Accelerating cryptic pocket discovery with deep learning

Gregory R. Bowman @drGregBowman Director of Folding@home Louis Heyman University Professor Depts. of Biochemistry & Biophysics, and Bioengineering University of Pennsylvania

Disclaimer: Co-founder of Decrypt Bio

Structural snapshots are just the tip of the iceberg

Cryptic pockets present new opportunities

Horn and Shoichet. JMB 2004.

We're getting good at finding cryptic pockets with simulations

Cruz et al. Nature Communications 2022.

But where should we look for cryptic pockets?

What data do we have to work with?

PDB ~200K structures

Only ~100 cryptic pockets

A second of simulation is a lot of data

SARS-2 Nsp16 Vithani et al. Biopsy's J 2021.

SARS-2 Spike Zimmerman et al. Nature Chemistry 2021

Ebola VP35 Cruz et al. Nature Communications 2022

Cruz et al. Nature ComenahibiotRovis 2022.

PocketMiner algorithm

PocketMiner performs well on simulation data

PocketMiner performs well on crystal structures

52.1%

Cryptic pockets dramatically expand the potentially draggable proteome

> **Cryptic pocket** N=3172 (29.4%) No pocket N=2001 (18.5%) **Ground state pocket** N=5633 (52.1%)

PocketMiner is predictive of simulations

Kinase PIM 2 (crystal structure)

Orthosteric ligand

PocketMiner is predictive of simulations

Cryptic pocket likelihood

Kinase PIM 2 (crystal structure)

Orthosteric ligand

PocketMiner is predictive of simulations

Cryptic pocket likelihood

Kinase PIM 2 (crystal structure)

Orthosteric ligand

Pocket

Simulated structure Apo/template structure

Can AlphaFold do it again?

Google DeepMind's AlphaFold 2 Al Breakthrough in Biology

AlphaFold sometimes helps

Neimann-Pick C2 Protein

- TEM β -lactamase
 - Sirtuin-2
- Retinol Binding Protein 1
 - SiaP (H. influenzae)
 - SiaP (H. ducreyi)
 - Fascin
 - Plasmepsin II

Example of a success

Holo

NPC2

AF Structure

Example of a partial success

III helps jumpstart MD

II helps jumpstart MD

2nd Meller et al. bioRxiv 2022.

How do we find the key degrees of freedom when we don't know the answer?

Making comparisons is hard given the assumptions made by existing methods

Variant I Variant 2 Decision boundary

DiffNets automate the discovery of biochemically-relevant traits

DiffNets automate the discovery of biochemically-relevant traits

DiffNets finds subtle structural differences that explain biochemical variation

Variant I Variant 2 Decision boundary

Relaxation of the labels

VP35's cryptic pocket is coupled to the blunt end-binding interface

Cruz et al. Nature Communications 2022.

arm

aws CISCO inte

foldingathome.org

National Science Foundation NHERE DISCOVERIES BEG

the David c Lucile D FOUNDATION

