
SPECTRAL METHODS

MARIA CAMERON

Contents

1. Spectral methods 1
2. General Fourier Series and the best approximations 1
2.1. Trigonometric series 3
3. Convergence of Fourier Series 4
3.1. Algebraic vs Exponential decay of coefficients 4
3.2. Decay of coefficients and approximation errors 7
4. Discrete Fourier Transform in MATLAB 8
5. Pseudospectral errors 12
6. Using Discrete Fourier Transform for solving PDEs 13
6.1. The Korteweg-de Vries equation 15
6.2. Solving nonlinear PDEs using fft 17
7. Aliasing 20
8. Fast Fourier Transform 21
References 23

1. Spectral methods

Spectral methods are widely used. If the solution is smooth, then its Fourier series
converges exponentially in the number of terms. Moreover, differentiation of the Fourier
series in the Fourier space is easy: it is merely a multiplication by ik where k is the wave
number and i is the imaginary unit. Spatial derivatives. of order higher than 2 are hard
to approximate by finite differences. For example, the Korteweg-de Vries equation is hard
to solve without the use of spectral methods.

2. General Fourier Series and the best approximations

Suppose a series of functions {φj(x)}∞j=0 belongs to a space with inner product. The

2-norm is defined as ∥ ⋅ ∥2 =
√

(⋅, ⋅). The task of the least squares fitting is to find the

best approximation of the form ∑Nj=0 cjφj(x) for the given function f(x) in the sense that

the 2-norm ∥f − ∑Nj=0 cjφj(x)∥2 is minimal among all possible choices of the coefficients
c0, . . . , cN . For the rest of this section we will deal only with the 2-norm.

1

AMSC661/CMSC661

If the functions φj ’s are orthogonal, i.e.,

(φi, φj) = 0 whenever i ≠ j,
the best approximation for f(x) of the form ∑j cjφj(x) is called a generalized Fourier
series for f(x) and the coefficients cj ’s giving the best fit are called generalized Fourier
coefficients.

Theorem 1. Let {φj}∞j=0 be an orthogonal series of functions. Among all possible choices
of c0, . . . , cN the choice that minimizes

XXXXXXXXXXX
f −

N

∑
j=0

cjφj

XXXXXXXXXXX2
is cj =

(f, φj)
(φj , φj)

, j = 0,1, . . . ,N.

Proof. We consider the squared norm of the error of the approximation.

E2
N =

XXXXXXXXXXX
f −

N

∑
j=0

cjφj

XXXXXXXXXXX

2

=
⎛
⎝
f −

N

∑
j=0

cjφj , f −
N

∑
j=0

cjφj
⎞
⎠
=

∥f∥2 − 2
N

∑
j=0

cj(f, φj) +
⎛
⎝

N

∑
j=0

cjφj
⎞
⎠
(
N

∑
k=0

ckφk) =

∥f∥2 − 2
N

∑
j=0

cj(f, φj) +
N

∑
j=0

∣cj ∣2∥φj∥2.

Now we complete the square for the last two terms.

E2
N =∥f∥2 +

N

∑
j=0

∣cj −
(f, φj)
∥φj∥2

∣
2

∥φj∥2 −
N

∑
j=0

∥φj∥2
(f, φj)2

∥φj∥4
≥

∥f∥2 −
N

∑
j=0

∥φj∥2 [
(f, φj)
(φj , φj)

]
2

≥ 0.

The second-to-last inequality is an equality if and only if

cj =
(f, φj)
(φj , φj)

, j = 0,1, . . . ,N.

�

The immediate corollary of this proof is the Bessel’s inequality:

∥f∥2 ≥
N

∑
j=0

∥φj∥2 [
(f, φj)
(φj , φj)

]
2

.

Another immediate corollary is Parseval’s equality.

Theorem 2. A generalized Fourier series converges to f if and only if Parseval’s equality
holds:

∥f∥2 =
∞
∑
j=0

∥φj∥2 [
(f, φj)
(φj , φj)

]
2

.

AMSC661/CMSC661

2.1. Trigonometric series. Let a function f(x) be defined on interval [0, L] and satisfy
boundary conditions f(0) = f(L) = 0. Then we can approximate it using the sine series

f(x) ≈
N

∑
n=1

cn sin
πnx

L
, where cn =

2

L
∫

L

0
f(x) sin

πnx

L
dx.

If f(x) is defined on [0, L] and satisfies the Neumann boundary conditions f(′(0) =
f ′(L) = 0 we can approximate it using the cosine series

f(x) ≈
N

∑
n=0

cn cos
πnx

L
,

where

c0 =
1

L
∫

L

0
f(x)dx, cn =

2

L
∫

L

0
f(x) cos

πnx

L
dx, n = 1,2, . . .N.

Now suppose that f(x) is defined on [−L,L] and satisfies the periodic boundary con-
ditions f(−L) = f(L), and f ′(−L) = f ′(L). Then f can be approximated using the full
Fourier series

f(x) ≈ a0
2
+

N

∑
n=1

(an cos
πnx

L
+ bn sin

πnx

L
) ,

where

an =
1

L
∫

L

−L
f(x) cos

πnx

L
dx, n = 0, . . . ,N,

bn =
1

L
∫

L

−L
f(x) sin

πnx

L
dx, n = 1, . . . ,N.

Alternatively, a function f(x) defined on [−L,L] and satisfying periodic boundary con-
ditions can be approximated using the complex series

f(x) ≈
n

∑
k=−n

cne
iπkx
L , where ck =

1

2L
∫

L

−L
f(x)e−

iπkx
L dx.

When we say “let Xn be a Fourier series for f(x) on [a, b] satisfying the boundary
conditions” we mean one of the following:

● [a, b] = [0, L], f(0) = f(L) = 0, Xn(x) = sin
πnx

L
, n = 1,2,

● [a, b] = [0, L], f ′(0) = f ′(L) = 0, Xn(x) = cos
πnx

L
, n = 0,1,2,

● [a, b] = [0, L], f(0) = f ′(L) = 0, Xn(x) = sin
π(2n + 1)x

2L
, n = 0,1,2,

● [a, b] = [0, L], f ′(0) = f(L) = 0, Xn(x) = cos
π(2n + 1)x

2L
, n = 0,1,2,

● [a, b] = [−L,L], f(−L) = f(L), f ′(−L) = f ′(L), Xn = ei
πnx
L , n ∈ Z.

● [a, b] = [−L,L], f(−L) = f(L), f ′(−L) = f ′(L), Xn = {sin
πnx

L
, cos

πnx

L
} .

AMSC661/CMSC661

The last one is the classic Fourier series of sines and cosines. Results regarding the con-
vergence of Fourier series are the following:

Theorem 3. The Fourier series ∑ cnXn(x) converges to f(x) uniformly on [a, b] provided
that

(1) f , f ′, and f ′′ exist and are continuous on [a, b];
(2) f(x) satisfies the boundary conditions.

Theorem 4. The Fourier series ∑ cnXn(x) converges to f(x) on [a, b] in L2 provided that

∫
b

a
∣f(x)∣2dx <∞.

Theorem 5. Let f and f ′ be piecewise continuous on [a, b]. Then the Fourier series
converges pointwise to

1
2(f(x + 0) + f(x − 0)).

3. Convergence of Fourier Series

3.1. Algebraic vs Exponential decay of coefficients.

Example Consider the “sawtooth function” (Fig. 1): f(x) = x, x ∈ [−π,π]. Since f(x) is
odd, the Fourier Series is the sine series.

bn =
1

π
∫

π

−π
x sin(nx)dx = (−1)n+1 2

n
.

The coefficients decay as O(1
n). The series converges pointwise to f(x) on (−π,π). How-

ever, supx∈(−π,π) ∣f(x) − SN(x)∣ does not decay as N → ∞. This exemplifies the Gibbs
phenomenon.

Example Consider the “half-wave rectifier function” (Fig. 2): f(x) = 0 for x ∈ [−π,0],
f(x) = sinx for x ∈ (0, π]. This function is continuous with a piecewise continuous deriva-
tive. Its Fourier coefficients are

a0 =
1

π
, a2n = −

2

π(4n2 − 1)
, n > 0, a2n+1 = 0, n ≥ 0,

b1 =
1

2
, bn = 0 n > 1.

The coefficients decay as O(n−2) for large n. The series converges pointwise to f(x) on
[−π,π].
Example Consider the function called “symmetric, imbricated Lorentzian” (Fig. 3):

f(x) = 1 − p2

1 + p2 − 2p cosx
, 0 < p < 1.

this function is infinitely differentiable. Its Fourier series is given by

f(x) = 1 + 2
∞
∑
n=1

pn cos(nx).

AMSC661/CMSC661

Figure 1. f(x) = x on [−π,π] and the partial sums SN of its Fourier sine
series for N = 3, 6, 12, 20, 40, 100.

One can check it as follows.

f(x) = 1 + 2
∞
∑
n=1

pn cos(nx) = 1 +
∞
∑
n=1

pn (einx + e−inx)

= 1

1 − peix
+ 1

1 − pe−ix
− 1

= 1 − pe−ix + 1 − peix − 1 − p2 + 2p cosx

1 + p2 − 2p cosx

= 1 − p2

1 + p2 − 2p cosx
.

The Fourier coefficients decay faster than any power of n. In this case we say that the
coefficients decay exponentially or spectrally.

Definition 1. The algebraic index of convergence is the supremum of numbers k for which

lim
n→∞

∣cn∣nk <∞,

where cn are the coefficients of the series.
Alternative definition: if

cn ∼ O (1

nk
) , n≫ 1,

AMSC661/CMSC661

Figure 2. Half-wave rectifier and the partial sums SN of its Fourier series
for n = 2, 4, 6, 8.

-3 -2 -1 0 1 2 3
x

0.5

1

1.5

2

2.5

f(x
)

Figure 3. Function “symmetric, imbricated Lorentzian” f(x) =
1−p2

1+p2−2p cosx for p = 1/2, and the partial sums for n = 2, 4, 6, 8.

then k is the algebraic index of convergence.

The first form gives an unambiguous definition for the case where cn ∼ O (logn
n).

Definition 2. If the algebraic index of convergence is unbounded than the series converges
exponentially or spectrally.

AMSC661/CMSC661

Definition 3. The exponential index of convergence r is given by

r = lim sup
n→∞

log ∣ log ∣cn∣∣
logn

.

Equivalently, if

cn ∼ O(s exp[−qnr]), n≫ 1,

then the exponential index of convergence is the exponent r.

Example For the symmetric, imbricated Lorentzian, cn = 2pn = 2e−n(− log p), (note, log p <
0 as 0 < p < 1), hence r = 1, q = − log p, s = 2.

3.2. Decay of coefficients and approximation errors. Let f(x) be 2π-periodic. The
coefficients of the complex-exponential form of a Fourier series are:

(1) cn =
1

2π
∫

π

−π
f(x)e−inxdx.

Note that if f(x) is real-valued, then

(2) f(x) =
∞
∑
−∞

cne
inx = f(x) =

∞
∑
−∞

cneinx =
∞
∑
−∞

cne
−inx.

Therefore, for a real-valued f(x),
cn = c−n.

If we integrate Eq. (1) by parts, repeatedly integrating the exponent and differentiating
f , then after J + 1 steps we obtain

cn =
1

2π

J

∑
j=0

(−1)j+n (i
n
)
j+1

{f (j)(π) − f (j)(−π)}

+ 1

2π
(− i
n
)
J+1

∫
π

−π
f (J+1)(x)e−inxdx.

Exercise Show that for the classic Fourier series an = 2Re(cn) and bn = −2Im(cn) and

an ∼
1

π

J

∑
j=0

(−1)n+j (f
(2j+1)(π) − f (2j+1)(−π)

n2j+2
) +O(n−(2J+4)), n→∞, J fixed,

bn ∼
1

π

J

∑
j=0

(−1)n+j+1 (f
(2j)(π) − f (2j)(−π)

n2j+1
) +O(n−(2J+3)), n→∞, J fixed.

Therefore the following theorem takes place.

Theorem 6. If

(1)

f(−π) = f(π), f ′(−π) = f ′(π), . . . , f (k−2)(−π) = f (k−2)(π),
(2) f (k) is integrable,

AMSC661/CMSC661

then

∣an∣ ≤
F

nk
, ∣bn∣ ≤

F

nk
,

where F is a constant that does not depend on n.

The next is the Fourier truncation error theorem.

Theorem 7. The error of approximating f(x) by the sum of the first N terms of its
Fourier series is bounded by the sum of the absolute values of all neglected coefficients.

Example The “sawtooth function” that is obtained from f(x) = x, x ∈ (−π,π) by the
periodic extension to the real line is not continuous (Fig. 4). Its integral is continuous. Its
derivative can be expressed in terms of the Dirac delta-function as follows

f ′(x) = 1 − 2π
∞
∑

n=−∞
δ(x − π(2n + 1)).

You can check it by verifying the identity

f(x) = ∫
x

0
f ′(x′)dx′.

Hence f ′(x) is integrable on [−π,π]. Therefore, we need to take k = 1 to apply Theorem 6
and get the bound ∣bn∣ ≤ F

n . This bound is correct as we have seen in Example 3.1.

Figure 4. The Sawtooth function.

4. Discrete Fourier Transform in MATLAB

In MATLAB 2015b, the discrete Fourier transform is defined as follows. Let x be a vector
with N entries. The functions fft and ifft implement the discrete Fourier transform and

AMSC661/CMSC661

the inverse discrete Fourier transform. If y = fft(x) and x = ifft(y) then

(3) y(k) =
N

∑
j=1

x(j)ω(j−1)(k−1)N

and

(4) x(j) = 1

N

N

∑
k=1

y(k)ω−(j−1)(k−1)N ,

where

(5) ωN = e−
2πi
N .

Exercise Check that the functions fft and ifft defined by Eqs. (3), (4) and (5) are
mutually inverse.

Despite the functions fft and ifft are mutually inverse, restoring a function using its
Fourier modes from 0 to N −1 leads to large absolute errors. In practice, fft and ifft are
often used with wave numbers running from −N/2 to N/2 − 1. Let N be even. Observe
that

(6) y(k −N) =
N

∑
j=1

x(j)e−
2πi(j−1)((k−1)−N)

N =
N

∑
j=1

x(j)e−
2πi(j−1)(k−1)

N = y(k),

as e−2πip = 1 for any integer p. This fact allows us to run the wave numbers not from 0 to
N − 1 but from −N/2 to N/2 − 1 instead. Matlab provides convenient functions for doing
this called fftshift and ifftshift. These functions swap the left and the right halves
of the array. They are mutually inverse. They are identical for even N and differ for odd
N . The example below demonstrates their action on a simple example.

>> a=[1 2 3 4 5 6];

>> fftshift(a)

ans =

4 5 6 1 2 3

>> ifftshift(a)

ans =

4 5 6 1 2 3

>> a=[1 2 3 4 5 6 7];

>> fftshift(a)

ans =

5 6 7 1 2 3 4

>> ifftshift(a)

ans =

4 5 6 7 1 2 3

Thus, the following sequence of commands is often used:

AMSC661/CMSC661

y = fftshift(fft(x));

x = ifft(ifftshift(y));

The example below illustrates the restoration of a function from its discrete Fourier
transform.

Example Let f(x) = x(2π − x), 0 ≤ x ≤ 2π. Its Fourier coefficients

ck =
1

2π
∫

2π

0
x(2π − x)e−ikxdx

are:

(7) c0 =
2π2

3
, ck = −

2

k2
.

Observing that c−k = ck, the function can be written as the following cosine series:

(8) x(2π − x) = 2π2

3
− 4

∞
∑
k=1

cos(kx)
k2

.

The script below produced Figure 5 demonstrating how f(x) is approximated by the trun-
cated cosine series fN as well as by the series

(9) SN(x) =
N

∑
k=1

[fft(f)]kei(k−1)x

and by

(10) fs(x) =
N

∑
k=1

[fftshift(fft(f))]keix(k−N/2−1).

function fft_demo()

nx = 2000; % for "continuous" x

N = 16; % for discrete Fourier Transform

x=linspace(0,2*pi,2000);

fun = @(x) x.*(2*pi - x);

f = fun(x);

c0 = 2*pi*pi/3;

fN = c0; %ck = -2/k^2;

for k = 1 : N/2

fN = fN - (4/(k*k))*cos(k*x);

end

fprintf(’max|f - fN| = %d\n’,max(abs(f - fN)));

figure;

hold on;

grid;

plot(x,f,’Linewidth’,2);

AMSC661/CMSC661

0 π/2 π 3π/2 2π
-4

-2

0

2

4

6

8

f(x)
fN(x)
Re(SN(x))
Im(SN(x))
SN(xk)
Re(fsN(x))
Im(fsN(x))
xk

Figure 5. An illustration fro Example 4. The function f(x) = x(2π −
x) is approximated using the truncated Fourier series fN(x) as well as
by the interpolation function SN(x) (Eq. (9)) as well as by the shifted
interpolation function fs(x) (Eq. (10)).

plot(x,fN,’b’);

xk = linspace(0,2*pi,N+1);

xk(N+1) = [];

fk = fun(xk);

fkhat = fft(fk);

SN = 0;

for k = 1 : N

SN = SN + fkhat(k)*exp(1i*x*(k - 1))/N;

end

plot(x,real(SN),’m’);

plot(x,imag(SN),’color’,[0,102/255,0]);

sN = 0;

for k = 1 : N

sN = sN + fkhat(k)*exp(1i*xk*(k - 1))/N;

end

AMSC661/CMSC661

plot(xk,real(sN),’.m’,’Markersize’,20);

fprintf(’max|f(xk) - sN(xk)| = %d\n’,max(abs(fk - sN)));

fkhatshift = fftshift(fkhat);

fs = 0;

for j = 1 : N

fs = fs + fkhatshift(j)*exp(1i*x*(j-N/2-1))/N;

end

plot(x,real(fs),’r’);

plot(x,imag(fs),’k’);

fprintf(’max|f - fs| = %d\n’,max(abs(f - fs)));

plot(xk,imag(sN),’k.’,’Markersize’,20);

legend(’f(x)’,’f_N(x)’,’Re(S_N(x))’,’Im(S_N(x))’,’S_N(x_k)’,...

’Re(fs_N(x))’,’Im(fs_N(x))’,’x_k’);

set(gca,’Fontsize’,20);

axis tight;

ax = gca;

ax.XTick = [0 : pi/2 : 2*pi];

ax.XTickLabel = {’0’,’\pi/2’,’\pi’,’3\pi/2’,’2\pi’};

end

5. Pseudospectral errors

In this Section, we estimate the errors of approximating a function by the interpolation
function denoted by fs(x) in Example 4. In the theorem below, the function fs is denoted
by SN . The interpolation function denoted by SN in Example 4 will not be used because
it gives a poor approximation of f(x).
Exercise Let N > 1 be even. Show that

(11) gN =Re
⎡⎢⎢⎢⎢⎣

N/2−1
∑

k=−N/2
cke

ikx
⎤⎥⎥⎥⎥⎦
, where ck =

1

N

N−1
∑
j=0

f(xj)e−ixjk,

xj = −π+ 2πj
N , 0 ≤ j ≤ N −1, coincides with SN in Eq. (12) with coefficients an and bn given

by Eq. (13).

Theorem 8. Let the interpolation (or collocation) points be defined by

xk = −π +
2πk

N
, k = 1,2, . . . ,N.

Let N be even. Let a function f(x) have the exact, infinite Fourier series representation

f(x) = α0

2
+

∞
∑
n=1

αn cos(nx) +
∞
∑
n=1

βn sin(nx).

AMSC661/CMSC661

The trigonometric polynomial SN which interpolates to f(x) at the N collocation points,
i.e.,

SN(xk) = f(xk), k = 1,2, . . . ,N,

is

(12) SN = a0
2
+
N/2−1
∑
n=1

an cos(nx) +
N/2−1
∑
n=1

bn sin(nx) + 1

2
aN/2 cos((N/2)x).

Then the coefficients of interpolant can be computed without error by the trapezoidal rule

(13) an =
2

N

N

∑
k=1

f(xk) cos(nxk), bn =
2

N

N

∑
k=1

f(xk) sin(nxk)

and these coefficients of the interpolant are given by infinite series of the exact Fourier
coefficients:

an = αn +
∞
∑
j=1

(αn+jN + α−n+jN), n = 0,1,2, . . . ,
N

2
,

bn = βn +
∞
∑
j=1

(βn+jN − β−n+jN), n = 1,2, . . . ,
N

2
− 1.

Furthermore, if fN is the sum of the first N terms of the exact Fourier series, we have:

∣f(x) − fN(x)∣ ≤
⎧⎪⎪⎨⎪⎪⎩
∣βN/2∣ +

∞
∑

n=1+N/2
(∣αn∣ + ∣βn∣)

⎫⎪⎪⎬⎪⎪⎭
,

while for the trigonometric interpolation the bound is

∣f(x) − SN(x)∣ ≤ 2

⎧⎪⎪⎨⎪⎪⎩
∣βN/2∣ +

∞
∑

n=1+N/2
(∣αn∣ + ∣βn∣)

⎫⎪⎪⎬⎪⎪⎭
.

That is to say that the error is bounded by twice the sum of the absolute values of all the
neglected coefficients.

This theorem is stated in [1] and a reference to its proof is found there.

6. Using Discrete Fourier Transform for solving PDEs

Now we discuss how to use the functions fft and ifft for solving PDEs.

Example Consider a linear dispersive PDE ut + uxxx = 0 on the interval −π ≤ x ≤ π, t ≥ 0,
with periodic boundary conditions and the intial condition u(x,0) = u0(x). The periodic
boundary conditions suggest the use of trigonometric Fourier series. First we solve it using
the Fourier series. Write

u(x, t) =
∞
∑
k=−∞

ck(t)eikx, where ck =
1

2π
∫

π

−π
u(x, t)e−ikxdx.

Then

ut =
∞
∑
k=−∞

c′k(t)e
ikx, uxxx =

∞
∑
k=−∞

ck(t)(ik)3eikx.

AMSC661/CMSC661

Therefore, all harmonics evolve in time independently. For kth harmonic we have

c′k(t) = −(ik)
3ck(t) = ik3ck(t). Hence ck(t) = ck(0)eik

3t.

Finally,

u(x, t) =
∞
∑
k=−∞

ck(0)eik
3teikx, where ck(0) =

1

2π
∫

π

−π
u0(x)e−ikxdx.

Let us take an initial condition whose Fourier transform has a finite number of nonzero
terms, for example,

(14) u0(x) = cos(x) sin(25x).
Then the exact solution is given by

(15) u(x, t) = cos(x + 1876t) sin(25x + 15700t).
Exercise Solve the IVP above using the Fourier transform in the Fourier space. Find
phase and group velocities. Verify that the exact solution is given by Eq.(15).

The script linear dispersion.m computes the solution using the discrete Fourier trans-
form and superimposes it with the exact solution (see Fig. 6).

function linear_disp_demo()

% Solves u_t + u_{xxx} = 0 using exact time integration and discrete

% Fourier Transform

N = 1024; % the number of collocation points

nt = 1000; % the number of time steps

tmax = 0.1; % the time till that the solution is computed

t = linspace(0,tmax,nt);

x = linspace(-pi,pi,N+1);

x(N+1) = [];

u0 = cos(x).*sin(25*x); % the initial condition

f0 = fftshift(fft(u0)); % Fourier coefficients at time 0

k = [-N/2 : N/2 - 1]; % frequencies

fig = figure;

grid;

hold on;

he = plot(x,u0,’Linewidth’,1,’color’,’r’);

h = plot(x,u0,’Linewidth’,2,’color’,’b’);

axis([-pi,pi,-1,1]);

drawnow;

for j = 1 : nt

ft = f0.*exp(1i*k.^3*t(j)); % Fourier coefficients at time t(j)

ut = ifft(ifftshift(ft)); % solution at time t(j)

% plot the computed solution at time t(j)

AMSC661/CMSC661

set(h,’xdata’,x,’ydata’,real(ut));

% plot the exact solution at time t(j)

set(he,’xdata’,x,’ydata’,cos(x+1876*t(j)).*sin(25*x+15700*t(j)));

axis([-pi,pi,-1,1]);

drawnow;

pause(0.1)

end

- - /2 0 /2
-1

-0.5

0

0.5

1

Figure 6. This blue curve: the numerical solution at time t = 0.1 of ut +
uxxx = 0 with the initial condition (14) obtained using the discrete Fourier
transform and exact time integration. The thin red curve: the exact solution
at t = 0.1 given by Eq. (15).

If we are solving a PDE with periodic boundary conditions on the interval [0, L] then it
is very important to scale the frequencies properly. Suppose we are using N -point DFT.
Then xj = Lj/N , j = 0,1, . . . ,N − 1.

[fft(u)]k =
N−1
∑
j=0

f(xj)e−
i2πjk
N =

N−1
∑
j=0

f(xj)e−
i2πxjk

L .

Therefore, the k-th frequency fk = 2πk
L , and the vector of frequencies should be set to

freq = 2π

L
[0,1, . . . ,N/2 − 1,−N/2, . . . ,−1].

Or, if you use fftshift(fft(u)) then

freq = 2π

L
[−N/2, . . . ,N/2 − 1].

6.1. The Korteweg-de Vries equation. The Korteweg-de-Vries equation

(16) ut + uux + βuxxx = 0

originally arose in the theory of surface waves on shallow water. Later it was encountered
in numerous other problems. u is proportional to the horizontal component of the velocity
which is constant over the channel depth. An analogous equation is also valid for the

AMSC661/CMSC661

elevation of the surface over its undisturbed level. The KdV equation has a solution of
traveling wave type, the so called soliton:

(17) u = u0

cosh2 (
√

u0
12β (x − x0 − st))

, where u0 = 3s.

This solution is very stable. Let us derive it. We will look for u(x, t) = w(x − st) ≡ w(y),
satisfying the boundary conditions w(±∞) = 0 and w′(±∞) = 0.

−sw′ +ww′ + βw′′′ = 0

−sw′ + (w
2

2
)
′

+ βw′′′ = 0

−sw + w
2

2
+ βw′′ = C ⋅ 2w′

2βw′′w′ − 2sww′ +w2w′ = 2Cw′

β(w′)2 − sw2 + w
3

3
= 2Cw +B

Since w and w′ are zero at ±∞, C = 0 and B = 0. We continue.

β(w′)2 = sw2 − w
3

3

w′ = ±
√

s

β
w2 − w

3

3β

∫
dw

w
√
s − w

3

= ±∫
dy√
β

The integral in the left-hand side can be taken using the substitution

z =
√
s − w

3 , dz = − dw

6
√
s−w

3

,

z2 = s − w
3 , w = 3s − 3z2.

Then we have

∫
dw

w
√
s − w

3

= −6∫
dz

3s − 3z2

= − 2∫
dz

s − z2
= − 2√

s
∫

dz

1 − (z√
s
)
2

= 2√
s
∫

dp

p2 − 1
= 1√

s
log

p − 1

p + 1
,

AMSC661/CMSC661

where

p = z√
s
=
√

1 − w

3s
.

This equation shows that p ≤ 1. Now we continue.

1√
s

log
p − 1

p + 1
= ± y√

β
+C

p − 1

p + 1
= e±(y−x0)

√
s/β.

Let us introduce

A = ±(y − x0)
√
s/β.

Opening the absolute value we obtain

1 − p = peA + eA

p(1 + eA) = 1 − eA

p = 1 − eA

1 + eA
.

Now we return to the variable w.

w = 3s − 3z2 = 3s(1 − p2) = 3s
⎛
⎝

1 − (1 − eA

1 + eA
)
2⎞
⎠
.

Using the identity

1 − (1 − eA

1 + eA
)
2

= 1

cosh2 A
2

we get

w = 3s

cosh2 (y−x02

√
s
β)
.

Introducing u0 = 3s and plugging in y = x − st we obtain Eq. (17).

6.2. Solving nonlinear PDEs using fft. Consider a PDE of the form

(18) ut = Lu +N (u),

where L is a linear differential operator, and N is a nonlinear operator. For example,
for the Korteweg-de-Vries (KdV) equation (16), Lu ≡ −uxxx, while N (u) ≡ −(u2/2)x. It is
convenient to perform multiplication in the x-space while differentiate in the Fourier space.
We introduce a new unknown function v(x, t) via the following variable change:

(19) u(x, t) = etLv(x, t),

AMSC661/CMSC661

where etL is the solution operator for the equation ut = Lu. I.e., if u(x,0) = u0(x) then
u(x, t) = etLu0(x). For the KdV equation,

etLu0 = ifft(ifftshift(eik
3tfftshift(fft(u0)))).

Plugging Eq. (19) into Eq. (18) we obtain:

ut = LetLv + etLvt = LetLv +N (etLv) .

Canceling LetLv and applying the solution operator e−tL corresponding to solving ut = Lu
backward in time we obtain the following equation for v(x, t):

(20) vt = e−tLN (etLv) .
Eq. (20) can be solved using some accurate ODE solver, e.g., the 4th order 4-stage Runge-
Kutta method. The code below developed for solving the KdV equation shows how one
can evaluate the right-hand side in Eq. (20).

function KdVrkm()

% solves u_t + u_{xxx} + (0.5u^2)_x = 0, i.e.,

% u_t = -u_{xxx} - (0.5u^2)_x

init_data = 2;

N = 512;

x = linspace(-N/2,N/2,N+1);

x(N + 1) = [];

k = [-N/2 : N/2 - 1];

u = zeros(1,N);

% initial data

if init_data == 1

u0 = 1./(cosh(x/sqrt(12))).^2;

end

if init_data == 2

u0 = exp(-(x/20).^2) + exp(-((x+100)/20).^2);

end

dt = 0.1; % time step

figure; clf;

hpic = plot(x,u0,’LineWidth’,2,’color’,’r’); % plot of the numerical solution

hold on;

grid

drawnow

if init_data == 1

% plot of the exact solution for u_0(x) given by (*)

hp = plot(x,u0,’LineWidth’,2);

axis([-N/2 N/2 -0.01 1.01]);

https://en.wikipedia.org/wiki/Runge\unhbox \voidb@x {\protect \protect \protect \edef OT1{OT1}\let \enc@update \relax \protect \edef cmr{cmr}\protect \edef m{m}\protect \edef n{n}\protect \xdef \OT1/cmr/m/n/10.95 {\OT1/cmr/m/n/10.95 }\OT1/cmr/m/n/10.95 \size@update \enc@update \ignorespaces \relax \protect \relax \protect \edef cmr{cmr}\protect \xdef \OT1/cmr/m/n/10.95 {\OT1/cmr/m/n/10.95 }\OT1/cmr/m/n/10.95 \size@update \enc@update \setbox 0\hbox {D}\hbox to\wd 0{\kern 0.04em\char 32\hss D}}Kutta_methods
https://en.wikipedia.org/wiki/Runge\unhbox \voidb@x {\protect \protect \protect \edef OT1{OT1}\let \enc@update \relax \protect \edef cmr{cmr}\protect \edef m{m}\protect \edef n{n}\protect \xdef \OT1/cmr/m/n/10.95 {\OT1/cmr/m/n/10.95 }\OT1/cmr/m/n/10.95 \size@update \enc@update \ignorespaces \relax \protect \relax \protect \edef cmr{cmr}\protect \xdef \OT1/cmr/m/n/10.95 {\OT1/cmr/m/n/10.95 }\OT1/cmr/m/n/10.95 \size@update \enc@update \setbox 0\hbox {D}\hbox to\wd 0{\kern 0.04em\char 32\hss D}}Kutta_methods

AMSC661/CMSC661

end

%

tmax = 1000;

t = 0;

freq = k.*(2*pi/N); % frequencies

freq3 = freq.^3;

e3=exp(1i*freq3*dt);

while (t<tmax)

t=t+dt;

vk=fftshift(fft(u0)); % v in the Fourier space

k1=rhs(0,vk);

k2=rhs(0.5*dt,vk+0.5*dt*k1);

k3=rhs(0.5*dt,vk+0.5*dt*k2);

k4=rhs(dt,vk+dt*k3);

vkn=vk+dt*(k1+2*k2+2*k3+k4)/6;

un=ifft(ifftshift(e3.*vkn)); % return to u in the x-space

set(hpic,’xdata’,x,’ydata’,real(un));

if init_data == 1

y = -N/2 + mod(x - t/3 + N/2,N);

set(hp,’xdata’,x,’ydata’,1./(cosh((y)/sqrt(12))).^2);

axis([-N/2 N/2 -0.01 1.01]);

end

u0=un;

drawnow

end

end

%%

function rk=rhs(dt,v);

[m N]=size(v);

k=[-N/2 : N/2 - 1];

freq =k.*(2*pi/N);

freq3 = freq.^3;

e3=exp(1i*freq3*dt);

em3=exp(-1i*freq3*dt);

vk1=v.*e3; % e^{tL}v in the Fourier space

v2=ifft(ifftshift(vk1)); % exp(tL)v in the x-space

v2=0.5*v2.^2; % [exp(tL)v]^2 in the x-space

% exp(-tL)[[(exp(tL)v)]_x] in the Fourier space

rk=em3.*(-1i*freq).*fftshift(fft(v2));

end

AMSC661/CMSC661

7. Aliasing

Have you noticed that sometimes in the movies it seems like a car’s wheels rotate in
the wrong direction? The reason is aliasing. The movie’s shooting speed is 24 frames per
second. If a wheel rotates by an angle π < α < 2π between the frames your brain will
process it as if it rotates in the wrong direction with the angular velocity (α − 2π)/24.

A similar error due to the discrete sampling occurs when we restore a function from its
Fourier transform. Let us write a function f(x), x ∈ [0,2π], as an infinite series

f(x) =
∞
∑

m=−∞
αme

imx.

The term αme
imx is the m-th Fourier component of f . Now we consider fm(x) ≡ αmeimx

on the interval [0,2π]. Let us sample it at the points xj ∶= 2πj
N and apply the N -point

discrete Fourier transform to it . Then for the fft(fm) we have

[fft(fm)]k =
N−1
∑
j=0

αme
i2πmj/Ne−i2πjk/N =

N−1
∑
j=0

αme
i2πj(m−k)/N .

Let m = Nq + r, where r ∈ {0,1, . . . ,N − 1}. Then

[fft(fm)]k =
N−1
∑
j=0

αme
i2πj(m−k)/N =

N−1
∑
j=0

αme
i 2πj
N
(Nq+r−k) =

N−1
∑
j=0

αme
i 2πj
N
(r−k)

≡ αm
N−1
∑
j=0

ωj , where ω ∶= ei2π(r−k)/N ,

= αm
⎧⎪⎪⎨⎪⎪⎩

1−ωN
1−ω , ω ≠ 1

N, ω = 1
= αm

⎧⎪⎪⎨⎪⎪⎩

0, ω ≠ 1

N, ω = 1
.

The last equality follows from the fact ωN = 1. Since ω = 1 if and only if r = k, we have

[fft(fm)]k = αmNδrk,
i.e., frequency m higher than N − 1 will be aliased to a lower frequency r that correspond
to the residual of the division of m by N .

Another important fact to have in mind is that the largest frequency that can be resolved
without aliasing by the Fourier transform is N/2, not N . The reason is that the frequencies
N/2 < k < N are aliased to the negative frequencies between −N/2 and 0.

Example Suppose a 25-point discrete Fourier transform is applied to the function f(x) =
sin(32x) = 1

2i
(ei32x − e−i32x). Then the inverse discrete Fourier transform is applied to the

result. The wave numbers 32 and −32 are aliased to the wave numbers k1 and k2 in the
range −12 ≤ k1, k2 ≤ 12. It is easy to check that k1 = 7 and k2 = −7. Equivalently, k2 = 18,
if we need to convert them to the range 0 ≤ k1, k2 ≤ 24.

Example Similarly, sin(16x) aliases to − sin(9x) if 25-point DFT is used.

Exercise Suppose you apply an 32-point Fourier transform to the function sin(50x) and
then restore it with the discrete inverse Fourier transform. What should be the result?

AMSC661/CMSC661

Figure 7. A 25-point discrete Fourier transform was applied to the func-
tion f(x) = sin(32x) (the blue curve). Then the result was restored using the
inverse discrete Fourier transform. The resulting function is g(x) = sin(7x)
(the red markers and the dashed curve).

8. Fast Fourier Transform

Performing a discrete Fourier transform is equivalent to matrix multiplication:

X = Ωx, Ωkj = e−
2πi
N
kj , k, j = 0,1, . . . ,N − 1.

The computational cost of the multiplication of a complex N × N matrix by a complex
vector N × 1 is

∼ 8N2 real floating point operations (or flops).
This cost can be dramatically reduced e.g. if N is a power of 2. The Fourier transform

performed using the trick explained below is called the Fast Fourier Transform. Its cost is

∼ 5N log2N flops.

Consider the discrete Fourier transform with N = 2M . Then we can rewrite it as

X(k) =
N−1
∑
j=0

x(j)ωjkN

=
N/2−1
∑
j=0

[x(2j)ωk(2j)N + x(2j + 1)ωk(2j+1)N]

≡ Yk + ωkZk, k = 0,1, . . . ,N/2 − 1.

Note that Yk and Zk, 0 ≤ k ≤ N/2 − 1, are the discrete Fourier transforms of the data
sets [x0, x2, . . . , xN/2−2] and [x1, x3, . . . , xN/2−1]. The only problem is that Yk and Zk are
defined only for k = 0,1, . . . ,N/2 − 1. To define them for N/2 ≤ k < N we observe that

ωk+N/2 = e−i
2π(k+N/2)

N = e−i
2πk
N

−iπ = −ei
2πk
N = −ωk.

AMSC661/CMSC661

Hence,

X(k +N/2) = Yk − ωkZk.
Example Let N = 23 = 8. Let X = fft(x). Then we have

(21)

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

X0

X1

X2

X3

X4

X5

X6

X7

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 1 1 1 1 1 1 1
1 ω ω2 ω3 ω4 ω5 ω6 ω7

1 ω2 ω4 ω6 ω8 ω10 ω12 ω14

1 ω3 ω6 ω9 ω12 ω15 ω18 ω21

1 ω4 ω8 ω12 ω16 ω20 ω24 ω28

1 ω5 ω10 ω15 ω20 ω25 ω30 ω35

1 ω6 ω12 ω18 ω24 ω30 ω36 ω42

1 ω7 ω14 ω21 ω28 ω35 ω42 ω49

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

x0
x1
x2
x3
x4
x5
x6
x7

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

≡

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Y0 +Z0

Y1 + ωZ1

Y2 + ω2Z2

Y3 + ω3Z3

Y0 −Z0

Y1 − ωZ1

Y2 − ω2Z2

Y3 − ω3Z3

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

where Yk’s and Zk’s are the Fourier transform of the even and odd components of x, i.e.,

Y = fft([x0 x2 x4 x6]), Z = fft([x1 x3 x5 x7]).

More exactly,

Yk =
3

∑
j=0

x2j(ω2)jk, Zk =
3

∑
j=0

x2j+1(ω2)jk, k = 0,1,2,3.

To obtain the last equality in Eq. (21) we have used the following identities:

ω(4+l) ≡ e−
2πi(4+l)

8 = e−
8πi
8 e−

2πil
8 = −e−

2πil
8 ≡ −ωl, l = 0,1,2,3,

ω2k(4+l) ≡ e−
2πi2k(4+l)

8 = e−
8(2k)πi

8 e−
2πil(2k)

8 = e−
2πil(2k)

8 ≡ ωl(2k), l = 0,1,2,3.

Therefore, instead of doing a single 8-point Fourier transform, we can perform two 4-point
Fourier transforms and construct the result of the 8-point Fourier transform out of them.

Further, we proceed recursively. For Y ’s in Eq. (21) we get:

[Y0, Y1] = [P0 +Q0, P1 + ω2Q1], [Y2, Y3] = [P0 −Q0, P1 − ω2Q1],

[Z0, Z1] = [S0 + T0, S1 + ω2T1], [Z2, Z3] = [S0 − T0, S1 − ω2T1],
where

[P0, P1] = fft([x0, x4]), [Q0,Q1] = fft([x2, x6]),

[S0, S1] = fft([x1, x5]), [T0, T1] = fft([x3, x7]).
For the 2-point discrete Fourier transform we have:

P0 = x0e−i2π⋅0/2 + x4e−i2π⋅0/2 = x0 + x4, P1 = x0e−i2π⋅0/2 + x4e−i2π/2 = x0 − x4.

Hence,

P0 = x0 + x4, P1 = x0 − x4, Q0 = x2 + x6, Q1 = x2 − x6,

S0 = x1 + x5, S1 = x1 − x5, T0 = x3 + x7, T1 = x3 − x7.

AMSC661/CMSC661

Now we compute the number of flops in the Fast Fourier Transform. Let N ≡ 2m. Let
F (2m) be the number of flops to be found. Complex addition and subtraction require 2
flops. Complex multiplication requires 6 flops. (Check this!) Therefore,

F (2m) = 2F (2m−1) + 2 ⋅ 2m + 6 ⋅ 2m−1,
i.e., the cost of 2m-point Fast Fourier Transform is equal to two costs of the Fast Fourier
Transform with twice as few points plus the cost of 2m additions and subtractions for
Yk ± ωkZk plus the cost of 2m−1 complex multiplications ωkZk. Continuing, we obtain

F (2m) = 2F (2m−1) + 2 ⋅ 2m + 6 ⋅ 2m−1

= 2(2F (2m−2) + 2 ⋅ 2m−1 + 6 ⋅ 2m−2) + 2 ⋅ 2m + 6 ⋅ 2m−1

= 22F (2(m−2)) + 2 ⋅ (2 ⋅ 2m + 6 ⋅ 2m−1) . . .
= 2mF (0) +m(2 ⋅ 2m + 6 ⋅ 2m−1) = 2mF (0) +m(2 + 3)2m

= 5N log2N.

Here we have taken into account that F (0) = 0 as the one-point DFT, i.e., fft of a number
a is fft(a) = a, which requires no floating point operations.

In a similar manner, one can define Fast Fourier Transform for powers of other primes.
The graph in Fig. 8 shows the CPU time of the fft in Matlab versus N .

References

[1] John P. Boyd, Chebyshev and Fourier Spectral methods, 2nd edition, Dover Publication, Inc., Mineola,
New York, 2001

[2] Walter A. Strauss, Partial Differential Equations: An Introduction, 2nd edition, John Wiley and Sons,
2008

AMSC661/CMSC661

0 100 200 300 400 500 600 700 800 900 1000
N

0

1

2

3

4

5

6

7

8

C
PU

 ti
m

e
of

 ff
t

×10-5

N
N=2p

N=3p

N=3*2p

N=2*3p

N is prime

Figure 8. The CPU time of the fft in Matlab versus N .

	1. Spectral methods
	2. General Fourier Series and the best approximations
	2.1. Trigonometric series

	3. Convergence of Fourier Series
	3.1. Algebraic vs Exponential decay of coefficients
	3.2. Decay of coefficients and approximation errors

	4. Discrete Fourier Transform in MATLAB
	5. Pseudospectral errors
	6. Using Discrete Fourier Transform for solving PDEs
	6.1. The Korteweg-de Vries equation
	6.2. Solving nonlinear PDEs using fft

	7. Aliasing
	8. Fast Fourier Transform
	References

