’;

inBC(iBC) = [];

A(:,iBC) = [];

A(iBC,:) = [];

rhs(iBC) = [];

In the rest of the code we solve the system Au=rhs, place the solution into the original
square domain [0, 1]2, and visualize the conductivity a(x, y), the solution, i.e., the electric

21

potential u(x, y), and the absolute value and the direction of the electric current j(x, y) =
a(x, y)∇u(x, y).

% Solution

uaux = A\rhs;

ucol = zeros(nxy,1);

ucol(inBC) = uaux;

ucol(iC) = 1;

ucol(iB) = 0;

u1 = reshape(ucol,ny,nx);

u = zeros(ny,nx + 1);

u(:,1 : nx) = u1;

u(:,nx + 1) = u1(:,1);

% Plot the conductivity, the solution, and the current;

figure(1);

clf;

hold on;

ma = max(max(aaux));

mi = min(min(aaux));

contourf(xaux,xaux,aaux,linspace(mi,ma,10));

set(gca,’DataAspectRatio’,[1,1,1],’Fontsize’,24);

xlabel(’x’,’Fontsize’,24);

ylabel(’y’,’Fontsize’,24);

%

figure(2);

clf;

hold on;

contourf(xaux,xaux,u,[0:0.1:1]);

t = linspace(0,2*pi,100);

plot(x1 + r1*cos(t),y1 + r1*sin(t),’w’,’Linewidth’,2);

plot(x2 + r2*cos(t),y2 + r2*sin(t),’w’,’Linewidth’,2);

set(gca,’DataAspectRatio’,[1,1,1],’Fontsize’,24);

xlabel(’x’,’Fontsize’,24);

ylabel(’y’,’Fontsize’,24);

%

figure(3);

clf;

hold on;

curx = zeros(ny,nx + 1);

cury = zeros(ny,nx + 1);

curx(:,1 : nx) = a.*(0.5*(circshift(u1,[0 -1]) - circshift(u1,[0 1]))/hx);

cury(:,1 : nx) = a.*(0.5*(circshift(u1,[-1 0]) - circshift(u1,[1 0]))/hy);

22

curx(:,nx + 1) = curx(:,1);

cury(:,nx + 1) = cury(:,1);

cury(1,:) = 0;

cury(ny,:) = 0;

curx = -curx;

cury = -cury;

ecur = sqrt(curx.^2 + cury.^2);

ecmax = max(max(ecur));

contourf(xaux,xaux,ecur,linspace(0,ecmax,10));

plot(x1 + r1*cos(t),y1 + r1*sin(t),’w’,’Linewidth’,2);

plot(x2 + r2*cos(t),y2 + r2*sin(t),’w’,’Linewidth’,2);

ix = [1 : 8 : nx];

iy = [1 : 8 : ny];

ac = sqrt(curx(iy,ix).^2 + cury(iy,ix).^2 + 1e-12);

quiver(x(iy,ix),y(iy,ix),curx(iy,ix)./ac,cury(iy,ix)./ac,’color’,’w’)

contour(xaux,xaux,aaux,linspace(mi,ma,10),’color’,’k’);

set(gca,’DataAspectRatio’,[1,1,1],’Fontsize’,24);

xlabel(’x’,’Fontsize’,24);

ylabel(’y’,’Fontsize’,24);

The results are shown in Fig. 6. Note that while the solution u(x, y) looks smooth, there

(a)
0 0.5 10

0.2

0.4

0.6

0.8

1

x

y

0

0.2

0.4

0.6

0.8

1

(b)
0 0.5 10

0.2

0.4

0.6

0.8

1

x

y

1

2

3

4

Figure 6. (a): The computed electric potential u(x, y). (b): The colored
shows the absolute value of the electric current, while the arrows indicate
its direction.

are visible artifacts near the boundaries of B and C. They are due to the fact that we
approximated the boundaries of B and C by non smooth curves. To cure this problem,
one can set up a finite difference scheme for curvy boundaries as is explained in [3] or use
the finite element method which handles curvy boundaries more naturally.

23

4. Finite Element Method (FEM)

4.1. An illustration of the general idea of the FEM on a model problem. A very
good introduction into the FEM and its implementation is given in [7]. In these notes, I
will provide some comments for [7]. We consider a model BVP for the Poisson equation
in a bounded domain Ω ⊂ R2 with the boundary ∂Ω = ΓD ∪ ΓN . We assume that ΓD is
some subset of connected components of ∂Ω, and so is ΓN .

−∆u = f(x, y), (x, y) ∈ Ω,(54)

u = ũD, (x, y) ∈ ΓD,(55)

∂u

∂n
= g, (x, y) ∈ ΓN ,(56)

where n is the unit outer normal to the boundary ΓN (see Fig. 7). The first step in the

Ω

ΓD

ΓN

Support of uD

Figure 7. The boundary ΓN is the outer contour of the cat’s head. The
boundary ΓD consists of two connected components, the purple circles (the
cat’s eyes). The shaded areas around the eyes constitute the support of the
function uD. The domain Ω is the region between the outer contour ΓN
and the eye contours ΓD.

FEM is to reduce the BVP for a PDE to an integral equation (Eq. (4) at the end of Section
2 in [7]). Let us understand how it is done. First, we will get rid of the non-homogeneous
Dirichlet boundary conditions Eq. (55). We define a function uD such that uD = ũD on
ΓD, uD is twice continuously differentiable, and uD is zero outside a small neighborhood
U(ΓD) of ΓD, such that U(ΓD) ∩ ΓN = ∅. For example, one can construct uD using linear
interpolation and mollification (for mollification, see e.g. [4] Appendix C.4). Then, we do
a variable change:

(57) v := u− uD.

24

The BVP for v becomes

−∆v = f(x, y) + ∆uD, (x, y) ∈ Ω,(58)

v = 0, (x, y) ∈ ΓD,(59)

∂v

∂n
= g, (x, y) ∈ ΓN ,(60)

Let v be a solution of the BVP (58)-(60). Let us multiply Eq. (58) by an arbitrary twice
continuously differentiable in Ω function w such that w = 0 on ΓD, and integrate the result
over Ω. The result is:

(61) −
∫

Ω
w∆vdx =

∫
Ω
wfdx+

∫
Ω
w∆uDdx.

In order to get rid of the 2nd derivatives in Eq. (61) and incorporate boundary conditions
we use the First Green’s Identity: for any region Ω ⊂ Rn with a piecewise smooth boundary,
and any functions φ, ψ : Ω → Rn, such that φ is C2(Ω) (twice continuously differentiable
in Ω) and ψ is C1(Ω) (continuously differentiable in Ω),

(62)

∫
Ω

(ψ∆φ+∇ψ · ∇φ)dx =

∫
∂Ω
ψ
∂φ

∂n
ds.

Eq. (62) is equivalent to Eq. (63):

(63)

∫
Ω
∇ψ · ∇φdx = −

∫
Ω
ψ∆φdx+

∫
∂Ω
ψ
∂φ

∂n
ds.

Replacing ψ with w and φ with v in Eq. (63) and using Eqs. (61) and (59) we get

(64)

∫
Ω
∇w · ∇vdx =

∫
Ω
w∆uDdx+

∫
Ω
wfdx+

∫
ΓN

wgds+

∫
ΓD

w
∂v

∂n
ds.

The last term in Eq. (64) vanishes due to our assumption that w = 0 on ΓD. By our

construction, uD is identically zero outside a small neighborhood of ΓD, hence ∂uD
∂n = 0 on

ΓN . Therefore, plugging in uD for φ and w for ψ in Eq. (63) we get

(65)

∫
Ω
w∆uDdx = −

∫
Ω
∇w · ∇uDdx.

Combining Eqs. (64) and (65) we obtain the integral equation we wanted,

(66)

∫
Ω
∇w · ∇vdx = −

∫
Ω
∇w · ∇uDdx+

∫
Ω
wfdx+

∫
ΓN

wgds,

that holds for any solution v of the BVP (58)-(60) and any function w ∈ C1(Ω) satisfying
w = 0 on ΓD.

Next, we want to solve the integral equation (66). It is hard to find its exact solution. The
central idea of the FEM is to use Galerkin’s trick: instead of solving Eq. (66) exactly, find
its approximate solution in some finite dimensional subspace spanned by a basis consisting
of piece-wise linear functions {ηj(x, y)}Nj=1 with compact support (i.e., zero outside some

compact set). This idea poses immediate problem: piecewise-linear functions are not

25

differentiable, which means that the gradient of v(x, y) =
∑

j cjηj(x, y) will not be well-
defined on some subset of Ω. To get around this difficulty, we need to broaden the concept
of the derivative by introducing so-called weak derivative. In [7], the functions v and w are
assumed to be in the Sobolev space H1

D(Ω) specially for for this reason. We discuss what
is a weak derivative in Section 4.1.1.

4.1.1. Weak derivatives and Sobolev spaces.

Example 1 Consider the piecewise linear function

f(x) = max{0, 1− |x|}, −∞ < x <∞.
Its graph is shown in Fig. 8 (Top). The classic derivative of f(x) is unde-
fined at 0 and ±1. In addition, consider the function

φ(x) =


1, −1 < x < 0,

−1, 0 < x < 1,

0, otherwise

.

Its graph is shown in Fig. 8 (Bottom). Note that φ(x) is the derivative of
f(x) on R\{−1, 0, 1}, i.e., everywhere except for a measure zero subset of
points.

-2 -1 0 1 2
0

0.5

1

-2 -1 0 1 2
-1

0

1

Figure 8. An illustration for Example 1.Top: the piecewise function
f(x) = max{0, 1 − |x|}. Bottom: the piecewise continuous function φ(x)
which is a weak derivative of f(x).

We want to define weak derivatives so that the function φ is a weak derivative of f(x) in
Example 1. More generally, we want φ to be a weak partial derivative of f : Ω ⊂ Rn → R
if f is piecewise differentiable, and φ is its classic partial derivative everywhere in Ω except
for maybe a subset of measure zero. The construction of the definition of weak derivatives
involves so called test functions, i.e., functions that you can multiply by any integrable

26

function and still obtain an integrable function, and that you can differentiate as many
times as you wish. These considerations motivate the following definition of a test function.

Definition 1. Let Ω ⊂ Rn be an open set. A function φ : Ω → R is a test function if
φ ∈ C∞(Ω) (i.e., is infinitely differentiable), and has a compact support in Ω, i.e., φ is
nonzero only within some the interior of some compact set lying within Ω. The set where
φ 6= 0 is called the support of φ and is denoted by supp(φ). Note that if Ω has a boundary,
then φ = 0 on ∂Ω.

Let f(x) be continuously differentiable in Ω. Then for any test function φ(x) the inte-
gration by parts formula gives∫

Ω

∂f(x)

∂xi
φ(x)dx = −

∫
Ω
f(x)

∂φ(x)

∂xi
dx.

The identity above is used to define the weak partial derivative.

Definition 2. The function g(x) is the weak partial derivative of the function f(x) with
respect to the variable xi if for any test function φ we have

(67)

∫
Ω
g(x)φ(x)dx = −

∫
Ω
f(x)

∂φ(x)

∂xi
dx.

We will abuse notations and denote weak derivatives the same as we denote the classic
ones. In view of Definition 2, a weak gradient of f , that we denote simply by ∇f , satisfies

(68)

∫
Ω
∇f(x)φ(x)dx = −

∫
Ω
f(x)∇φ(x)dx.

The functional space H1(Ω) is an instance of Sobolev spaces (see e.g. Wikipedia).

(69) H1(Ω) :=

{
f : Ω→ R |

∫
Ω
|f |2dx <∞,

∫
Ω
‖∇f‖2dx <∞

}
,

where ∇f is a weak gradient of f . H1(Ω) is a normed space:

(70) ‖f‖H1 =

[∫
Ω
|f |2dx+

∫
Ω
‖∇f‖2dx

]1/2

.

Furthermore, H1 is equipped with the following inner product:

(71) (f, g)H1 =

∫
Ω
fgdx+

∫
Ω
∇f · ∇gdx.

Note that, in particular, H1 contains all continuous and piecewise continuously differen-
tiable functions Ω→ R.

The space H1
D(Ω) consists of all functions of H1(Ω) that vanish on the curve ΓD.

https://en.wikipedia.org/wiki/Sobolev_space

27

4.2. Mesh generation. Suppose we are given a set of points {xi}Ni=1 and we want to
triangulate it. For the stiffness matrix to be well-conditioned, it is important to define
triangulation that avoids small angles in the triangles. A Delaunay triangulation (named
after the 1934 work of Boris Delaunay) of the set of points {xi}Ni=1 is such a triangula-
tion that none of the points {xi}Ni=1 lies in ant circumcircle of any triangle. Delaunay
triangulations maximize the minimal angle in the triangles. The Wikipedia article Delau-
nay triangulation contains a comprehensive overview of algorithms for obtaining Delaunay
triangulations. Matlab offers the command delaunay for generating a Delaunay triangula-
tion of a given set of points, and a number of commands for its visualization, for example
triplot. Here is an example of their use.

y = linspace(0,1,10);

e = ones(1,10);

x = rand(100,2); % inner points

% concatenate the sets of inner and boundary points

z = [x;[y’,0*e’];[e’,y’];[y’,e’];[0*e’,y’]];

zu = unique(z,’rows’); % remove repeating points

tri = delaunay(zu(:,1),zu(:,2));

% the rows tri are the triplets of indices of vertices of the triangles

figure;

triplot(tri,zu(:,1),zu(:,2)); % visualize the triangulation

daspect([1 1 1]); % set equal scales in the x- and y- axes

The obtained triangulation is shown in Fig. 9.

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Figure 9. The Delaunay triangulation for a random set of 100 points uni-
formly distributed in [0, 1]2 and 36 uniformly distributed boundary points
produced by the Matlab script Section 4.2.

Thus, given a set of points, one can readily find a Delaunay triangulation. A harder
question is how to pick the set of points for a given problem to be solved using FEM. For
the general outline of the Delaunay triangulation and Matlab software overview, see the
presentation by John Burkardt, CS, FSU.

https://en.wikipedia.org/wiki/Delaunay_triangulation
https://en.wikipedia.org/wiki/Delaunay_triangulation
https://people.sc.fsu.edu/~jburkardt/classes/fem_2011/fem_meshing.pdf
https://people.sc.fsu.edu/~jburkardt/classes/fem_2011/fem_meshing.pdf

28

Mesh generation packages.

(1) The distmesh package for 2D and 3D mesh generation developed by P.-O. Persson
and G. Strang is available at http://persson.berkeley.edu/distmesh/. Their algo-
rithm is described in the paper P.-O. Persson, G. Strang, A Simple Mesh Generator
in MATLAB. SIAM Review, Volume 46 (2), pp. 329-345, June 2004. The code is
written in Matlab. The advantage of this algorithm is its simplicity. The user can
adjust it for his/her needs. Its shortcomings are that it requires an analytic func-
tion (desirably the signed distance function) whose zero-level set is the boundary
of the region and that it is slow.

(2) The package mesh2d developed by Darren Engwirda is available on GitHub:
https://github.com/dengwirda/mesh2d. This package is also written in Matlab.
It is more complicated than distmesh, works with arbitrary contours, and is less
transparent than distmesh.

(3) The package Gmsh developed by Christophe Geuzaine and Jean-Francois Remacle
is suitable for using in C++, Python, or Julia: https://gmsh.info. Its shortcoming
is that it is harder to use than distmesh and mesh2d. Its advantage is that it is a
fast algorithm. The resulting mesh in 3D can be of rather poor quality.

(4) The package tetgen written in ANSI C++ is a 3D tetrahedral mesh generator de-
veloped by Hans Si https://wias-berlin.de/software/index.jsp?id=TetGen&lang=1.
This is a fast mesh-generating algorithm, easier-to-use than Gmsh. The generated
mesh is of moderate quality.

4.3. Quadrature for FEM. See the note by Shaozhong Deng, Dept. of Math. and Stat.,
UNCC.

4.4. A simple basic FEM code with an example. A simple 50-line matlab FEM
routine supplemented with an example is written by Jochen Alberty, Carsten Carstensen
and Stefan A. Funken. Their software is available at
http://www.ii.uib.no/ sasha/I263/fem2d/. Change .dat to .txt extensions in the data
files if you are a Mac user.

An example of use of this package an a triangular mesh generation using mesh2d is given
in the code myFEMcat.m. Some simplifications were applied to data structure of the 50-
line routine. All necessary functions except for mesh2d and the functions called by it are
combined into this code. This code solves Laplace’s equation −∇2u = 0 on the cat’s head
shaped domain with homogeneous Neumann boundary conditions on the outer boundary
and Dirichlet conditions at the eyes: u = 0 at the left eye and u = 1 at the right eye. The
mesh is generated in the function triangulate cat that calls a sequence of functions from
the MESH2D package by Darren Engwirda. The solution is shown in Fig. 10.

function MyFEMCat()

% % make mesh

[coordinates,elements3,c1,c2,c3] = triangulate_cat();

% coordinates is a N-by-2 array with coordinated of the mesh points

% elements3 is a Ntriag-by-3 array of indices of the triangular elements

http://persson.berkeley.edu/distmesh/
http://persson.berkeley.edu/distmesh/persson04mesh.pdf
http://persson.berkeley.edu/distmesh/persson04mesh.pdf
https://github.com/dengwirda/mesh2d
https://gmsh.info
https://wias-berlin.de/software/index.jsp?id=TetGen&lang=1
http://math2.uncc.edu/~shaodeng/TEACHING/math5172/Lectures/Lect_15.PDF
http://math2.uncc.edu/~shaodeng/TEACHING/math5172/Lectures/Lect_15.PDF
https://www.math.hu-berlin.de/~cc/cc_homepage/download/1999-AJ_CC_FS-50_Lines_of_Matlab.pdf
https://www.math.hu-berlin.de/~cc/cc_homepage/download/1999-AJ_CC_FS-50_Lines_of_Matlab.pdf
http://www.ii.uib.no/~sasha/I263/fem2d/
https://www.mathworks.com/matlabcentral/fileexchange/25555-mesh2d-delaunay-based-unstructured-mesh-generation

29

Figure 10. The solution Laplace’s equation −∇2u = 0 on the cat’s head
shaped domain with homogeneous Neumann boundary conditions on the
outer boundary and Dirichlet conditions at the eyes: u = 0 at the left eye
and u = 1 at the right eye.

%%

% Find boundary points with homogeneous Neumann BCs

% The number of rows in neumann is the number of boundary intervals with

% Neumann BCs

% Each row of neumann contains indices of endpoints of the corresponding

% boundary interval

lc1 = length(c1)

k = 0;

for i = 1 : lc1

j = find(coordinates(:,1) == c1(i,1) & coordinates(:,2) == c1(i,2));

if ~isempty(j)

k = k + 1;

ind(k) = j;

end

end

neumann = [ind’,circshift(ind’,[-1, 0])];

% Find boundary points with Dirichlet BCs

% dirichlet is a column vector of indices of points with Dirichlet BCs

30

lc2 = length(c2);

lc3 = length(c3);

k = 0;

for i = 1 : lc2

j = find(coordinates(:,1) == c2(i,1) & coordinates(:,2) == c2(i,2));

if ~isempty(j)

k = k + 1;

ind2(k) = j;

end

end

dirichlet = ind2’;

for i = 1 : lc3

j = find(coordinates(:,1) == c3(i,1) & coordinates(:,2) == c3(i,2));

if ~isempty(j)

k = k + 1;

dirichlet(k) = j;

end

end

% call FEM

fem2d_2(coordinates,elements3,neumann,dirichlet);

end

%% fem2d_2

function fem2d_2(coordinates,elements3,neumann,dirichlet)

% mesh points with unknown values of u

FreeNodes = setdiff(1:size(coordinates,1),dirichlet);

A = sparse(size(coordinates,1),size(coordinates,1));

b = sparse(size(coordinates,1),1);

%% Assembly

%% The Stiffness matrix

for j = 1:size(elements3,1) % for all triangles

A(elements3(j,:),elements3(j,:)) = A(elements3(j,:),elements3(j,:)) ...

+ stima3_2(coordinates(elements3(j,:),:));

% stima3_2 computes M = 0.5*|T_j|*G*G’;

end

%% The Right-hand side, i.e., the load vector

% Volume Forces

for j = 1:size(elements3,1)

b(elements3(j,:)) = 0; % for the case where f = 0

end

31

% Neumann conditions

for j = 1 : size(neumann,1)

b(neumann(j,:)) = b(neumann(j,:)) + norm(coordinates(neumann(j,1),:)- ...

coordinates(neumann(j,2),:)) * myg(sum(coordinates(neumann(j,:),:))/2)/2;

end

% Dirichlet conditions

u = sparse(size(coordinates,1),1);

u(dirichlet) = myu_d(coordinates(dirichlet,:));

b = b - A * u;

% Computation of the solution

u(FreeNodes) = A(FreeNodes,FreeNodes) \ b(FreeNodes);

% graphic representation

trisurf(elements3,coordinates(:,1),coordinates(:,2),full(u)’,’facecolor’,’interp’)

hold on

axis ij

end

%%

function DirichletBoundaryValue = myu_d(x)

xmin = min(x(:,1));

xmax = max(x(:,1));

midx = 0.5*(xmin + xmax);

DirichletBoundaryValue = 0.5 * (sign(x(:,1) - midx) + 1);

end

%%

function Stress = myg(x)

Stress = zeros(size(x,1),1);

end

%%

function M = stima3_2(vertices)

d = size(vertices,2);

G = [ones(1,d+1);vertices’] \ [zeros(1,d);eye(d)];

M = det([ones(1,d+1);vertices’]) * G * G’ / prod(1:d);

end

%%

function [vert,tria,c1,c2,c3] = triangulate_cat()

32

c = imread(’cat.png’);

cc = sum(c,3);

h = contour(cc,[1 1]);

% extract contours of face and eyes

c1 = h(:,2:6:1682)’; % face

c2 = h(:,2884:6:3080)’; % eye

c3 = h(:,3082:6:3278)’; % another eye

lc1 = length(c1);

lc2 = length(c2);

lc3 = length(c3);

% connect boundary points

a1 = [1 : lc1]’;

e1 = [a1, circshift(a1,[-1 0])]

a2 = [1 : lc2]’;

e2 = [lc1 + a2, lc1 + circshift(a2,[-1 0])];

a3 = [1 : lc3]’;

e3 = [lc1 + lc2 + a3, lc1 + lc2 + circshift(a3,[-1 0])];

node = [c1; c2; c3];

edge = [e1; e2; e3];

olfs.dhdx = +0.15;

[vlfs,tlfs, ...

hlfs] = lfshfn2(node,edge, ...

[] ,olfs) ;

[slfs] = idxtri2(vlfs,tlfs) ;

hfun = @trihfn2;

[vert,edge,tria,tnum] = refine2(node,edge,[],[],hfun , ...

vlfs,tlfs,slfs,hlfs);

figure;

patch(’faces’,tria(:,1:3),’vertices’,vert, ...

’facecolor’,’w’, ...

’edgecolor’,[.2,.2,.2]) ;

hold on; axis image off;

axis ij

[vert,edge,tria,tnum] = smooth2(vert,edge,tria,tnum);

33

figure;

patch(’faces’,tria(:,1:3),’vertices’,vert, ...

’facecolor’,’w’, ...

’edgecolor’,[.2,.2,.2]) ;

hold on; axis image off;

axis ij

end

end

4.4.1. Extraction of contours. The piece of the code MyFEMCat.m

c = imread(’cat.png’);

cc = sum(c,3);

h = contour(cc,[1 1]);

% extract contours of face and eyes

c1 = h(:,2:6:1682)’; % face

c2 = h(:,2884:6:3080)’; % eye

c3 = h(:,3082:6:3278)’; % another eye

reads the image of a cat that I have downloaded from the internet

and extracts three contours from it. In this Section, I will explain how I determined the
numbers insideh. The variable c has size m× n× 3 where m× n is the number of pixels,
and 3 is the number of channels. First, I add sum the data from all channels to obtain cc

an m × n image, i.e., a matrix with nonnegative entries. Next, I extract contour h which
is the level set corresponding to the value 1. The variable h has the following structure.
Suppose the level set corresponding to the given value X consists of p disjoint connected
components, and the ith component contains qi points. Then Then h is a matrix of two
rows and p+

∑
i qi columns where the group of columns corresponding to the ith component

is preceded by the column
X
qi

Hence, we can identify the contours of interest of the image cc using the following sequence
of commands:

ind = find(h(1,:) == 1); % 1 is the level set value X

lh = size(h,2); % the number of columns in h

https://en.wikipedia.org/wiki/Channel_(digital_image)

34

lind = length(ind); % the number of connected components in the level set

ind(lind + 1) = lh + 1; % add one more value for the for-loop below

figure;

hold on;

col = jet(lind); % make different colors for different components

for k = 1 : lind

f = h(:,ind(k) + 1 : ind(k+1) - 1);

plot(f(1,:),f(2,:),’Linewidth’,2,’color’,col(k,:));

end

Then look at the produced image, find the contours corresponding to the outer face and
the eyes (contours 1, 3, and 4). They are given by the columns of h ind(i) + 1 : ind(i

+ 1) - 1 where i = 1,3,4. The contours contain much more points than sufficient, so I
rarefy them by taking every 6th point.

4.5. Complete FEM packages. A well-known FEM package is FEniCS available at
http://fenicsproject.org.

Shawn Walker (Louisiana State University) developed a FEM package FELICITY writ-
ten in MATLAB/C++.

D. J. Silvester, H. C. Elman (UMD, CS), and A. Ramage, developed the package IFISS
(Matlab).

4.6. Error analysis. The content of this section is a digest of the error analysis for FEM
found in [8]. We will conduct error analysis for the following model BVP:

(72) −∇ · (a(x)∇u) = f(x), x ∈ Ω ⊂ R2, u(∂Ω) = 0,

where a(x) is continuously differentiable in Ω∪∂Ω and a(x) ≥ a0 > 0 for all x ∈ Ω. Assume
that the region Ω is bounded. Multiplying Eq. (72) by v ∈ C1(Ω), v(∂Ω) = 0, and using
the First Green’s Identity Eq. (62) we obtain an equivalent integral equation problem:
find u ∈ C2(Ω), u(∂Ω) = 0, such that for all v ∈ C1(Ω), v(∂Ω) = 0, the following equation
holds:

(73)

∫
Ω
a(x)∇u · ∇vdx =

∫
Ω
f(x)vdx.

Next we weaken the smoothness requirements: we want u, v ∈ H1
0 (Ω):

H1
0 (Ω) = {w ∈ H1(Ω) | w(∂Ω) = 0}.

The variational formulation for Eq. (72) is [3]

(74) I(v) :=

∫
Ω

(
1

2
a(x)|∇v|2 − f(x)v

)
dx −→ min, v(∂Ω) = 0.

Theorem 3. u is a solution of Eq. (73) if and only if u is a minimizer of I(u) among all
v ∈ H1

0 (Ω).

http://fenicsproject.org
https://www.math.lsu.edu/~walker/software.html
https://www.math.lsu.edu/~walker/software.html
http://www.cs.umd.edu/~elman/ifiss3.4/download.html

35

Proof. Let u ∈ H1
0 (Ω) be the minimizer of I(u). Let v ∈ H1

0 (Ω) be any function. Then

I(u+ v) =

∫
Ω

(
1

2
a(x)|∇u+∇v|2 − f(x)(u+ v)

)
dx

=

∫
Ω

(
1

2
a(x)|∇u|2 − f(x)u+ [a(x)∇u · ∇v − f(x)v] +

1

2
a(x)|∇v|2

)
dx

= I(u) +

∫
Ω

[a(x)∇u · ∇v − f(x)v] dx+

∫
Ω

1

2
a(x)|∇v|2dx.

Clearly, since u is the minimizer of I, the integral of the term in square brackets must be
0 for all v ∈ H1

0 (Ω). Indeed, assume v is small in the sense of the H1(Ω) norm. Suppose

(75)

∫
Ω

[a(x)∇u · ∇v − f(x)v] dx 6= 0.

If it is positive, we change v to −v made hence make it negative. Since ‖v‖H1
0 (Ω) is small,

the integral
∫

Ω
1
2a(x)|∇v|2dx is much smaller in absolute value than the one in Eq. (75).

Hence I(u+ v) < I(u) which contradicts to the fact that u is a minimizer of I.
Now, let u ∈ H1

0 (Ω) be the solution to (73) for all v ∈ H1
0 (Ω). Then clearly I(u) <

I(u+ v) unless ∇v = 0 almost everywhere. Hence u is the minimizer of (74).
Therefore, Eq. (74) is equivalent to the problem of finding u ∈ H1

0 (Ω) such that for all
v ∈ H1

0 (Ω) Eq. (73) holds. �

Now, let us fix a triangulation K = {∆k}, where ∆k’s are triangles. The diameter diam∆
of triangle ∆ is the length of its longest side. Let h be the maximal diameter of triangles
in the triangulation, i.e.,

h = max
∆k∈K

diam∆k.

Note that one can refine the mesh decreasing h by the factor of 2 by dividing each triangle
∆k into 4 triangles with three intervals connecting the midpoints of each side as shown in
Fig. 11.

Figure 11. Refinement of a triangular mesh.

For the fixed triangulation K, we define the set of basis functions {φi}i∈I , such that each
φi is continuous, linear within each triangle ∆k, and φi(xi) = 1 and φi(xj) = 0, j 6= i, where
the set of nodes xi is the set of vertices of triangles in K. Since the boundary conditions
are homogeneous, it suffices to consider only those φi such that the corresponding nodes
xi lie in the interior of Ω. Let us renumber the nodes so that the inner nodes are the first
N nodes x1, . . . xN .

36

Recall definitions of norm and inner product. We define the norm ‖ · ‖a and the inner
product (·, ·)a associated with the function a(x) and the region Ω:

(76) (v, w)a :=

∫
Ω
a(x)∇v · ∇wdx, ‖v‖a =

(∫
Ω
a(x)|∇v|2dx

)1/2

.

The usual Legendre inner product will be denoted by 〈·, ·〉:

〈f, g〉 :=

∫
Ω
f(x)g(x)dx.

Then Eq. (73) can be rewritten as

(77) (u, v)a = 〈f, v〉 for all v ∈ H1
0 (Ω).

Let us consider the N -dimensional vector space Sh of continuous and piece-wise linear
functions χ(x), x ∈ Ω, such that each χ(x) is a linear combination of basis functions φi,
i.e.,

(78) Sh :=

{
χ : Ω→ R | χ(x) =

N∑
i=1

χiφi

}
.

Since all basis functions φi, 1 ≤ i ≤ N , are zero on ∂Ω, bounded, and piecewise continuously
differentiable, all of them also belong to H1

0 (Ω), i.e., Sh ⊂ H1
0 (Ω). Therefore, we have

(79) (u, φj)a = 〈f, φj〉 for all basis functions φj ∈ Sh.

The finite element solution uh =
∑N

i=1 Uiφi of problem (73) is found from the solution
of the linear system

(80)

(
N∑
i=1

Uiφi, φj

)
a

= 〈f, φj〉, 1 ≤ j ≤ N,

which is equivalent to AU = b where

Aij = (φi, φj)a, bj = 〈f, φj〉.
Subtracting Eq. (80) from Eq. (79) we get

(81) (u− uh, φj)a = 0, 1 ≤ j ≤ N.
Now we are ready to prove that the FEM solution uh is the best approximation of the

exact solution u of Eq. (77) among all functions in Sh.

Theorem 4.

(82) ‖u− uh‖a = min
χ∈Sh

‖u− χ‖a.

Proof. Take an arbitrary χ ∈ Sh. Introduce e := χ− uh. Obviously, e ∈ Sh. Then

‖u− χ‖2a = (u− uh − e, u− uh − e)a = ‖u− uh‖2a − 2(u− uh, e)a + ‖e‖2a
= ‖u− uh‖2a + ‖e‖2a ≥ ‖u− uh‖2a.

https://en.wikipedia.org/wiki/Norm_(mathematics)
https://en.wikipedia.org/wiki/Inner_product_space

37

Here we have used the fact that (u − uh, e)a = 0. Indeed, e = χ − uh ∈ Sh, hence

e =
∑N

i=1 eiφi, and the result follows from Eq. (81). The equality takes place if and only
if e = 0, i.e., χ ≡ uh. �

Next, we would like to see how the error u − uh decays with h. The error bounds for
the finite element solution uh are given in terms of the Sobolev norm ‖u‖H2(Ω). For a 2D
domain Ω, this norm is defined by:

(83) ‖v‖H2(Ω) :=

[∫
Ω

(
v2 + v2

x + v2
y + v2

xx + 2v2
xy + v2

yy

)
dx

]1/2

.

The following theorem establishes an error bound for the gradient of the linear inter-
polant Ihu.

Theorem 5.

(84) ‖∇u−∇uh‖L2(Ω) ≤ Ch‖u‖H2(Ω).

Proof. First, we observe that since

0 < a0 ≤ a(x) ≤ a1 := max
x∈Ω∪∂Ω

a(x) <∞

(as Ω is bounded), for any function v ∈ H1
0 (Ω) we have

a0

∫
Ω
|∇v|2dx ≤ ‖v‖2a ≤ a1

∫
Ω
|∇v|2dx.

Therefore, we can write the following chain of inequalities:

‖∇u−∇uh‖L2(Ω) ≤ a
−1/2
0 ‖u−uh‖a = a

−1/2
0 min

χ∈Sh

‖u−χ‖a ≤
a

1/2
1

a
1/2
0

min
χ∈Sh

[∫
Ω
|∇u−∇χ|2dx

]1/2

.

Taking Ihu for χ we get:

‖∇u−∇uh‖L2(Ω) ≤
a

1/2
1

a
1/2
0

[∫
Ω
|∇u−∇Ihu|2dx

]1/2

=
a

1/2
1

a
1/2
0

‖∇u−∇Ihu‖2L2(Ω).

Using the result from interpolation theory that

(85) ‖∇u−∇Ihu‖L2(Ω) =

[∫
Ω
|∇u−∇Ihu|2dx

]1/2

≤ C̃h‖u‖H2(Ω),

we obtain that

‖∇u−∇uh‖L2(Ω) ≤ Ch‖u‖H2(Ω) for some constant C.

�

To establish further results it is necessary to assume that the domain Ω is convex. In
this case, one can prove that for some constant C independent of f ,

(86) ‖u‖H2(Ω) ≤ C‖f‖L2(Ω).

38

If Ω is nonconvex, then the solution u will generally have such singularities at the corners
of ∂Ω that will make (86) invalid, and this will result in a lower order of convergence. Note
that (84) still holds for nonconvex Ω.

Theorem 6. Let Ω be convex. Then

(87) ‖u− uh‖L2(Ω) ≤ Ch2‖u‖H2(Ω).

Proof. We consider the auxiliary problem of finding ψ ∈ H1
0 (Ω) such that

(88) (ψ, v)a = 〈u− uh, v〉 ∀v ∈ H1
0 (Ω).

By (86) we have
‖ψ‖H2(Ω) ≤ C‖u− uh‖L2(Ω).

Let us take v = u− uh in (88). Then

(89) ‖u− uh‖2L2(Ω) = (ψ, u− uh)a = (ψ − Ihψ, u− uh)a.

The last equality follows from the fact that Ihψ ∈ Sh and for all φ ∈ Sh we have

(u− uh, φ)a = 0

by definition of the finite element solution uh. We continue (89) and apply the Cauchy-
Schwarz inequality:

‖u− uh‖2L2(Ω) = (ψ − Ihψ, u− uh)a

≤ ‖∇u−∇uu‖a‖∇ψ −∇Ihψ‖a
≤ C‖∇u−∇uu‖L2(Ω)‖∇ψ −∇Ihψ‖L2(Ω)

≤ C1h‖∇u−∇uu‖L2(Ω)‖ψ‖H2(Ω)

≤ C2h‖∇u−∇uh‖L2(Ω)‖u− uh‖L2(Ω).

Canceling ‖u− uh‖L2(Ω) we get:

(90) ‖u− uh‖L2(Ω) ≤ C2h‖∇u−∇uh‖L2(Ω).

Finally, using (84) we obtain:

‖u− uh‖L2(Ω) ≤ C3h
2‖u‖H2(Ω)

as desired. �

References

[1] Grigorios Pavliotis, Stochastic processes and Applications, Diffusion Processes, the Fokker-Planck, and
Langevin Equations, Springer, 2014

[2] Randall J. LeVeque, Finite Difference Methods for Ordinary and Partial Differential Equations, SIAM
2007 (available online via the UMD library).

[3] K. W. Morton and D. F. Mayers, Numerical Solution of Partial Differential Equations, Second Edition,
Cambridge University Press, 2005

[4] Lawrence C. Evans, Partial Differential Equations, AMS, Providence, RI, 1998
[5] John Burkardt, Meshing for the Finite Element Method (Presentation)
[6] Shaozhong Deng, Quadrature Formulas in Two Dimensions

https://en.wikipedia.org/wiki/Cauchy?Schwarz_inequality
https://en.wikipedia.org/wiki/Cauchy?Schwarz_inequality
http://www.springer.com/?SGWID=0-102-24-0-0&searchType=EASY_CDA&queryText=grigorios+pavliotis&submit=Submit
http://www.springer.com/?SGWID=0-102-24-0-0&searchType=EASY_CDA&queryText=grigorios+pavliotis&submit=Submit
http://epubs.siam.org.proxy-um.researchport.umd.edu/doi/book/10.1137/1.9780898717839
http://epubs.siam.org.proxy-um.researchport.umd.edu/doi/book/10.1137/1.9780898717839
http://www.amazon.com/Numerical-Solution-Partial-Differential-Equations/dp/0521607930/ref=sr_1_1?ie=UTF8&qid=1453429972&sr=8-1&keywords=morton+and+mayers
http://www.amazon.com/Numerical-Solution-Partial-Differential-Equations/dp/0521607930/ref=sr_1_1?ie=UTF8&qid=1453429972&sr=8-1&keywords=morton+and+mayers
http://www.amazon.com/Partial-Differential-Equations-Graduate-Mathematics/dp/0821807722/ref=sr_1_2?s=books&ie=UTF8&qid=1453584268&sr=1-2&keywords=evans+partial+differential+equations
https://people.sc.fsu.edu/~jburkardt/classes/fem_2011/fem_meshing.pdf
http://math2.uncc.edu/~shaodeng/TEACHING/math5172/Lectures/Lect_15.PDF

39

[7] Jochen Alberty, Carsten Carstensen and Stefan A. Funken, Remarks around 50 lines of Matlab: short
finite element implementation, Numerical Algorithms 20 (1999) 117137

[8] S. Larsson and V. Thomee, Partial Differential Equations with Numerical Methods, Springer-Verlag
Berlin Heidelberg, 2003, 2009 (soft cover)

[9] Wikipedia

https://www.math.hu-berlin.de/~cc/cc_homepage/download/1999-AJ_CC_FS-50_Lines_of_Matlab.pdf
https://www.math.hu-berlin.de/~cc/cc_homepage/download/1999-AJ_CC_FS-50_Lines_of_Matlab.pdf

	1. Linear Elliptic PDEs
	1.1. Definition
	1.2. Where linear elliptic PDEs come from
	1.3. Strong and weak maximum principles

	2. Finite difference approach. A model problem
	2.1. Numerical solution
	2.2. Error Analysis

	3. Handling different types of boundary conditions and non-constant coefficients
	3.1. Homogeneous Neumann and Nonhomogeneus Dirichlet boundary conditions
	3.2. Example: finding the electric potential on a plate with varying conductivity

	4. Finite Element Method (FEM)
	4.1. An illustration of the general idea of the FEM on a model problem
	4.2. Mesh generation
	4.3. Quadrature for FEM
	4.4. A simple basic FEM code with an example
	4.5. Complete FEM packages
	4.6. Error analysis

	References

