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The sampling problem

How best to calculate averages of nice functions with respect to a 

well-defined probability distribution (typically in high dimensions).

e.g. in Euclidean space

or with respect to a smooth probability distribution

on a differentiable manifold

Applications: molecular modelling, statistics, machine learning...



Overdamped Langevin
Overdamped Langevin

converges to the Gibbs-Boltzmann distribution with density


under assumptions of confinement and smoothness on the potential U

ρβ ∝ exp − βU(x)



SDE-based sampling

Discretization (Euler-Maruyama)

First order weak MCMC procedure ( O(h) perturbed invariant measure)

t

"BAOAB Limit" (Leimkuhler-Matthews, AMRX, 2013):

successive Gaussian increments

2nd order weak



Assumptions

1.Continuous system: Markov process with transition kernel  and stationary 
distribution 

𝒫t
π

∥ν𝒫t − π∥TV ≤ d(ν, π)e−λt

2. Discrete system: defined by a numerical method  with corresponding 
stationary distribution 

�̂�Δt,γ,…
πΔt,γ,…

ν�̂�n
Δt,γ,… → πΔt,γ,… n → ∞

Both the propagator and the stationary distribution depend on various properties and 

parameters from the target system, the formulation, and the numerical method



Outline

Affect of stepsize and friction on the long run accuracy and 
convergence rate of Langevin dynamics methods

Removing the duration parameter in constrained Hamiltonian Monte 
Carlo using randomization of time

Practical experience in constrained Langevin dynamics simulations



Langevin dynamics

With Periodic Boundary Conditions and smooth potential, ergodic sampling 
of the canonical (Gibbs) distribution with density

Newton’s Equations Dissipative-Stochastic Perturbation

⇢�(x, p) / exp(��H(x, p)); H(x, p) = p
T
M

�1
p/2 + U(x)
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Convergence

Lots of different concepts for convergence!  It's a "rich area" of mathematics

research.


One typically looks for results that will be general and relevant.   A good 

compromise: convergence in the sense of "Wasserstein distance" to a target

measure.

Convergence theory  due to Talay, Herau, Nier, Hairer, Mattingly, 
Villani, Dolbeaut, ... (and many others!)

ρ( ⋅ , t) → ρβ

D. Griffeath, Coupling Methods for Markov Processes, 1975 

Over recent years, a "coupling method" for proving ergodicity results has been developed  
by Vasershtein, and many others. The technique involves constructing two copies of X,  
which start from different states and evolve simultaneously in such a way that if they ever  
reach the same state, then they are "pasted together" from that time on. 



Discretization: splitting methods

Compose steps with different parts of the SDE system, using exact weak sense

propagation...

Stochastic Exponential Euler (SES): (B+O)A - solve B and O together, then solve A

OBABO - O step (h/2) ➝ B step (h/2) ➝ A step (h) ➝ B step(h/2) ➝ O step (h/2)
Bussi and Parrinello, 2007

Ermak and Bucholz, 1980



Convergence in Wasserstein distance

(LD)

Theorem (Wasserstein... Villani, Dalalyan, Durmus, Moulines, Monmarché...) 

contractivity of a discretization of (LD) implies convergence in Wasserstein distance.




Convergence results for splitting methods

Leimkuhler, Paulin, Whalley 2023, Contraction and Convergence Rates for 
Discretized Kinetic Langevin Dynamics, ArXiv https://arxiv.org/abs/2302.10684

[1] P. Monmarche 2021

[2] J.M. Sanz-Serna and K. Zygalakis, 2021, using A. S. Dalalyan and L. Riou-Durand, 2020


 

[1]́
[2]́

γ ≳ M



idea of proof
Consider "synchronously coupled" discrete paths

Define

Enough to show    is positive definite(1 − c(h))M − PTMP

mean value theorem 
for vector functions

Example 
for Euler-Maruyama

find a and b



-limit convergence (GLC)γ
One important limit is that of 'high friction', 


With a fixed stepsize, this limit is well-defined for Langevin integrators, but 

not all schemes perform well in this limit 


(i.e. most do not converge, after ,  to overdamped Langevin dynamics)

γ → ∞

Δt → 0

method limiting scheme GLC?

BAO No
OAB No
SES No

OBABO Yes
BAOAB Yes

But in MD we don't generally want to use very high friction...



with constraints

Idea:  preserve the configuration manifold during position moves and the 
cotangent space during impulse. 

The natural constrained analogue of Verlet (BAB) or BAOAB

projected “kicks”geodesic flow

B.L. and G. Patrick, J. Nonlin. Sci. 1996 (deterministic) 
B.L. and C. Matthews, Proc Roy Soc A 2016 (stochastic)

An alternative to SHAKE discretization

Combines:

�h,HT⇤M
⇡ �h/2,UT⇤M

� �h,TT⇤M
� �h/2,UT⇤M

g-Verlet:
AB B

O-step:  projective Ornstein-Uhlenbeck solve



Solvated alanine dipeptide 
(constraints)

mind the gap

Solvent- 
Solute  
Splittingγ = 0.5ps−1



Solute-Solvent Splitting
multiple timestepping based on splitting the 
interaction forces into PP (protein-protein),  
PS (protein-solvent), and SS (solvent-solvent) 

SS dominates the computational cost.  PP, PS determine the stepsize.   
Therefore, consider two-level multiple timestepping:

1. PP+PS is viewed as a many-body, stochastic system 
2. Water motion can be implemented using SETTLE.

exp

✓
�h

2
USS(q)

◆
exp

✓
�h

2
[T (p) + UPP(q) + UPS(q)]

◆
exp

✓
�h

2
USS(q)

◆

m=2 or m=3 iterations
of a geodesic Langevin integrator
using several RATTLE substeps



Reconstructed free energy barrier height



Small friction regime

For rare events or dynamical MD calculations, 
we may wish to use small 


However, Langevin can be unreliable in the 
regime of small coupling.


The convergence for numerical methods is 
poorly understood in this limit

γ

γ = 0.001 γ = 0.01 γ = 1 γ = 10

Firing deterministic trajectories might be better than delicately diffusing through the barrier...



Slow convergence of Langevin g-BAOAB for a multimodal distribution

Bingham-von Mises-Fisher distribution



Using HMC to explore complex distributions
Hamiltonian Monte Carlo offers an alternative to Langevin dynamics.   Deterministic paths 
generated from a Hamiltonian may be able to traverse narrow entropic bottlenecks.


Typically HMC is based on a combination of symplectic integration (volume preserving,

reversible), stochastic refreshment, and Metropolis correction. Convergence to the 
invariant distribution follows under similar conditions to Langevin dynamics 

(analysis as Harris chains).


Ergodicity relies on a mixing property in the Hamiltonian system (or its discretization), 


Metropolization removes bias due to numerical error but is also the principal drawback of 
HMC.



Metropolization

➞Rejections can impede transitions, at least in thermally driven systems

Current Work with R. Lohmann (PhD student)

➞First, it costs (wasted samples), sometimes a lot.



N. Bou-Rabee and J.M. Sanz-Serna, Randomized Hamiltonian Monte Carlo,  2017.

Using HMC for rare event sampling [Two Ideas]

1. Randomize the time variable

Randomizing the timestep size is a common technique in HMC.  Alternatively

one can consider the limiting case of exact Hamiltonian dynamics with an exponentially

distributed duration parameter.   Rigorously proved (for the unconstrained case).

2. Just don't Metropolize
Motivation comes from the ad-hoc "stochastic gradient HMC" used in the machine 

learning community.   (While the subsampled gradient is cheap, the full energy

needed for Metropolis correction is costly.)  If our aim is not bias correction but 

exploration, can we get away with dropping it?

Origin:  Hybrid molecular dynamics [Andersen 1980, Duane 1985]

R
H

M
✲

Some theory [Manghoubi and Smith 2017], but under the strong convexity conditions...

There might be other better ways to unbias simulations!



parameter independence of RHM✲ (without correction and with randomized duration)

lambda =0.1 lambda =0.2lambda =0.01 lambda =0.5

LD

RHM✲



Himmelblau



BAOAB is essentially unbiased but makes slow transitions to/from the isolated state

☜gamma = 1, tfinal = 400, dt=0.1 gamma = 0.01, tfinal = 4000, dt = 0.1

gamma = .001, tfinal = 400, dt =0.05 gamma = 0.01, tfinal = 400, dt = 0.1 ☜





HMD (no correction, no time randomization) gains some exploration

RHMC without correction (i.e. RHMD) gains still more exploration


The uncorrected schemes lose accuracy in basins compared to Langevin

but LD has poor exploration.  Correction inhibits convergence



Randomized Time Riemannian Manifold Hybrid Monte Carlo
Whalley, Paulin, Leimkuhler 2023,Randomized Time Riemannian Manifold Hamiltonian Monte Carlo, 
ArXiv https://arxiv.org/abs/2206.04554

Uses deterministic paths which are (formally) geodesics of the manifold (but, in practice,

are generated by RATTLE or else g-BAB)

Difficult to use ideas of hypocoercivity in the manifold setting.  We assume compact 
manifold but don't show geometric ergodicity.  Proof based on minorization (Doeblin 
condition).

Costs are not worse than RATTLE type constrained MD.

Metropolization can be omitted, at least in the small stepsize limit

We work with the explicit constraint geometry, not the Euclidean formulation.  This makes  
the method efficient (semi-explicit).



Invariance and Ergodicity

→ RT-RMHMC  leaves invariant the Gibbs distribution restricted to TM 

→ RT-RMHMC  is ergodic in the sense that transition density aligns to the 
target probability density over time

Assume:  smooth compact manifold 


where has full rank Jacobian

smooth potential



Comparison - Bingham-von Mises-Fisher distribution in 3D

The RT-RMHMC method stabilizes the convergence rate as a function of the mean duration 
compared to RMHMC (with fixed duration). 

Integrated Autocorrelation Time



BvMF distributions
RT-RMHMC RMHMC



Sparse Reconstruction for Astronomical Data
Estimate the covariance matrix when the number of data points is small relative

to the dimension


The sample covariance is a poor estimator due to rank deficiency


To regularize the problem, we work in the space of matrices which are 

"low rank + sparse"



Summary
Langevin integrators constructed for a wide variety of SDEs provide efficient

sampling algorithms for diverse applications


Accurate schemes are also possible for constrained systems, leading to

particularly powerful methods in combination with other devices like multiple

timestepping.


Numerical studies suggest that underdamped SDE discretization methods 

can have low bias in practice, particularly if the friction is sufficiently high.


However, the high friction limit can slow convergence, particularly

for multimodal distributions. 


Used without correction RT-RMHMC offers a powerful 

alternative that can improve convergence to equilibrium.  


