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Dimension reduction

General idea:

search for “embedding” F : D Ä X Ñ Y, where dimY ! dimX, and
F discards irrelevant information.
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�1, �2, �5 �6

• �1 �2

• �5 z

• �6

(�1, �2, �5, �6) R4

C1 C2

(�1, �2, �3) C1

�1, �2, �3, �4, �5 �6

�1

›Ñ

dim = 1
5.1.3. Isomap

When determining geodesic distances, isomap searches
a certain neighbourhood. The choice of this neighbour-
hood is critical: if too large, it allows for “short circuits”
whereas, if it is too small, connectivity becomes very
sparse. These “short circuits” can skew the geometry of
the outcome entirely. For diffusion maps, a similar chal-
lenge is faced when choosing kernel parameters.

Isomap is able to recover all the clusters in this ex-
periment, given a very small neighbourhood. It even pre-
serve the clusters in the correct order. Two of the clusters
overlap a great deal, due to the algorithm’s sensitivity to
noise.

5.1.4. Comparison with Diffusion Maps

Fig. 10 shows that a diffusion map is able to preserve the
order of clusters in one dimension. As mentioned before,
choosing parameter(s) for the diffusion kernel remains
difficult. Unlike isomap, however, the result is based on
a summation over all data, which lessens sensitivity to-
wards kernel parameters. Diffusion maps are the only
one of these techniques that allows geometric analysis at
different scales.

6. Demonstration: Organisational Ability

A diffusion map organises data according to its under-
lying parameters of change. In this experiment, we vi-
sualise those parameters. Our data-set consists of ran-
domly rotated versions of a 255 � 255 image template
(see Fig. 12). Each rotated image represents a single,
65025-dimensional data-point. The data is mapped to the
diffusion space, and the dimensionality reduced to two.
At each 2-dimensional coordinate, the original image is
displayed.

Figure 12: Template: 255 x 255 pixels.

6.1. Discussion

Figure 13: Organisation of images in diffusion space.

In the diffusion space, the images are organised accord-
ing to their angle of rotation (see Fig. 13). Images with
similar rotations lie close to one another.

The dimensionality of the data-set has been reduced
from 65025 to only two. As an example, imaging running
a K-means clustering algorithm in diffusion space. This
will not only be much faster than in data space, but would
likely achieve better results, not having to deal with a
massive, sparse, high-dimensional data-set.

7. Conclusion
We investigated diffusion maps, a technique for non-
linear dimensionality reduction. We showed how it inte-
grates local connectivity to recover parameters of change
at different time scales. We compared it to three other
techniques, and found that the diffusion mapping is more
robust to noise perturbation, and is the only technique that
allows geometric analysis at differing scales. We further-
more demonstrated the power of the algorithm by organ-
ising images. Future work will revolve around applica-
tions in clustering, noise-reduction and feature extraction.

8. Proof
This section discusses the mathematical foundation of
diffusion maps. The diffusion distance, given in (7), is
very expensive to calculate but, as shown here, it can be
written in terms of the eigenvectors and values of the dif-
fusion matrix. These values can be calculated efficiently.

We set up a new diffusion space, where the coordi-
nates are scaled components of the eigenvectors of the
diffusion matrix. In the diffusion space, Euclidean dis-
tances are equivalent to diffusion distances in data space.

Lemma 1: Suppose K is a symmetric, n � n kernel
matrix such that K[i, j] = k(i, j). A diagonal matrix, D,

Image: [Lafon 2004] Image: [dela Porte et al 2008]

Manifold learning (E.g. ISOMAP, Laplacian eigenmaps, di↵usion maps
[Coifman, Lafon 2006], and many others)



Conformation dynamics

§ Metastable conformations? (high-dim.!)

§ Transitions between them (timescales)?

Collective variable (CV)



Transition manifold / E↵ective dynamics

x

Collective variables (CV) describe progress between metastable sets
Desire:

Slow timescales of x(Xt) « Slow timescales of Xt

[Bittracher, K., Klus, Banisch, Dellnitz, Schütte 2018]

dXt = ´rV(Xt) dt + s dWt (˚)
�
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Transition manifold / E↵ective dynamics

x

Collective variables (CV) describe progress between metastable sets
Desire:

Slow timescales of x(Xt) « Slow timescales of Xt

[Bittracher, K., Klus, Banisch, Dellnitz, Schütte 2018]

dXt = ´rV(Xt) dt + s dWt (˚)
Theorem: For (˚), if tpt(x, ¨)

ˇ̌
x P Xu Ä L1 is #-close to a r-dim. manifold,

then there is a r-dim. CV reproducing slow timescales up to O(#).

§ Constructive
:
approach to learn CVs

§ Quantitative goodness measure

:
Cf. also [Mardt, Pasquali, Wu, Noé 2018], [Lusch, Kutz, Brunton 2018], [Chen,

Tan, Ferguson 2018], ...



Existence of CVs
§ Systems with multiple time scales

dXt = f (Xt, Yt)dt + s dWt

#dYt = g(Xt, Yt)dt +
?

#s dBt

§ Metastable systems

s(L) : l0 • . . . • lK " lK+1 • . . .

[Bittracher, Mollenhauer, K., Schütte (to appear)]

§ In between...
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Computing collective variables
1) For given anchor points xi, compute realizations of Xi

t „ pt(xi, ¨)
2a) Embed pt(xi, ¨) in finite dimensions [Hunt, Kaloshin 1999]

2b) Kernel embedding of pt(x, ¨)’s: [Bittracher, Klus, Hamzi, K., Schütte 2021]

Low-dimensional variation  less samples
[Bittracher, Mollenhauer, K., Schütte (to appear)]

3) Manifold learning (di↵usion maps) to find geometry [Coifman, Lafon 2006]

Example in R10
:

§ Multi-well potential in x1, x2, quadratic potential in x3, . . . , x10

potential embedded TM CV



Properties

§ Short simulations on intermediate time scale t

§ Anchor points in transition region  rare events

§ Evaluation at new anchor points w/o recomputing the CV
(out-of-sample extension / Nystrom method)

§ Local method: charts the “visible” part of state space

§ Exploration / Towards rare event detection: continue from boundary



CVs for MD

Folding process of NTL9 protein
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[Bittracher, Banisch, Schütte 2018]



Coordinates of transport and mixing
How does [Froyland 2015], [Karrasch, Keller 2020]

dX#
t = v(t, X#

t ) dt + # dWt

spread across trajectories of

ẋt = v(t, xt)?

CVs Clusters / coherent sets

L� = ��1(Q� � I) for di�erent values of � is shown in Figure 9 on the left. The �n for
n � 9 are stable for 0.01 � � � 0.05. We choose � = 0.02, yielding a sparsity of 4.5%. The
unifying features of the spectra are large spectral gaps after the 2nd, 3rd and 9th eigenvalue,
which indicates that clusterings with � = 2, 3 or 9 are all possible. The eigenfunctions
�2, �3 and �4 are shown in Figure 10 on the right at time t = 20. Clearly, �2 and �3

pick out the meandering jet stream region in the middle, which constitutes the strongest
dynamical boundary in this system, and the six vortices. �4 distinguishes between two of
the six vortices, {�5, . . . , �9} distinguish between the others.
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Figure 9: Bickley jet, eigenvalues (left) and embedding using the eigenfunctions �2, �4 and
�5 (right).

Figure 10: Left, top to bottom: Bickley jet, clusters at times t = 5, t = 20 and t = 35,
for � = 9 (multimedia view online). Right: top to bottom: Eigenfunctions �2, �3 and �4

at t = 20.

The clustering for � = 9 is shown in Figure 10 on the left at times t = 5, t = 20 and

22

Theorem: lim
#dataÑ8

(trajectories + di↵usion maps) = “#-generator” of f´tX#
t

[Banisch, K. 2017], [K., Renger 2018]

bickleymovie.mov
Media File (video/quicktime)



CVs in the ocean
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CVs in Rayleigh–Bénard convection: experiment

§ RB convection in cylinder  disc

§ Learn structure and dynamics (cf. also [Berry, Giannakis, Harlim 2015])
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§ E↵ective state space & dynamics without prior physical knowledge



CVs in Rayleigh–Bénard convection: simulation
RB convection in cube  discrete LSCs

5

royalsocietypublishing.org/journal/rsta
Phil.Trans.R.Soc.A380:20210042

...............................................................
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Figure 1. Instantaneous velocity streamtubes representingdi%erent con&gurations of the large-scale circulation. (a) Long-lived
large-scale circulation (LL-LSC) stateS3π/4 aligned along a diagonal. (b) LL-LSC stateSπ/4 along the other diagonal. (c) Short-
lived large-scale circulation (SL-LSC) state Snπ/2 which is aligned along one pair of opposite side faces. (d) Decoherent or Null
state S0 without any well-de&ned large-scale circulation. All data are for a (uid with Pr = 0.7. The streamtubes are coloured
with respect to the height 0≤ z ≤ 1, as shown in the legend.

Table 1. Parameters of the simulations. These are the Rayleigh (Ra) and Prandtl (Pr) numbers, followed by the Nusselt number
Nu, the Reynolds number Re, the root mean square velocity urms and the total integration time in units of the free-fall time tf .

Run Ra Pr Nu Re urms ttotal/tf
1 106 0.1 6.08 1550.5 0.49 105

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

2 106 0.7 6.73 437.5 0.37 105
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

3 106 10.0 6.92 26.3 0.08 5 × 104
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

LSC states, we identified a sixth state which does not belong to any of the previous states. In this
state, termed the decoherent state or Null state S0, the turbulent system does not have any distinct
large-scale circulation. Figure 1 provides a visualization of typical stable and unstable large-scale
circulations for a Prandtl number of 0.7. Table 2 summarizes the six different LSC states. The
identification of the specific states is described in the subsequent section.

3. Large-scale circulation states along single long-term trajectory
We began our simulations from a random initial condition and waited for the flow to become fully
turbulent. Once the system reached a steady state, we performed the simulations for another 105

free fall times and output the data at each free fall time (for the cases of Pr = 0.1, 0.7). For the
purpose of measuring the orientation angles of the LSC, we use the vertical velocity component
in the mid-plane z = 0.5 as sketched in figure 2a and done for example in [28,29]. Thereafter, we
interpolated the data from the uniform grid to a circle with a fixed radius of r = 0.45 and an angle
θ (measured with respect to the y-axis in a clockwise manner) varying by 5◦ for each subsequent
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ensemble run (250 free fall times)

output states

output
states

single trajectory run (105 free fall times)

t0

Figure 5. Schematic representation of the ensemble averaging process to obtain the transition probabilitymatrix. The blue line
denotes long-term single trajectory run, such as the ones shown in %gure 4a,b. The output states (%lled circle) are printed at
every free fall time. The curves in the dashed box represent shorter ensemble runs which start from selected output point of the
long-term trajectory. The short-term runs are initially slightly perturbed and evolve in time subsequently. Since the turbulent
&ow is highly chaotic, di'erently perturbed short-term runs evolve di'erently. (Online version in colour.)

10−2

10−3

10−4

10−1

10−2

10−3

10−4

10−1

10−2

10−3

10−4

10−1

0 50 1000 50 100 0 25 50
tpers tpers tpers

tf = 5 tf = 5

P
(t

pe
rs

)

S7p/4

S5p/4

S3p/4

Sp/4

Snp/2

(b)(a) (c)

Figure 6. Probability density function (PDF) of the persistence time tpers. (a) Separate evaluation for four long-lived (LL-LSC)
and the short-lived (SL-LSC) macrostates. (b) All four long-lived states are combined into one PDF. The exponential %t and the
time interval of the %t are indicated by dashed and dotted lines, respectively. (c) Replot of the short-lived macrostate together
with the exponential %t and %t interval (as in (b)). All data are taken from the long-term trajectory for Pr = 0.7. (Online version
in colour.)

data without any averaging and hence this short persistence time is connected to the turbulent
fluctuations of the convection flow. Note also that all four PDFs for the LL-LSCs have extended
tails up to 100 free fall times. The latter time would correspond to the persistence time of a
macrostate, if we average out small-scale fluctuations, as observed from figure 4. The PDF of
the SL-LSC decays more rapidly as visible in figure 6a.

An estimate of the mean lifetime of the macrostates is obtained by fitting an exponential
function to the tails of the PDFs. Figure 6b therefore aggregates the four LL-LSC states into one
state with a corresponding PDF. The distribution of persistence times follows an exponential
distribution (within the time interval 5 ≤ tf ≤ 50, as indicated by the dashed line). A similar
behaviour was observed in previous studies of other types of convection flows [17–19]. The
reciprocal of the exponential fit coefficient gives a mean lifetime of the LL-LSC states of about
12tf . This is the time scale before a spontaneous transition to either the SL-LSC or the Null state.
A similar exponential fit is reported in figure 6c to the persistence time distribution of the SL-LSC.
The time interval for the fit is now 5 ≤ tf ≤ 25 as indicated again by the dashed line. The mean
lifetime of the SL-LSC state follows to about 4.2tf . The LL-LSC states persist almost three times
as long as the SL-LSC state, marking them as the most probably observed macrostates along the
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[Maity, K., Schumacher 2022]



Noisy voter model

§ Why? Macroscopic observable (polls)  macroscopic dynamics

§ Existence of CVs: stochastic analysis + random graphs (ongoing)

§ Random opinion switch

P[Xi(t + dt) = m1 | Xi(t) = m] =
f (opinion fraction of agent i’s neighbors)

§ Macroscopic observable (collective variable)

cm(t) =
1
N

#
 

i | Xi(t) = m
(

§ Continuous-time versions available

§ CVs for agents:
§ Opinion-behavior model:

[Helfmann, Heitzig, K., Kurths, Schütte 2021]

§ Emergent space in agent-based models:
[Kemeth, Bertalan, Thiem, Dietrich, Moon,

Laing, Kevrekidis 2022]

X
i
 = 0

X
i 
= 1

stochastic
transition



Concentration in voter models

Theorem. Convergence to
mean field model in probabi-
lity for Erdős–Rényi1 random
graphs (N Ñ 8) for

edge prob = w
⇣ log N

N

⌘
.

§ Complete graph: [Kurtz 1978]

c1
n(t)=

∞
m‰n cm(t)

�
rm,ncn(t)+r̃m,n

�
(en´em)

almost surely as N Ñ 8
§ Random graph: variation
decreasing w/ graph size N

Theorem. Convergence to mean
field model in probability for ran-
dom regular graphs (N Ñ 8) for

degree = w(1).

[Lücke, Heitzig, K., Molkenthin, Winkelmann (preprint)]

1
Also: stochastic block model and heterogeneous population



Summary & Outlook:

§ Framework for collective variables in molecular/fluid/agent systems

§ When do CVs exist? Is there a universal framework? (reversibility?)
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