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For reactions between two states (A and B), we want to compute
committors, mean first passage times, reactive currents, rates, and
potentials of mean force.

picture from Vanden-Eijnden (2006)

This is challenging by direct simulation.



One solution is to use enhanced sampling.

See for example Vani, Weare, and Dinner, J Chem Phys (2022),
where we split the ensemble of paths based on their origins and
use trajectory stratification (nonequilibrium umbrella sampling) to
improve statistics.

This builds on work from our group going back to 2007, and
Vanden-Eijnden and Venturoli (2009); see also exact milestoning
from Elber.
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In this talk, we will instead make a Markov assumption and
solve operator equations of the form

(S⌧ � I)u(x) = �Ex

"Z ⌧^T

0
h(Xs)ds

#
for x 2 D = (A [ B)c

u(x) = g(x) for x /2 D

where S⌧ is the “stopped” transition operator:

S⌧ f (x) = Ex [f (X⌧^T )] = E [f (X⌧^T )|X0 = x ]

for T = inf{t > 0 : Xt 2 A [ B}.



For example, the committor:

q+(x) = Px [XT 2 B] = Ex [ B(XT )]

satisfies
S⌧q+(x) = q+(x) for x 2 D

q+(x) = B forx /2 D



The lead time (mean first passage time conditioned on entering
B before A):

mAB(x) =
Ex [T B(XT )]

Ex [ B(XT )]
(1)

satisfies

S⌧ [mABq](x) = �Ex

"Z ⌧^T

0
q(Xs)ds

#
(2)

mAB = 0 for x 2 A [ B.



For the special case of Langevin dynamics

Ẋ (t) = b(X (t)) +
p

2�(X (t))⌘(t),

the Itô formula of stochastic calculus leads to an explicit form
for the infinitesimal generator of the transition operator:

Lf (x) =
nX

i=1

bi(x)
@f
@xi

+
nX

i,j=1

aij(x)
@2f
@xi@xj

.

However, in general, we do not know the form of S⌧ and L.

This talk is about how we can still solve equations of S⌧ using
partial observations sampled at finite times.



Outline

I A Galerkin approach
I Applications to protein dynamics

I A neural-network approach
I Numerical experiments illustrating key features
I Application to a model of sudden stratospheric warming

I Addressing the two-trajectory requirement



We want to solve equations of the form

(S⌧ � I)u(x) = �Ex

"Z ⌧^T

0
h(Xs)ds

#
for x 2 D = (A [ B)c

u(x) = g(x) for x /2 D.

Expand u(x) in terms of basis functions �j(x):

u(x) ⇡  (x) +
nX

j=1

vj�j(x),

where  (x) is a guess that homogenizes the boundary
conditions.



By standard means, we can convert the operator equation into
a linear algebra problem:

(C⌧ � C0)v = r ⌧ ,

where
Cs

ij = h�i ,Ss�jiµ for s = 0, ⌧

r ⌧i = h�i , (x)� S⌧ (x)iµ ,

and the inner product is over an arbitrary initial density µ(x):

h↵(x),�(x)i =
Z
↵(x)�(x)µ(x)dx .



In practice, cover the space with initial points and run (short)
simulations.

The fact that µ is arbitrary enables us to choose the initial
points so as to maximize the sampling efficiency.

Compute

⌦
�i ,S⌧�j

↵
=

1
N

NX

n=1

�i(X
(n)
0 )�j(X

(n)
⌧^T )

and similarly for the inner products involving  .

Solve (C⌧ � C0)v = r ⌧ by standard linear algebra methods,
and use v to construct u.



Benchmark system: Trp-cage folding

Fast-folding miniprotein extensively studied both experimentally and computationally 
(Zhou, Berne, Roitberg, Hagen, Bohuis, Garcia, Laio, Piana, Shaw, Dror, Mukamel, Wang, 
Dickson, Brooks, Zuckerman, Levy, Kevrekidis, Debenedetti, Ferguson, others).

Figure from Juraszek and Bolhuis, PNAS 103, 15859-15864 (2006).



Generating the data set

• Represent system with CHARMM36m force field;
• Distribute initial points in RMSD and 3-10 helix RMSD space;
• Launch 14 independent 30 ns trajectories from each of the points.
• Based on comparison with umbrella sampling, add 2 more 30 ns 

trajectories from points in a helix RMSD and end-to-end distance space;

• 1024 trajectories for a total of  30 µs

Strahan, Antoszewski, Lorpaiboon, Vani, Weare, Dinner (2021) JCTC 17, 2948-2963

Color scale and 
contours show PMF. 

Blue dots are points 
from which we 
launched 30 ns 
trajectories.310

initial conditions
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Replica Exchange
Umbrella Sampling

Our Galerkin method gives good agreement with independent simulations.



Comparison of committors to transition states identified by 
Juraszek and Bolhuis, PNAS 103, 15859-15864 (2006)
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We compute committors
for all structures (>6M) in 153D

and then for visualization project to 2D.

Contours show PMF with 1 kBT spacing.



Reactive currents for trp-cage folding
(color scale shows magnitude of the current, 

contours show PMF with 1 kBT spacing)

The first calculation of this key TPT quantity 
for a molecular simulation clearly shows the 
two pathways and allows quantification of 
their contributions.

Juraszek and Bolhuis, 
PNAS 103, 15859-15864 
(2006)
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DGA enables us to compute the relative fluxes through six pathways 
of phenol release from the insulin hexamer.

PW1: 11.2% PW1a: 11.2%
PW2: 16.3% PW3: 12.6%
PW4: 13.7% PW4a: 35.0%

Antoszewski, Lorpaiboon, Strahan, Dinner, J Phys Chem B 125, 11637−11649 (2021)
See also Lorpaiboon, Weare, Dinner, J Chem Phys 157, 094115 (2022) for an augmented TPT.



Depolarization

R223
R217

R229R226
D186

E183

D129

R232

Down Up

Polarization

Guo, Shen, Roux, Dinner, biorxiv.org (2022)

DGA reveals a stepwise mechanism for voltage sensing.
coefficients of linear models



The choice of basis matters.

indicator functions on

pairwise distances

indicator functions on

TICA coordinates

multiply 153 pairwise 

distances between 

selected Ca atoms 

by dAdB/(dA+dB)2

and orthogonalize

standard for  Markov State Models (MSMs)

trp-cage committors computed for all structures (>6M) and then projected to 2D

(color scale shows committors, contours show PMF with 1 kBT spacing)
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Motivated by the equations we want to solve

(S⌧ � I)u(x) = �Ex

"Z ⌧^T

0
h(Xs)ds

#
for x 2 D = (A [ B)c

u(x) = g(x) for x /2 D

we consider the loss functions

CFKE =

�����

 
(S⌧ � I)u✓ + Ex

"Z ⌧^T

0
h(Xs)ds

#!

D

�����

2

µ

CBC = k(u✓ � g) Dck2
µ .

and seek
✓⇤ = argmin

✓
[CFKE + �CBC].



Because there are terms that are quadratic in S⌧u✓, we need
two trajectories from each initial point for unbiased estimates:

C̄FKE =
1
n

nX

i=1

0

@u✓(X i,1
k i,1�

)� u✓(X i
0)��

k i,1X

s=0

h(X i,1
s�)

1

A

⇥

0

@u✓(X i,2
k i,2�

)� u✓(X i
0)��

k i,2X

s=0

h(X i,2
s�)

1

A D(X i
0)

C̄BC =
1
n

nX

i=1

⇣
u✓(X i

0)� g(X i
0)
⌘2

Dc (X i
0).

We represent u✓ by a neural network and minimize

C̄ = C̄FKE + �C̄BC



Our loss has several advantages over previous ones:

I it allows computation of any statistic that can be cast in
Feynman-Kac form;

I it does not require explicit knowledge of the model;
I it does not require microscopic reversibility;
I it allows for use of arbitrary lag times;
I it allows use of an arbitrary sampling distribution.

Strahan, Finkel, Dinner, Weare, arxiv:2208.01717 (2022)



To illustrate these advantages, we consider dynamics on the 
Müller-Brown potential mapped to the Swiss roll.

• Overdamped Langevin dynamics initiated from 30,000 points drawn 
uniformly from between the dashed lines. 

• Map the trajectories onto the Swiss Roll so the algorithm must learn the 
manifold of the dynamics.

• Compare a 3-input, 3 30-sigmoid hidden layers, 1-sigmoid output neural 
network with a 300 state MSM and a grid-based reference.
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Infinitesimal (or short) vs finite (or long) lag time

Compare with ℒ" #$ , which gives rise to 
∇" &$ and " ' − "(0) &$ for overdamped reversible dynamics

potential reference
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Choice of sampling distribution (arbitrary ! vs. ")

A uniform distribution of initial points is better than the stationary 
distribution.

"weighting
uniform 

weighting



Choice of sampling distribution (arbitrary ! vs. ")

Adaptively sample with probability

adaptive distribution is 
peaked near q = 0.5



The Holton-Mass model describes stratospheric flow in terms of 
the interaction of two fields:  
• the mean flow !";
• the perturbation streamfunction #$.
These fields are spatially discretized, resulting in a 75-dimensional 
state space.



Holton-Mass model committor
reference

prediction

contours are 
effective free 
energy

contours are 
adaptive 
sampling

! = 10 days

75 inputs,
5 50-ReLU 
hidden 
layers, 
1-sigmoid 
output



Holton-Mass model lead time

contours are 
effective free 
energy

contours are 
adaptive 
sampling

reference

prediction
! = 10 days

75 inputs,
5 50-ReLU 
hidden 
layers, 
1-sigmoid 
output



Our loss has several advantages over previous ones:

I it allows computation of any statistic that can be cast in
Feynman-Kac form;

I it does not require explicit knowledge of the model;
I it does not require microscopic reversibility;
I it allows for use of arbitrary lag times;
I it allows use of an arbitrary sampling distribution.

But it requires two trajectories from each initial condition.
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The gradient of our norm is

h(I � S⌧ ) u✓ � r ,r✓u✓iµ � h(I � S⌧ ) u✓ � r ,S⌧r✓u✓iµ ,

where r(x) = � x

hR ⌧^T
0 h(X s) ds

i
.

In TD methods for reinforcement learning, a “semigradient”
descent is often used (i.e., the second term is dropped).

Notice that the first term is the exact gradient of the loss

1
2
ku✓0 � S⌧u✓ � rk2

µ,

evaluated at ✓0 = ✓. This suggests the (Richardson) iteration

u✓s+1 ⇡ S⌧u✓s + r .



Müller-Brown committor (2D)

Comparison of Richardson iteration 
with a 400-state MSM



Committor for a peptide of 9 !-aminoisobutyric acids

empirical neural network



Committor for a peptide of 9 !-aminoisobutyric acids

empirical neural network
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Summary

We can obtain rare-event statistics by solving equations of the 
transition operator.  

We have used both Galerkin approximation (basis expansion) and 
variational approaches based on neural networks to solve these 
equations.

Our methods can be applied to trajectories sampled at finite lag 
times, without knowledge of the underlying model or its dynamics 
(which can be irreversible).
Dynamical Galerkin Approximation
• Thiede, Giannakis, Dinner, Weare, JCP 150, 244111 (2019)
• Strahan, Antoszewski, Lorpaiboon, Vani, Weare, Dinner, JCTC 17, 2948 (2021)
Applications
• Antoszewski, Lorpaiboon, Strahan, Dinner JPC B 125, 11637-11649 (2021)
• Guo, Shen, Roux, Dinner, biorxiv.org (2022)
Neural networks
• Strahan, Finkel, Dinner, Weare, arxiv:2208.01717 (2022)
• Strahan, Guo, Dinner, Weare, in preparation.


