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Density Estimation with Transport Maps

Well-suited for generative modeling and sampling:    if      then    xb ∼ ρb x = T(xb) ∼ ρ*

Song et al., ICLR (2021)↦
T

…. DALL-E (Open AI)

‣ Take a simple base density  (e.g. Gaussian) and;  

‣ Build a (reversible) map  such that the pushforward of  by  is :     

ρb ∈ 𝒟(Ω)

T : Ω → Ω ρb T ρ* T♯ρb = ρ*

Aim: estimate the unknown probability density function  from sample data  ρ* ∈ 𝒟(Ω) {xi}n
i=1

Allows for likelihood estimation, etc.  :                ρ*(x) = ρb(T−1(x)) det[∇T−1(x)]



Density Estimation with Transport Maps

Chen & Gopinath, NeurIPS 13 (2000); 
Tabak & V.-E., Commun. Math. Sci. 8: 217-233 (2010); 
Tabak & Turner, Comm. Pure App. Math LXVI, 145-164 (2013).

Dinh et al. arXiv:1410.8516 (2014); 
Rezende et al., arXiv:1505.05770 (2015); 
Papamakarios et al. arXiv:1912.02762 (2019); …

NICE: Dinh et al. arXiv:1410.8516 (2014); 
Real NVP: Dinh et al. arXiv:1605.08803 (2016)

Build  as the composition of simpler maps estimated sequentially via max entropy method. T

Approximate  by a neural net and use invertible neural architectures giving   . T T−1

FFJORD: Grathwohl et al. arXiv:1810.01367 (2018)

View  as solution of a continuous-time flow with a velocity approximated by a neural net.T

‣ Take a simple base density  (e.g. Gaussian) and;  

‣ Build a (reversible) map  such that the pushforward of  by  is :     

ρb ∈ 𝒟(Ω)

T : Ω → Ω ρb T ρ* T♯ρb = ρ*

How to estimate the map  in a computationally tractable way?T

Link with transportation theory (without the need for optimality) - Monge, Ampère, Kantorovich, Brenier, Villani, …
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t = 0

t = 1

X0(x) = x

Xt(x)

Continuous Time Flow

Set  where  = flow map associated with a time-dependent velocity field : 
 

                                                       

T = Xt=1 Xt vt(x)

d
dt

Xt(x) = vt(Xt(x)) X0(x) = x



Continuous Time Flow

Lagrangian frame 

Eulerian frame 

Equivalently: 
 
          If   solves               then        ρt(x) ∂tρt + ∇ ⋅ (vtρt) = 0, ρt=0 = ρb ρt=1 = ρ* = target PDF

Set  where  = flow map associated with a time-dependent velocity field : 
 

                                                       

T = Xt=1 Xt vt(x)

d
dt

Xt(x) = vt(Xt(x)) X0(x) = x

How do we get the right  ?vt(x)

‣ Solution by method of characteristics: given initial , we have 
 

                 

ρt=0(x) = ρb(x)

ρt(Xt(x)) = ρb(x)exp( − ∫
t

0
∇ ⋅ vs(Xs(x))ds) ∀t

‣ Benamou-Brenier theory guarantees that  exists such that  
 
                                       

vt(x) ρt=1(x) = ρ*(x)

Pointwise evaluation of ; 
Calculation of cross-entropy; …

ρt(x)



Proposition:  Consider the optimization problem 
 

                        

 
subject to:                               
 
Then all optimizers  are such that . 
 

min
v ∫Ω

log ( ρ*(x)
ρt=1(x) ) ρ*(x)dx = − max

v ∫Ω
log ρt=1(x)ρ*(x)dx + C

∂tρt = − ∇ ⋅ (vtρt), ρt=0 = ρb

vt(x) ρt=1 = ρ*

Maximum Entropy Formulation

Eulerian    Lagrangian ⇒

Basic idea 

- Use the Kullback-Leibler divergence of  to  as objective; 

- Notice that unknown  is a constant that plays no role.

ρ* ρt=1

∫
Ω

log ρ*(x)ρ*(x)dx



Proposition:  Consider the minimization problem 
 

                                           

 
subject to:                                             

 
Then all minimizers  are such that            i.e.      . 
 

min
v ∫Ω

[∫
1

0
∇ ⋅ vt(X̄t(x))dt − log ρb(X̄t=0(x))]ρ*(x)dx

d
dt

X̄t(x) = vt(X̄t(x)), X̄t=1 = x

vt(x) X̄−1
t=1♯ρb = ρ* xb ∼ ρb ⇒ X̄−1

t=1(xb) ∼ ρ*

Tractable in principle: 
- Objective and its gradient can be evaluated empirically using samples from  ; 
- Velocity  can be approximated by deep neural network (DNN); 
- Constrained optimization can be performed by SGD + adjoint method (= neural ODE framework) 

  

ρ*
vt(x)

FFJORD: Grathwohl et al. arXiv:1810.01367 (2018)

Maximum Entropy Formulation



Training is costly as it requires many passes through ODE solver. 

Optimization is only weakly constrained — many  do the job, most are unnecessarily complicated. 
 
Can we separate the task of building a path from  to  from that of learning  ?  

vt(x)

ρb ρ* vt(x)

Proposition:  Consider the minimization problem 
 

                                           

 
subject to:                                             

 
Then all minimizers  are such that            i.e.      . 
 

min
v ∫Ω

[∫
1

0
∇ ⋅ vt(X̄t(x))dt − log ρb(X̄t=0(x))]ρ*(x)dx

d
dt

X̄t(x) = vt(X̄t(x)), X̄t=1 = x

vt(x) X̄−1
t=1♯ρb = ρ* xb ∼ ρb ⇒ X̄−1

t=1(xb) ∼ ρ*

Maximum Entropy Formulation



Score-Based Diffusion Models
Song et al. arXiv:2011.13456 (2021);  
Hyvärinen JMLR 6 (2005);  
Vincent, Neural Comp. 23, 1661 (2011)

Given data from the target : 

- Devolve it into the Gaussian base  using e.g. an Ornstein-Ulhenbeck process; 
- Time-reverse the SDE to generate new samples from  from samples from ;  

ρ*

ρb
ρ* ρb

From Song’s blog on SBDM

Builds a connection = path in density space between  and ρb ρ



‣ Data from  easy to generate:  
                    add noise to data from . 

‣ Reverse SDE needs the Fischer score  

‣ Learn score via minimization of Fisher divergence: Given , we have: 
 
 

                              

ρt(x)
ρ*(x)

∇log ρt(x)

ρt(x)

st(x) = argmin
s(x) ∫Ω

|s(x) − ∇log ρt(x) |2 ρt(x)dx

= argmin
s(x) ∫Ω

( |s(x) |2 + 2∇ ⋅ s(x)) ρt(x)dx

Score-Based Diffusion Models
Song et al. arXiv:2011.13456 (2021);  
Hyvärinen JMLR 6 (2005);  
Vincent, Neural Comp. 23, 1661 (2011)

Tractable in practice: 
- Objective and its gradient can be evaluated empirically by sampling ; 
- Score  can be approximated by deep neural network (DNN); 
- Minimization can be performed by direct SGD (no adjoint needed). 

  

ρt
st(x)



‣ Data from  easy to generate:  
                    add noise to data from . 

‣ Reverse SDE needs the Fischer score  

ρt(x)
ρ(x)

∇log ρt(x)

Score-Based Diffusion Models

Requires taking  and limits choice of base density  since . 

 
Gives reversed SDE and probability flow ODE —the latter is needed for likelihood calculation.

T ≫ 1 ρb lim
t→∞

ρt = ρb = N(0,1)

Song et al. arXiv:2011.13456 (2021);  
Hyvärinen JMLR 6 (2005);  
Vincent, Neural Comp. 23, 1661 (2011)

Can we avoid the SDE, work on  with arbitrary  and ,  
build a connection between them, and get the velocity  directly?

t ∈ [0,1] ρb ρ*
vt(x)



Define the interpolant density   as the PDF of the stochastic interpolant:   

 

                                             with   ,    ,    
 

where   is differentiable and satisfies . 
 
For example:                             

ρt

xt = It(xb, x*) xb ∼ ρb x* ∼ ρ*

It(xb, x*) It=0(xb, x*) = xb, It=1(xb, x*) = x*

xt = cos( 1
2 πt)xb + sin( 1

2 πt)x*

Building Flows with Stochastic Interpolants
with Michael Albergo

Builds a path  
between any  and  
that is easy to sample.

ρt
ρb ρ*



Stochastic interpolant :    with  ,  , and  . xt = It(xb, x*) xb ∼ ρb x* ∼ ρ* It=0(xb, x*) = xb, It=1(xb, x*) = x*

Building Flows with Stochastic Interpolants
with Michael Albergo

Define   where the time-dependent potential  solves the Poisson equation 
 
                                                           
  

vt(x) = ∇Ut(x) Ut(x)

∇ ⋅ (ρt ∇Ut) = ∇ ⋅ jt = − ∂tρt

Proposition:  We have                        
                                     
 
with the current  defined by: for all test functions      
  
                    

∂tρt + ∇ ⋅ jt = 0, ρt=0 = ρb, ρt=1 = ρ*

jt(x) ϕ : Ω → ℝ

∫Ω
∇ϕ(x) ⋅ jt(x)dx = ∫Ω×Ω

∂tIt(xb, x*) ⋅ ∇ϕ(It(x0, x1))ρb(xb)ρ*(x*)dxbdx*

                 .  . ρt(x) = 𝔼ρb,ρ*
[δ(x − It)] jt(x) = 𝔼ρb,ρ*

[∂tIt δ(x − It)]

Use variational formulation of this equation to get a tractable objective

Consequence of chain rule:
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Building Flows with Stochastic Interpolants
with Michael Albergo

Proposition:  The PDF  of  satisfies 
 
                                     ,        ,      
 
with a velocity  with  the unique minimizer of 
 
                           

ρt(x) xt

∂tρt + ∇ ⋅ (vtρt) = 0 ρt=0 = ρb ρt=1 = ρ*

vt(x) = ∇Ut(x) Ut(x)

𝔼t ∼ U(0,1)
xb ∼ ρb
x* ∼ ρ*

( |∇Ut(It(xb, x*)) |2 − 2∂tIt(xb, x*) ⋅ ∇Ut(It(xb, x*)))

Albergo & V.-E.  arXiv:2209.15571 (2022); 
Liu et al. arXiv:2209.03003 (2022); 
Lipman et al. arXiv:2210.02747 (2022)



Building Flows with Stochastic Interpolants
with Michael Albergo

Tractable in practice: 
- Objective and its gradient can be evaluated empirically by sampling  and ; 
- Potential  (or velocity  ) can be approximated by DNN; 
- Minimization can be performed by direct SGD; 

- Loss controls the Wasserstein 2 distance between  and   
— constant involves Lipschitz constant of estimated            (generalization to control the KL) 

- Optional: Maximizing the objective over the interpolant  gives optimal transport plan. 
  

ρb ρ*
Ut(x) vt(x) = ∇Ut(x)

ρt=1 ρ*
vt(x)

It(xb, x*)

Proposition:  The PDF  of  satisfies 
 
                                     ,        ,      
 
with a velocity  with  the unique minimizer of 
 
                           

ρt(x) xt

∂tρt + ∇ ⋅ (vtρt) = 0 ρt=0 = ρb ρt=1 = ρ*

vt(x) = ∇Ut(x) Ut(x)

𝔼t ∼ U(0,1)
xb ∼ ρb
x* ∼ ρ*

( |∇Ut(It(xb, x*)) |2 − 2∂tIt(xb, x*) ⋅ ∇Ut(It(xb, x*)))



Building Flows with Stochastic Interpolants
with Michael Albergo

1

Flower 129x128 
ImageNet 32x32 
CIFAR-10



Building Flows with Stochastic Interpolants
with Michael Albergo

Under review as a conference paper at ICLR 2023

POWER GAS HEPMASS MINI-
BOONE BSDS300

MADE 3.08 -3.56 20.98 15.59 -148.85
Real NVP -0.17 -8.33 18.71 13.55 -153.28
Glow -0.17 -8.15 18.92 11.35 -155.07
CPF -0.52 -10.36 16.93 10.58 -154.99
NSP -0.64 -13.09 14.75 9.67 -157.54
FFJORD -0.46 -8.59 14.92 10.43 -157.40
OT-Flow -0.30 -9.20 17.32 10.55 -154.20
Ours -0.57 -12.35 14.85 10.42 -156.22

Method
CIFAR-10 ImageNet-32x32

NLL FID NLL FID

FFJORD 3.40
Glow 3.35 4.09

DDPM  3.75 3.17
DDPM++  3.37 2.90
ScoreSDE 2.99 3.17

VDM  2.65 7.41 3.72
Soft Truncation 2.88 3.45 3.85 8.42

ScoreFlow 2.81 5.40 3.76 10.18

Ours 2.99 10.07 3.45 8.44

Table 2: Left: Negative log likelihoods (NLL) computed on test data unseen during training (lower
is better). Values of MADE, Real NVP, and Glow quoted from the FFJORD paper. Values of OT-
Flow, CPF, and NSP quoted from their respective publications. Right: NLL and FID scores on
unconditional image generation tasks for recent advanced models that emit a likelihood.

3.3 TABULAR DATA FOR HIGHER DIMENSIONAL TESTING

A set of tabular datasets introduced by (Papamakarios et al., 2017) has served as a consistent test
bed for demonstrating flow-based sampling and its associated density estimation capabilities. We
continue that practice here to provide a benchmark of the method on models which provide an
exact likelihood, separating and comparing to exemplary discrete and continuous flows: MADE
(Germain et al., 2015), Real NVP (Dinh et al., 2017), Convex Potential Flows (CPF) (Huang et al.,
2021), Neural Spline Flows (NSP) Durkan et al. (2019), Free-form continuous flows (FFJORD)
(Grathwohl et al., 2019), and OT-Flow (Finlay et al., 2020). Our primary point of comparison is to
other continuous time models, so we sequester them in benchmarking.

We train the interpolant flow model on each target dataset listed in Table 2, choosing the reference
distribution of the interpolant ⇢0 to be a Gaussian density with mean zero and variance Id, where d

is the data dimension. The architectures and hyperparameters are given in Appendix I. We highlight
some of the main characteristics of the models here. All models are feed-forward ReLU networks,
except for the network trained on the BSDS300 dataset, which used ELU activations (Clevert et al.,
2016). In each case, sampling of the time t was reweighted according to a beta distribution, with
parameters ↵,� provided in the same appendix.

Results from the tabular experiments are displayed in Table 2, in which the negative log-likelihood
averaged over a test set of held out data is computed. We note that the interpolant flow achieves
better or equivalent held out likelihoods on all ODE based models, except BSDS300, in which the
FFJORD outperforms the interpolant by ⇠ 0.6%. We note upwards of 30% improvements compared
to baselines. Note that these likelihoods are achieved without direct optimization of it.

3.4 UNCONDITIONAL IMAGE GENERATION

1

Figure 3: Left: InterFlow samples training on 128⇥128
flowers dataset. Right: Samples from flow trained on
ImageNet-32⇥32 (top) and CIFAR-10 (bottom).

To compare with recent advances in
continuous time generative models
such as DDPM (Ho et al., 2020), Score
SDE(Song et al., 2021b), and Score-
Flow (Song et al., 2021a), we pro-
vide a demonstration of the interpolant
flow method on learning to uncondi-
tionally generate images trained from
the CIFAR-10 (Krizhevsky et al., 2009)
and ImageNet 32⇥32 datasets (Deng
et al., 2009; Chrabaszcz et al., 2017),
which follows suit with ScoreFlow and
Variational Diffusion Models (VDM)
(Kingma et al., 2021). We train an in-
terpolant flow built from the U-Net architecture from DDPM (Ho et al., 2020) on a single NVIDIA
A100 GPU, which was previously impossible under maximum likelihood training of continuous
time flows. Experimental details can be found in Appendix I. Note that we used a beta distribution
reweighting of the time sampling as in the tabular experiments. Table 2 provides a comparison of
the negative log likelihoods (NLL), measured in bits per dim (BPD) and Frechet Inception Distance

8

What if we have no prior data from the target  but some structural info about it ? 
 

                                                                                              Monte-Carlo sampling
ρ*

⇒



Given the probability density  only known up to a normalization factor, i.e.      
 
                                                    
 
with      given, but             unknown: 
 
Compute  and/or expectation of the observable   
 
                                                      

ρ* ∈ 𝒫(Ω)

ρ*(x) = Z−1
* e−U*(x)

U* : Ω → ℝ+ Z* = ∫
Ω

e−U*(x)dx < ∞

Z* f : Ω → ℝ

𝔼* f := ∫Ω
f(x)ρ*(x)dx

‣ Generic problem in Statistical Mechanics, Bayesian Inference, Uncertainty Quantification, etc.

‣ Analytical evaluation intractable, standard numerical quadrature methods inapplicable.

 use Monte-Carlo sampling (i.e. approximate expectation by empirical average)⇒

Monte-Carlo Sampling
Fermi, Ulam, Metropolis, Rosenbluth, …



‣ Importance sampling: Generate data  from simpler density   
and use 
 

                                    

{xi}i∈ℕ ρb(x) = Z−1
b e−Ub(x)

𝔼* f =
𝔼b( fw)
𝔼b(w)

= lim
n→∞

∑n
i=1 f(xi)w(xi)

∑n
i=1 w(xi)

with w(x) = e−U(x)+Ub(x)

Monte-Carlo Sampling

Two main approaches (since sampling directly from the target  is hard): ρ*

‣Markov chain MC:  Generate Markov sequence  with kernel   
such that 

                                                  

{xi}i∈ℕ Px(A) = ℙ(xi+1 ∈ A |xi = x)

𝔼*( f ) = lim
n→∞

Sn( f ) with Sn( f ) =
1
n

n

∑
i=1

f(xi)

Fermi, Ulam, Metropolis, Rosenbluth, …



Monte-Carlo Sampling

Efficiency requires to tailor the base distribution  or the kernel  to the target .ρb Px(dy) ρ*

Main difficulties:

‣ Importance sampling: independent samples but beware of high variance of the weights: 
 
                                                         in general 

 
𝔼b(w2) = ∞

Agapiou et al. arXiv:1511.06196 (2017)

Kipnis & Varadhan CLT≈
τ
n

var( f ) with τ = decorrelation time ≫ 1

‣Markov chain MC: no weights but beware of slow time-decorrelation:  

                    𝔼 |Sn( f ) − 𝔼*( f ) |2 ∼
1
n

μ (u(1 − P)u) ≥
1
n

var( f ) with u − Pu = f − 𝔼*( f )

Fermi, Ulam, Metropolis, Rosenbluth, …



Proposition:  Given  and  consider the minimization problem 
 

             

 
subject to:                               
 
Then all minimizers satisfy   . 
 

ρ* = Z−1e−U* ρb

min ∫Ω
log ( ρt=1(x)

ρ*(x) ) ρt=1(x)dx = min ∫Ω
[U*(x) + log ρt=1(x)]ρt=1(x)dx + log Z*

∂tρt = − ∇ ⋅ (vtρt), ρt=0 = ρb

ρt=1 = ρ*

Variational Formulations

Eulerian    Lagrangian ⇒

Basic idea: 

- Use the Kullback-Leibler divergence of  from the target  as objective; 
- Notice that unknown  is a constant that play no role.

ρt=1 = Xt=1#ρb ρ* = Z−1e−U*

Z



Proposition:  Given  and  consider the minimization problem 
 

                                           

 
subject to:                                             
 
Then all minimizers satisfy            i.e.      . 
 

ρ* = Z−1e−U* ρb

min ∫Ω [U*(Xt=1(x)) − ∫
1

0
∇ ⋅ vt(Xt(x))dt] ρb(x)dx

·Xt(x) = vt(Xt(x)), Xt=0 = x

Xt=1♯ρb = ρ* xb ∼ ρb ⇒ Xt=1(xb) ∼ ρ*

Variational Formulations

Tractable in principle: 
- Objective and its gradient can be evaluated empirically by sampling  ; 
- Velocity  can be approximated by deep neural network (DNN); 
- Constrained optimization can be performed by SGD + adjoint method. 

  

ρb
vt(x)

FFJORD: Grathwohl et al. arXiv:1810.01367 (2018)



Importance Sampling and Transport

In practice:

‣ Use data from  to learn the velocity . 

‣ Solve  to push forward data  onto  

‣ Use the (imperfect) samples  to do IS, i.e. re-weight and use  
 

                        

ρb vt(x)
·Xt = vt(Xt) xb ∼ ρb Xt=1(xb) ∼ ρt=1

Xt=1(xb) ∼ ρt=1

𝔼*( f ) =
𝔼b( f(Xt=1)wb)

𝔼b(wb)
with wb(x) = e−U*(Xt=1(x))+Ub(x)+ ∫1

0 ∇⋅vt(Xt(x))dt

Rezende et al., arXiv:1505.05770; …. 
Noé et al., Science 365 eaaw1147 (2019)

Main practical issues: 

1. Hard to train because of constraint 
- requires adjoint method 

2. Limited capacity for exploration; 
3. Prone to mode-collapse.

Movie by M. Gabrié



Assisting MCMC Sampling with Normalizing Flows
with Marylou Gabrié & Grant Rotskoff

Key observation: Any imperfect map  can be used to do Metropolis-Hastings MCMC: 
- Given , propose a new   with ; 
- Set  instead of keeping  with probability 

   

                                       

  

Xt=1 = T
xi ̂x = T(xb) xb ∼ ρb

xi+1 = ̂x xi+1 = xi

a( ̂x, xi) = min { ρ*( ̂x) T♯ρb(xi)
ρ*(xi) T♯ρb( ̂x)

,1}

This strategy can be combined with a standard MH-MCMC (e.g. MALA) by alternating proposal moves.

Generates a Markov sequence  such that 
   

                                               

- no need to reweigh; 
- independent samples if           (perfect map — not needed).

{xi}i∈ℕ

𝔼*( f ) = lim
n→∞

Sn( f ) with Sn( f ) =
1
n

n

∑
i=1

f(xi)

T♯ρb = ρ*

Albergo, Kanwar, Shanahan, Phys. Rev. D 100, 034515 (2019)



Assisting MCMC Sampling with Normalizing Flows
with Marylou Gabrié & Grant Rotskoff

In practice:

‣ Perform MH-MCMC that alternates between: 

- local sampling (e.g. with MALA), and  

- resampling step by NF. 

‣ Use the generated data from  to train the flow using interpolant method.ρ*

Gabrié, Rotskoff & V.-E. arXiv:2105.12603 (2021) 
Gabrié, Rotskoff & V.-E. arXiv:2107.08001 (2021)

Key observation: Any imperfect map  can be used to do Metropolis-Hastings MCMC: 
- Given , propose a new   with ; 
- Set  instead of keeping  with probability 

   

                                       

  

Xt=1 = T
xi ̂x = T(xb) xb ∼ ρb

xi+1 = ̂x xi+1 = xi

a( ̂x, xi) = min { ρ*( ̂x) T♯ρb(xi)
ρ*(xi) T♯ρb( ̂x)

,1}



Assisting MCMC Sampling with Normalizing Flows
with Marylou Gabrié & Grant Rotskoff

Nonlinear MCMC method (i.e. kernel depends on the law) 
 
 
 
Convergence rate can be analyzed in some settings, in particular if:  

- the trained map tracks perfectly the evolving distribution of the chain; 

- the training eventually stops (= diminishing adaptivity).
Gabrié, Rotskoff & V.-E. arXiv:2105.12603

Brofos, Gabrié, Brubaker & Lederman arXiv:2110.13216

Andrieu et al. Bernoulli 17(3), 987 (2011)

Need rough location of modes to start sampling,  
but not their relative weights. 

Enable global moves  
— no need to sample the transition state. 

Movie by M. Gabrié



MCMC with NF for Sampling of Random Fields 
with Marylou Gabrié & Grant Rotskoff
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‣ Target distribution is Gibbs measure associated with  energy: 
 

             

‣ Base distribution = scaled Brownian bridge on   

ϕ4

E(ϕ) = ∫
1

0 ( α
2

|∂xϕ |2 +
1

4α
(1 − ϕ2)2) dx subject to: ϕ(0) = ϕ(1) = 0 (α > 0)

[0,1]



MCMC with NF to Detect Phase Transition
with Marylou Gabrié & Grant Rotskoff

10

FIG. 3. Detecting Phase Transitions in Interacting Particle Systems. Left and middle panels: 200 particles
seen in the gas and liquid phases, respectively, in dimension d = 2 at a temperature below the critical ��1

c at which
both phases are metastable but the clustered one is thermodynamically preferred. Right panel: A contour plot of
the local density ud(x) of the particles in the liquid phase, plotted in log-scale.

e. Calculating free energy di↵erences. Perhaps most remarkably, the learned map T can be used to
evaluate free energy di↵erences between the metastable basins �� and �+, even in thermodynamic conditions
distinct from those in which the map was trained. Fig. 1 (d) shows an estimate of the free energy di↵erence
between the positive and negative metastable basins as a function of an external field h, which enters the
Hamiltonian as

U⇤,h[�] = �

Z 1

0


a

2
(@s�)2 +

1

4a
(1 � �2(s))2 + h�(s)

�
ds. (19)

These estimates are produced with importance sampling using ⇢̂ as described in Appendix K. Analytical
estimates at low temperature via a Laplace approximation reveal that the normalizing flow accurately
recapitulates the free energy di↵erence despite the fact that the map was optimized only with samples
where h = 0. Similar generalization properties were observed in Refs. [20, 38, 39], where a map was used
at temperatures distinct from the temperature at which training data was collected. This approach is valid
in cases where the modified parameter, here the field h, distorts the relative populations of the metastable
basins, but has a mild e↵ect on the local structure of the field, which can be controlled by monitoring the
variance of the estimator.

Additional tests for related applications are presented in Appendix. For this Stochastic Allen-Cahn system,
we show that the method can be useful to sample configurations with domain walls by tilting the Hamiltonian
(see Fig. 9 in Appendix H). In Appendix I we discuss a similar sampling problem that involves nonequilibrium
transition path which we employ to illustrate the use of Brownian bridge base measures. This example is
challenging as metastable basins have very di↵erent statistical weights: which is also the case for the particle
systems discussed in the next section, where we demonstrate the usage of mixtures to tackle this circumstance.

B. Detecting Phase Transitions in Interacting Particle Systems

Thermal systems undergoing a first order phase transition are archetypal examples of models displaying
metastability. Near the transition point, ergodic mixing from the unstable to the stable phase is broken in
the thermodynamic limit, leading to the well-known challenge of detecting these transitions with molecular
dynamic simulations. In this section we show our method to be useful in this context.

a. Particle system and phase diagram. As an example we consider a system of N interacting particles
evolving in a two-dimensional periodic box of lateral size L according to the Langevin equation (here written
in the overdamped limit):

dxi = �
1

N

NX

j=1

rW (xi � xj)dt +
p

2��1 dWi. (20)
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FIG. 4. Detecting Phase Transitions in Interacting Particle Systems. Blue curves and labels: the free
energies of the gas and liquid phases, showing that a first order phase transition occurs at the critical 1/�c ⇡ 0.089.
For temperatures around this value, particles configurations in either the homogeneous or the clustered phase are
highly metastable, and no transition between these states are observed in brute-force simulation of Eq. [20]; Red
curve and labels: the value of p in the mixture [23] learned by our adaptive procedure augmented with a NF starting
from p(0) = 1/2; the algorithm correctly learns the right value of p in the mixture and thereby is able to detect the
phase transition.

The interaction W (x) is a pair-wise attracting potential with range a > 0

W (x) = � exp(L2[1 � cos(2⇡|x|/L)2]/(4⇡2a2)) (21)

which, when a ⌧ L, is well approximated by W (x) = � exp(�|x|
2/[2a2]). These equations sample the

Boltzmann-Gibbs distribution of the system:

⇢⇤(X) = Z�1
⇤ exp

0

@�
�

2N

NX

i,j=1

W (xi � xj)

1

A (22)

where we denote X = (x1, . . . , xN ) 2 [0, L]2N the state of the N particle system.
When a is much smaller than L, in the thermodynamic limit (N � 1), this system displays a first order

phase transition between a gas-like phase, where the particles are uniformly distributed in the domain which
is preferred at high temperatures, and a liquid-like phase, where they cluster in a droplet which is preferred
at low temperatures. Typical particle configurations in these phases are shown in Fig. 3. The phase diagram
of the model can be estimated using a mean field approximation (see Appendix J for details) and is shown
in Fig. 4.

Detecting this phase transition via brute-force simulation of Eq. [20] is however challenging, because the
particles stay trapped in whichever configuration they occupy (homogeneous or droplet) for very long periods
of time: in fact, the transition times from one phase to the other in a parameter regime where they are both
metastable can be estimated as tl!g ⇣ exp(N�Fl!g) and tg!l ⇣ exp(N�Fg!l), where Fg!l and Fl!g

denote respectively to free energy barriers between the liquid and the gas phase and vice-versa. Since these
barriers are both independent of N , these transition times diverge exponentially with the number of particles
N .

b. Adaptive simulations augmented by nonlocal resampling. Simulation of Eq. [20] augmented by a
nonlocal resampling map can detect the phase transition. As the two modes of interest have here very di↵erent
structures and very di↵erent statistical weights across the phase transition we resort to a parameterization
of the nonlocal proposal density ⇢̂ in terms of a mixture. For the homogeneous phase mixture component,

Gas and liquid-like phases Free energy & transition correctly  
detected by training the NFN = 512

‣ System of particles in a box  interacting via short-range attracting potential  : 
       

                                          

‣ Display a first-order phase transition that can be analyzed at MF level via the free energy: 
 
                       

B = [0,1]2 W(x)

U(x1, …, xN) =
1

2N

N

∑
i, j=1

W(xi − xj)

E(ρ) =
1
2 ∫B2

W(x − y)ρ(x)ρ(y)dxdy + kBT∫B
ρ(x)log ρ(x)dx
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Price-Whelan et al. The Joker: A Custom Monte-
Carlo Sampler for Binary-Star and Exoplanet Radial 

Velocity Data. Astro. J., 837, 2017.

‣ Sampling of challenging (e.g. multimodal) posterior distributions; 

‣ Allows estimation of the evidence = partition function used for model validation/selection 

Application to inference of exoplanet radial velocity 



The Unreasonable Effectiveness of Machine Learning

[Bellman, 61]

 

Curses of Dimensionality (CoD): 
 
The number of operations/parameters needed  
to optimize/integrate/approximate Lipschitz 
functions to precision  depends exponentially on 
the input dimension , .

δ
d O(δ−d)

When, how, and why can neural networks 
 approximate high dimensional functions?



Need for Theory

DL is very costly in terms of compute and data. 
Brute-force approach not sustainable.

AI doubling its compute every 3.5 monthsPerformance increases logarithmically with data volume

[Sun et al ICCV 2017]

[Amodei & Hernandez, blog post, 2018 ]

Challenge & opportunity of MCMC: we often have a model and no prior data 
 

     (i.e. we must be data-savvy since we must generate it,  
                                     but we can benchmark against the model ground truth.)








