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Motivation: Bayesian inference

Bayesian inference challenges

πposterior(x) = π(x | y) ∝ π(y | x)πprior(x)

Evaluating the likelihood requires computing solution of a complex
physical model

Can only evaluate density up to normalization constant

Parameters x high dimensional, posterior may be strongly
non-Gaussian
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Motivation: Approximating expectations

Random variable X is distributed according to unnormalized target
density π(x) on Rd

Goal: Compute expectations Eπ[f (X )]

Eπ[f (X )] =

∫

Rd

f (x)π(x)dx

Monte Carlo simulation: produces i.i.d. samples Xi ∼ π, estimate
Eπ[f (X )]

ρ ≈ ρ̂ =
1

K

K∑

i=1

f (Xi )

Question: How to produce samples Xi?
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Langevin samplers and perturbations

Overdamped Langevin dynamics

dXt = β∇ log π(Xt)dt +
√

2βdWt

π(x) is the (unnormalized) target density on Rd ; β > 0 is the
temperature
Ergodicity: Xt ∼ π as t →∞, and

Eπ [f (X )] =

∫

Rd

f (x)π(x)dx = lim
T→∞

1

T

∫ T

0
f (Xt)dt

Unadjusted Langevin algorithm (direct discretization of LD)

Xk+1 = Xk + hβ∇ log π(Xk) +
√

2βhξk ; ξk ∼ N (0, I)

Eπ [f (x)] ≈ 1

K

K−1∑

k=0

f (Xk)
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Langevin samplers and perturbations

Unadjusted Langevin algorithm guarantees for log-concave
densities

Unadjusted Langevin algorithm

Xk+1 = Xk + βh∇ log π(Xk) +
√

2βhξk ; ξk ∼ N (0, I)

Eπ [f (x)] ≈ 1

K

K−1∑

k=0

f (Xk)

Guarantees from [Durmus & Moulines 2019]

Let U(x) = − log π(x), assume U(x) ∈ C2(Rd), Xk ∼ πk . If

U(x) is m-strongly convex: ∇2U(x) � mI

∇U(x) is L-Lipschitz: ∇2U(x) � LI

then W2
2 (πk , π) ≤ CrkW2

2 (π0, π) + F (m, L, h) with r < 1, and F (m, L, h)
is the bias

Konstantinos Spiliopoulos ( Department of Mathematics & Statistics, Boston University Partially supported by NSF-DMS and SIMONS Foundation Joint Work with Ben Zhang (Umass Amherst) and Youssef Marzouk (MIT) )Novel perturbations for accelerating Langevin samplers 6 / 49



Langevin samplers and perturbations

Unadjusted Langevin algorithm guarantees for log-concave
densities

Guarantees from [Durmus & Moulines 2019]

Let U(x) = − log π(x), assume U(x) ∈ C2(Rd), Xk ∼ πk . If

U(x) is m-strongly convex: ∇2U(x) � mI

∇U(x) is L-Lipschitz: ∇2U(x) � LI

then W2
2 (πk , π) ≤ CrkW2

2 (π0, π) + F (m, L, h)

What happens if U(θ) does not satisfy these conditions?
I Few theoretical guarantees, possible slow convergence

Novel perturbations to Langevin dynamics can accelerate
convergence

Transport map ULA relaxes some conditions, provides some
guarantees
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Langevin samplers and perturbations

Perturbations accelerate convergence of Langevin dynamics

Reversible perturbations (RMLD)

dXt = [βB(Xt)∇ log π(Xt) +∇ · B(Xt)] dt +
√

2βB(Xt)dWt

B(x) = B(x)>, B(x) � 0.

In continuous-time, no optimal choice of
B(x), but if B(x)− I � 0, then obtain accelerated convergence
[Rey-Bellet & Spiliopoulos 2016]

Riemmanian manifold Langevin dynamics: B(x) = G(x)−1, inner
product gx : TxM× TxM→ R, gx(u, v) = 〈G(x)u, v〉. Inspired by
information geometry
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Langevin samplers and perturbations

Perturbations accelerate convergence of Langevin dynamics

Irreversible perturbations (Irr)

dXt = [β∇ log π(Xt) + γ(Xt)] dt +
√

2βdWt

Condition on γ(x) so that target is held invariant:
∇ · (γ(x)π(x)) = 0.

Simple choice: γ(x) = D∇ log π(x), D = −D>.

In continuous-time, will always improve convergence [Rey-Bellet &
Spiliopoulos 2016]
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Langevin samplers and perturbations

Perturbations accelerate convergence of Langevin dynamics

dXt = [βB(Xt)∇ log π(Xt) +∇ · B(Xt)] dt +
√

2βB(Xt)dWt

dXt = [β∇ log π(Xt) + γ(Xt)] dt +
√

2βdWt , γ(x) = D∇ log π(x)

Theorem [Rey-Bellet & Spiliopoulos 2016]

Let L and L0 be the generators of RMLD and OLD. If B(x)− I � 0 or
any D = −D>, then

Spectral gap (leading nonzero eigenvalue of generator) decreases

Asymptotic variance σ2(φ) = limt→∞ tVar
(
1
t

∫ t
0 φ(Xt)dt

)
is smaller

Large deviations rate function increases
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Geometry-informed irreversible perturbations

Geometry-informed irreversible perturbations (GiIrr)
How to apply irreversibility to an already reversibly perturbed
system?

Standard irreversibility applied to reversible perturbation (RMIrr)

dXt = [βB(Xt)∇ log π(Xt) +∇ · B(θt) + γ(Xt)] dt +
√

2βB(Xt)dWt

γ(x) = D∇ log π(x), D = −D>

Geometry-informed irreversibility (new!)

dXt = [βB(Xt)∇ log π(Xt) +∇ · B(Xt) + γ(Xt)] dt +
√

2βB(Xt)dWt

γ(x) = C(x)∇ log π(x) +∇ · C(x)

C(x) =
1

2
[B(x)D + DB(x)] , note C(x) is still skew-symmetric!

[Zhang, Marzouk, Spiliopoulos, Geometry-informed irreversible perturbations for accelerated
convergence of Langevin dynamics, Statistics and Computing, 2022.]
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Geometry-informed irreversible perturbations

Simple example: parameters of a normal distribution
[Girolami 2011]

log π(µ, σ|X) =
N

2
log 2π − N log σ −

N∑

i=1

(Xi − µ)2

2σ2

B(µ, σ) =
σ2

N

[
1 0
0 1/2

]
D = δ

[
0 1
−1 0

]

E[AVarφ] Std[AVarφ]

LD 8332 4359

RM 4034 1378

Irr 2169 1072

RMIrr 1729 631.2

GiIrr 479.4 170.8

φ(µ, σ) = µ2 + σ2
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Geometry-informed irreversible perturbations

Independent component analysis [Amari 1996, Welling &
Teh 2011]

π(W|X) = det W
m∏

i=1

p(w>i x)
∏

ij

N (Wij ; 0, λ−1)

p(y) = 1
4sech2(12y)

After vectorization, reversible perturbation that is also positive is

B(W) = W>W ⊗ Id+Id2

Geometry-informed irreversible perturbation is

γ(W) =
1

2
[DB(W) + B(W)D]

where D is any m2 ×m2 skew-symmetric matrix.

In our experiments D = (I⊗ C0 + C0 ⊗ I), C0 = −C>0
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Geometry-informed irreversible perturbations

Posterior distribution for an independent component
analysis problem
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Geometry-informed irreversible perturbations

Geometry-informed irreversible perturbation mixes better

E[AVarφ] Std[AVarφ]

LD 50.17 17.92

RM 26.75 8.442

Irr 27.02 9.134

RMIrr 19.47 6.086

GiIrr 6.381 1.777

φ(W) =
(∑

ij Wij

)2

Open question: Are there
guarantees for discretizations of
perturbed LD?

What about the reversible
perturbation?

New/different perspective
based on measure transport
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Transport map unadjusted Langevin algorithm

Transport maps are functional representations of random
variables

⇡(✓) p(r)

⇡̃(r)

T (✓)

T̃ (✓)

Figure 2-1: Illustration of exact and inexact transformations coming from T and T̃
respectively. The exact map pushes the target measure ⇡ to the standard Gaussian
reference p while the approximate map only captures some of the structure in ⇡,
producing an approximation p̃ to the reference Gaussian.

µr does not contain any point masses and the cost function c(✓, T (✓)) is quadratic.
Details of the existence and uniqueness proofs can also be found in [102].

Being a form of regularization, the cost function in (2.2) defines the form and
structure of the optimal transport map. For illustration, consider the case when
✓ ⇠ N(0, I) and r ⇠ N(0,⌃) for some covariance matrix ⌃. In this Gaussian example,

the transport map will be linear: r
i.d.
= ⌃1/2✓, where ⌃1/2 is any one of the many

square roots of ⌃. Two possible matrix square roots are the Cholesky factor, and the
eigenvalue square root. Interestingly, when the cost is given by

cEig(✓, T (✓)) = k✓ � T (✓)k2, (2.3)

the optimal square root, ⌃1/2, will be defined by the eigenvalue decomposition of ⌃,
but when the cost is given by the limit of a a weighted quadratic defined by

cRos(✓, T (✓)) = lim
t!0

DX

k=1

tk�1|✓k � Tk(✓)|, (2.4)

the optimal square root, ⌃1/2, will be defined by the Cholesky decomposition of ⌃.
In the more general nonlinear and non-Gaussian setting, this latter cost is shown by
[22] and [15] to yield the well-known Rosenblatt transformation from [91].

The Cholesky factor is a special case of the Rosenblatt transformation, which it-
self is just a multivariate generalization of using cumulative distribution functions to
transform between univariate random variables (i.e., the “CDF trick”). Importantly,
the lower triangular structure present in the Cholesky factor, which makes inverting

31
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   S =T−1

 η  π

Transport maps

Choose X ∼ η (e.g., standard Gaussian)

Seek a deterministic, invertible map T : Rd → Rd such that
I π(y) = T]η(y) = η(S(y)) det JS(y), JS(y) is the Jacobian of S .

I If X ∼ η, then Y = T (X ) ∼ π.

Many ways to find T: optimal transport, triangular transport, etc.
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   S =T−1

 η  π

Transport maps

Choose X ∼ η (e.g., standard Gaussian)

Seek a deterministic, invertible map T : Rd → Rd such that
I π(y) = T]η(y) = η(S(y)) det JS(y), JS(y) is the Jacobian of S .
I If X ∼ η, then Y = T (X ) ∼ π.

Many ways to find T: optimal transport, triangular transport, etc.
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Transport map unadjusted Langevin algorithm

Transport maps define reversible and irreversible
perturbations

TM: Let X ∼ η, Y ∼ π. Transport maps T]η = π, S]π = η.

Proposition: TM + LD = RMLD

LD on η: dXt = ∇ log η(Xt)dt +
√

2dWt

Yt = T (Xt) is an RMLD with B(Yt) = (JS(Yt)
∗JS(Yt))−1

dYt = [B(Yt)∇ log π(Yt) +∇ · B(Yt)] dt +
√

2B(Yt)dWt
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Transport map unadjusted Langevin algorithm

Transport maps define reversible and irreversible
perturbations

Proposition: TM + Irr = GiIrr

Irreversible LD on η with D = −D>:
dXt = (I + D)∇ log η(Xt)dt +

√
2dWt

Yt = T (Xt) is a GiIrr with B(Yt) = (JS(Yt)
∗JS(Yt))−1,

C(Yt) = JS(Yt)
−1DJ∗S(Yt)

−1

dYt = [(B(Yt) + C(Yt))∇ log π(Yt) +∇ · (B(Yt) + C(Yt))] dt +
√

2B(Yt)dWt
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Transport map unadjusted Langevin algorithm

Transport maps define reversible perturbations

Proposition: TM + LD = RMLD

Langevin dynamics on η = S]π: dXt = ∇ log η(Xt)dt +
√

2dWt

Yt = T (Xt) is an RMLD on π with B(Yt) = (JS(Yt)
∗JS(Yt))−1

dYt = [B(Yt)∇ log π(Yt) +∇ · B(Yt)] dt +
√

2B(Yt)dWt

Insights and implications

Transport maps parameterize reversible perturbations (or metrics)

Transport maps provide new way for discretizing RMLD
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Transport map unadjusted Langevin algorithm

Construction of triangular transports

S(y1, . . . , yd) =




S1(y1)
S2(y1, y2)
...
Sd(y1, . . . , yd)


 =⇒ JS(y) =




∂y1S1
∂y1S2 ∂y2S2
...

...
. . .

∂y1Sd · · · ∂ydSd




min
S

DKL(S]π‖N (0, Id)) =⇒ max
S

Eπ
[
log S ]N (0, Id)

]

Each component map Si is parametrized to be monotone in the
leading variable

Monotone, triangular structure =⇒ fast computation of S−1 and
det JS
Approximate map produces samples approximating π, but has bias

With a few samples from π, learn a monotone triangular map via ATM
I On the representation and learning of monotone triangular transport

maps [Baptista et al. 2020]
I AdaptiveTransportMaps: https://github.com/baptistar/ATM
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Transport map unadjusted Langevin algorithm

Transport map unadjusted Langevin algorithm

Given target π(y) and a triangular map S(y) = T−1(y)

Define reference η(x) = (S]π)(x) = π(T (x)) det JT (x),
∇ log η(x) = ∇ log π(T (x)) +∇ log det JT (x)

Construct Langevin dynamics on η = S]π, apply map T = S−1 to
trajectories on η

Transport map unadjusted Langevin algorithm (TMULA)

Xk+1 = Xk + h J∗S(Yk)−1

[
∇ log π(Yk) +

d∑

i=1

(
∂Si
∂yi

(Yk)

)−1
Hi (Yk)

]

︸ ︷︷ ︸
∇ log η(Xk )

+
√

2hξk+1

Yk+1 = T (Xk+1)

where Hi (Yk) =
[
∂2Si
∂y1∂yi

· · · ∂2Si
∂yd∂yi

]>
.
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Transport map unadjusted Langevin algorithm

Other instances of transformed Langevin processes

Mirror Langevin for sampling constrained distributions
I Mirrored Langevin dynamics [Hsieh et al. 2018]
I Wasserstein control of Mirror Langevin Monte Carlo [K Zhang et al.

2020]
I Defines map as ∇h, where h is convex. Inverse is convex conjugate

Transport map accelerated MCMC (including TM-MALA) [Parno
& Marzouk 2018]

I Constructs triangular invertible transport for MCMC proposals
Adaptive Monte Carlo augmented with normalizing flows [Gabrié
et al. 2022]

I Similar to TM-MCMC, where the maps are normalizing flows
Variable transformation to obtain geometric ergodicity [Johnson
& Geyer 2012]

I Provides generic functions to transform tails of (sub)-exponentially
light distributions for MCMC

Heavy-tailed sampling via transformed ULA [He et al. 2022]
I Provides generic functions to transform heavy-tailed distributions and

applies ULA
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Transport map unadjusted Langevin algorithm

Numerical example: Funnel distribution

Bayesian inference problem

Given data {Xi}Ni=1 ∼ N (µ, σ2)

Infer µ, γ = log σ ∈ R.

Prior µ ∼ N (0, 3), γ ∼ Γ(2, 1)

π(µ, γ|X) ∝

exp

(
(2− N)γ + 2γ − eγ − µ2

6
− 1

2

N∑
i=1

(Xi − µ)2
)
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Transport map unadjusted Langevin algorithm

Numerical example: Funnel distribution

Learn a very approximate map via ATM
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Transport map unadjusted Langevin algorithm

Numerical example: Funnel distribution
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Transport map unadjusted Langevin algorithm

Numerical example: Funnel distribution

Xk+1 = Xk + hJ∗S (Yk )
−1
[
∇ log π(Yk ) +

∑d
i=1

(
∂Si
∂yi

(Yk )
)−1

Hi (Yk )

]
+
√

2hξk+1

Yk+1 = T (Xk+1)
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Transport map unadjusted Langevin algorithm

Numerical example: TM + Irr = GiIrr
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Transport map unadjusted Langevin algorithm

Numerical example: Funnel distribution

RMLD: B(µ, γ) =

[
1

2Neγ
0

0 1
Ne−2γ+1/3

]
expected Fisher information plus negative Hessian of log prior.

TMRMLD: B(µ, γ)−1 = J>S JS (µ, γ).

Consider test functions φ1(µ, γ) = exp(γ), φ2(µ, γ) = γ + µ, and φ3(µ, γ) = γ2 + µ2.

E[AVarφ1 ] Std[AVarφ1 ] E[AVarφ2 ] Std[AVarφ2 ] E[AVarφ3 ] Std[AVarφ3 ]

ULA 8.759 1.797 1.957 0.4774 195.4 35.30
RMLD 25.46 7.550 28.82 2.860 1558 184.8
TMRMLD 1.344 0.2057 2.655 0.3705 108.7 15.48
TMULA 1.444 0.2061 2.480 0.3475 114.8 14.00
TMULA + Irr 1.243 0.2131 1.961 0.2851 92.72 12.89

Table 1: Asymptotic variance estimates for the funnel distribution.
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Transport map unadjusted Langevin algorithm

Convergence guarantees

Proposition: guarantees revisited

Let U(y) = − log η = − log S]π ∈ C2(Rd), Yk ∼ πk , Xk ∼ ηk . If

mI � ∇2U � LI (strong convexity and Lipschitz gradients)

S is appropriately monotone ‖S(y)− S(y ′)‖ ≥ ρ‖y − y ′‖

W2
2 (πk , π) ≤ Crk

ρ2
W2

2 (η0, η) + F (m, L, h)

where r = 1− mL
(m+L)2

, F (m, L, h) is the bias

Does such a map S exist?

Yes: there exists (many) maps such that η
is isotropic normal!

Can the rate be optimized? Yes: optimal when m = L ⇐⇒ η is
isotropic normal!
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Can the rate be optimized? Yes: optimal when m = L ⇐⇒ η is
isotropic normal!
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Transport map unadjusted Langevin algorithm

Transport map ULA is a different discretization of RMLD

RMLD

dYt = [B(Yt)∇ log π(Yt) +∇ · B(Yt)] dt +
√

2B(Yt)dWt

with B(Yt) = (JS(Yt)
∗JS(Yt))−1

TMULA:

Yk+1 = T

(
S(Yk ) + hJ∗S (Yk )

−1

[
∇ log π(Yk ) +

d∑
i=1

(
∂Si

∂yi
(Yk )

)−1

Hi (Yk )

]
+
√
2hξk+1

)

Euler-Maruyama applied to RMLD:

Yk+1 = Yk + h(JS (Yk )
∗JS (Yk ))

−1∇ log π(Yk ) +∇ · (JS (Yk )
∗JS (Yk ))

−1) +
√
2hξk+1
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Transport map unadjusted Langevin algorithm

Transport map ULA is a different discretization of RMLD
TMULA:

Yk+1 = T

(
S(Yk ) + hJ∗S (Yk )

−1

[
∇ log π(Yk ) +

d∑
i=1

(
∂Si

∂yi
(Yk )

)−1

Hi (Yk )

]
+
√
2hξk+1

)

EMRMLD:

Yk+1 = Yk + h(JS (Yk )
∗JS (Yk ))

−1∇ log π(Yk ) +∇ · (JS (Yk )
∗JS (Yk ))

−1) +
√
2hξk+1

Proposition: EMRMLD approximates TMULA

Let TMULAm denote the mth component, m = 1, . . . d . Then

TMULAm = EMRMLDm + h
(
ξm+1∇2Tmξm+1 −

∑d
i=1

∂2Tm

∂x2i

)
+O(h3/2)

Proposition: Regularity of T affects variance of error

Var

(
hξm+1∇2Tmξm+1 − h

d∑
i=1

∂2Tm

∂x2i

)
= h2

∑
ij

∂2Tm

∂xi∂xj
+ 3

d∑
i=1

(
∂2Tm

∂x2i

)2
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Transport map unadjusted Langevin algorithm

Convergence to the numerical invariant measure

Asymptotic bias of the ergodic estimator

e(φ, h) = lim
K→∞

1

K

K−1∑

k=0

φ(Yn)−
∫
φ(Y )π(y)dy

Rate of convergence of e [Abduelle et al. 2013]

With an integrator of local weak order p,

e(φ, h) = −λphp +O(hp+1)

with λp =
∫∞
0

∫
Rd

(
1

(p+1)!Lp+1 − Ap

)
u(y , t)π(y)dydt.

In very restrictive settings, can compute that λp for TMULA is smaller
than for EMRMLD.
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Transport map unadjusted Langevin algorithm

Numerical example: banana example

log π(y) = −y2
1 /s

2 − (y2 + by2
1 − 100b)2, with s = 4, b = 0.01

S(y1, y2) =

[
y1/s

y2 + by2
1 − 100b

]
: this is pushing it to a Gaussian density

φ(y1, y2) = y2
1 + y1 + y2

2 + y2
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Transport map unadjusted Langevin algorithm

Numerical example: banana example

Compute now the leading eigenvalue for the asymptotic bias:
λ1 ∼ −e(φ, h)/h

log π(y) = −y21 /s2 − (y2 + by21 − 100b)2, with s = 4, b = 0.01

φ(y1, y2) = y21 + y1 + y22 + y2

We can calculate λTMULA
1 = −0.62 while λEMRMLD

1 = 34.69.

Transport map accelerates convergence because it is a reversible
perturbation.
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Transport map unadjusted Langevin algorithm

Numerical example: Hybrid Rosenbrock [Pagani et al.
2022]

Figure 1: π(y) ∝ exp
{
−a(y1 − µ)2 −∑n2

j=1

∑n1
i=2 bji (yj,i − y2

j,i−1)2
}
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Transport map unadjusted Langevin algorithm

Numerical example: Hybrid Rosenbrock [Pagani et al.
2022]

Figure 2: Left: TMULA, Right: ULA. Step size h = 0.01
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Transport map unadjusted Langevin algorithm

Numerical example: Hybrid Rosenbrock [Pagani et al.
2022]

Measuring sample quality via kernelized
Stein discrepancy [Gorham & Mackey
2017]

Approximates integral probability
metrics

dH(π̂K , π) = sup
φ∈H
|Eπ̂K [φ(Z )]− Eπ[φ(X )]|

Only requires evaluations of ∇ log π(x)
and a kernel function

For H is large enough

dH(π̂K , π)→ 0 ⇐⇒ π̂K → π in distribution

Observation: TMULA
allows taking larger step
size. Here h = 0.01.

Konstantinos Spiliopoulos ( Department of Mathematics & Statistics, Boston University Partially supported by NSF-DMS and SIMONS Foundation Joint Work with Ben Zhang (Umass Amherst) and Youssef Marzouk (MIT) )Novel perturbations for accelerating Langevin samplers 37 / 49



Transport map unadjusted Langevin algorithm

Numerical example: Hybrid Rosenbrock [Pagani et al.
2022]

Consider test functions φ1(Y ) =
∑7

i=1 Y
i and φs(Y ) =

∑7
i=1(Y i )2.

E[AVarφ1 ] Std[AVarφ1 ] E[AVarφ2 ] Std[AVarφ2 ]

UILA 6762 2663 6.957× 106 5.185× 106

TMUILA 65.03 28.54 6506 1284

Table 2: Asymptotic variance estimates for the hybrid Rosenbrock distribution.
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Transport map unadjusted Langevin algorithm

Some caveats
Discretizations of irreversibly perturbed systems

Irreversible term increases stiffness

May lead to worse performance due to extra bias

Lighter than Gaussian tails

Euler-Maruyama discretization may be transient (e.g., EM on
dXt = −X 3

t dt +
√

2dWt)!

TMULA may blow up because it explores tails better (chain diverges
there)

Implicit Euler-Maruyama schemes may be used


S(Y∗) = S(Y k ) + hJ>S (Y∗)−1

∇Y log π(Y∗)−
d∑

i=1

(
∂Si

∂yi
(Y∗)

)−1

Hi (Y
∗)


Xk+1 = S(Y∗) +

√
2hξk+1

Yk+1 = T (Xk+1),

(1)

where Hi (Y
k ) =

[
∂2Si
∂y1∂yi

, · · · , ∂2Si
∂yd∂yi

]>
, where ξk+1 ∼ N (0, I).
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Transport map unadjusted Langevin algorithm

Cautionary tale: Multimodal distributions
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Transport map unadjusted Langevin algorithm

Conclusion

Algorithmic aspects

Improved sample quality and accelerated convergence of LD

Novel geometry-informed irreversible perturbations

We considered triangular transport, but TMULA is agnostic

Theoretical aspects

Transport map ULA can guarantee fast convergence for a larger class
of distributions

Transport map applied to Langevin dynamics is Riemannian manifold
Langevin dynamics
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Transport map unadjusted Langevin algorithm

Future directions

Interacting particle systems formulation for learning maps

Analyzing the TM-MALA (with Metropolis-Hastings correction)

improve our theoretical understanding of how to characterize the
transport map within a given approximate class that maximizes the
efficiency of TMULA sampling

Better approximation of transport maps in the presence of
multimodality
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Thank You!!!!!

Questions?

Konstantinos Spiliopoulos ( Department of Mathematics & Statistics, Boston University Partially supported by NSF-DMS and SIMONS Foundation Joint Work with Ben Zhang (Umass Amherst) and Youssef Marzouk (MIT) )Novel perturbations for accelerating Langevin samplers 49 / 49


	Langevin samplers and perturbations
	Geometry-informed irreversible perturbations
	Transport map unadjusted Langevin algorithm
	References

