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Transition time
Let us consider an ergodic stochastic continuous in time process
(Xt)t≥0 in R

d , and two disjoint subsets A ⊂ R
d and B ⊂ R

d . The
objective is to compute the mean transition time at equilibrium
from A to B , denoted by ∆A→B .

B

A

Remark: we are also interested in any statistical property of the
equilibrium reactive paths from A to B . 3 / 46
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Metastability
Examples: Molecular dynamics (A and B are defined in positions space)

• Langevin dynamics (M mass matrix, γ > 0, β = (kBT )−1)
{

dQt = M−1Pt dt,

dPt = −∇V (Qt) dt − γM−1Pt dt +
√

2γβ−1dWt ,

ergodic wrt µ(dq)⊗ Z−1
p exp

(

−β ptM−1p
2

)

dp with

dµ = Z−1 exp(−βV (q)) dq,

where Z =
∫

exp(−βV ).
• overdamped Langevin dynamics

dXt = −∇V (Xt) dt +
√

2β−1dWt ,

which is also ergodic wrt µ.

Challenge: A is typically a metastable state, so that the transition
time from A to B is very large.
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From continous time to discrete time: Method 1

Ths first step is to rewrite the problem in terms of a Markov chain.

Method 1 (only for Langevin): Consider the successive entrances in
A of (Qt ,Pt):

Yn = (Qτn ,Pτn)

where τn = inf{t > τn−1,Qt ∈ A ∪ B .

The Markov chain (Yn)n≥0 is with values in A ∪ B where

A = {(q, p) ∈ ∂A× R
d , p · nA(q) < 0}

and
B = {(q, p) ∈ ∂B × R

d , p · nB(q) < 0}.
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From continous time to discrete time: Method 2

Method 2 (introduced here for overdamped Langevin, but can also
been used for Langevin):

Σ

A

B

Let Σ a co-dimension 1 submanifold in-between A and B . Consider
then, (Yn)n≥0 is the sequence of successive intersections of
(Xt)t≥0 with ∂A or ∂B , while hitting Σ in-between.
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From continous time to discrete time: Method 2

More precisely:
Yn = Xτn

where
τΣn = inf{t > τn−1,Xt ∈ Σ}

τn = inf{t > τΣn , Xt ∈ A ∪ B}.

The Markov chain (Yn)n≥0 is with values in A ∪ B where

A = ∂A

and
B = ∂B .
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Reactive entrance distribution
Let us define the successive entrance times in A and B [Lu, Nolen, 2013]

[E, Vanden Eijnden, 2006]:

TA
k+1 = inf{n > TB

k , Yn ∈ A}

TB
k+1 = inf{n > TA

k+1, Yn ∈ B}.

The reactive entrance distribution in A at equilibrium is defined by:

νE = lim
K→∞

ν̂E ,K

where

ν̂E ,K =
1

K

K
∑

k=1

δY
TA
k

.

Remark: νE is independent of the choice of Σ and is also the
reactive entrance distribution for the original continuous time
process.
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Back to the mean transition time
The mean transition time at equilibrium is (strong Markov property):

∆A→B = E
νE

(

TB−1
∑

n=0

∆(Yn)

)

where
TB = inf{n ≥ 0, Yn ∈ B}

and for all x ∈ A,
∆(x) = E

x(τ1).

Remark: Notice that for all x ∈ A,

∆(x) = E
x(τ11Y1∈A) + E

x(τ11Y1∈B)

is the average time of loop from x back to A when Y1 ∈ A plus
the average time of a reactive trajectory from x to B when Y1 ∈ B.
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Summary

Objective: Given a discrete-time Markov chain (Yn)n≥0 with values
in A∪ B and a bounded measurable function f : A → R, estimate:

E
νE

(

TB−1
∑

n=0

f (Yn)

)

Two challenges: The sets A and B are metastable, so that
(i) TB is very large, and (ii) νE is difficult to sample.

Ideas: For (i), use the Hill relation to replace a longtime
computation by the estimation of the probability of the event
{Y1 ∈ B}, together with a rare event sampling method (forward flux

sampling -FFS- or adaptive multilevel splitting -AMS-). For (ii), on can rely on the fact
that A is metastable: the process (Yn)n≥0 reaches some
“equilibrium within A” (quasi stationary distribution) before transitioning to B.
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Assumptions and notation

Assumptions: In the following, we assume that the Markov chain
(Yn)n≥0 (with kernel K ) satisfies the following hypothesis:

[A1] (Yn)n≥0 is weak-Feller meaning that (Kf ) ∈ C(A ∪ B,R)
whenever f ∈ C(A ∪ B,R).

[A2] (Yn)n≥0 is positive Harris recurrent, and π0 denotes its unique
stationary probability measure.

[A3] π0(A) > 0 and π0(B) > 0.

All these assumptions are satisfied for the discrete processes built
from the Langevin or overdamped Langevin dynamics.

Notation: In the following we use the block-decomposition of the

kernel K of the chain (Yn)n≥0 over A ∪ B: K =

[

KA KAB

KBA KB

]

.
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The Hill relation

[Kramers, 1940]
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The π-return process and the Hill relation
Let π be a probability measure on A. The π-return process
(Y π

n )n≥0 is the Markov chain with values in A and transition
kernel: ∀x ∈ A, ∀C ⊂ A,

Kπ(x ,C ) = P
x(Y1 ∈ C ,TB > 1) + P

x(Y1 ∈ B)π(C ).

In words, (Y π
n )n≥0 is the chain (Yn)n≥0 “reset to π” each time Yn

enters B.
Lemma. (Y π

n )n≥0 admits a unique stationary distribution, denoted
by R(π), where

R(π) =
π(IdA − KA)

−1

Eπ(TB)
.

Remark: Such processes are typically used in MD when people
introduce a sink in B and a source in A to create a non-equilibrium
flux from A to B [Farkas, 1927] [Kramers, 1940]: Weighted Ensemble [Zuckerman,

Aristoff], Milestoning [Elber, Vanden Eijnden], TIS [Bolhuis, Van Erp].
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The π-return process and the Hill relation
We are now in position to state the Hill relation [Hill, 1977] [Aristoff, 2018]

[Baudel, Guyader, TL, 2022].
Proposition. For any bounded measurable function f : A → R,

E
π

(

TB−1
∑

n=0

f (Yn)

)

=
R(π)f

PR(π)(Y1 ∈ B)
.

Application of the Hill relation to π = νE
Lemma. The probability measure R(νE ) is the stationary
distribution π0 restricted to A:

R(νE ) =
π01A
π0(A)

=: π0|A.

As a consequence,

E
νE

(

TB−1
∑

n=0

f (Yn)

)

=
π0|A(f )

P
π0|A(Y1 ∈ B)

.
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The Hill relation to compute ∆A→B

Back to the mean transition time:

E
νE

(

TB−1
∑

n=0

∆(Yn)

)

= ∆Loop(π0|A)

(

1

P
π0|A(Y1 ∈ B)

− 1

)

+∆React(π0|A)

where

• ∆Loop(π0|A) = E
π0|A(τ1|Y1 ∈ A) is the mean time for a loop

from π0|A back to A (computed by brute force Monte Carlo)

• ∆React(π0|A) = E
π0|A(τ1|Y1 ∈ B) is the mean time of a

reactive trajectory from π0|A to B (computed by FFS/AMS)

• P
π0|A(Y1 ∈ B) is the probability to get a reactive traj. starting

from π0|A (computed by FFS/AMS)
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Application to the Langevin dynamics (Method 1)

For the Langevin dynamics, one has [TL, M. Ramil, J. Reygner, 2022]

π0|A(dq dp) = Z−1|p.nA(q)| exp(−β(V (q)+pTM−1p/2))σ∂A(dq) dp

which can be sampled exactly by using appropriate sampling
methods (constrained sampling on ∂A).

Remark: notice that we obtain the rigidly constrained stationary
measure on ∂A, not the δ measure on ∂A.
[Hartmann, Schuette] [Ciccotti] [Vanden-Eijnden] [TL, Rousset, Stoltz, Zhang]
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Application to the overdamped Langevin dynamics

(Method 2)

When applying Method 2 (with Σ), π0 and, a fortiori, π0|A are in
general unknown and difficult to sample.

Consequently, the formula

E
νE

(

TB−1
∑

n=0

f (Yn)

)

=
π0|A(f )

P
π0|A(Y1 ∈ B)

is not practical since π0|A is difficult to sample.

Hope: since A is metastable, maybe it is not needed to sample νE
or π0|A since, typically, the process will reach a local equilibrium
within A before going to B.

17 / 46



Introduction The Hill relation QSD approximation Bias analysis Splitting algorithms Conclusion

Using the QSD approximation

Σ

A

B
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The quasi-stationary distribution (QSD)

Lemma. Under the assumptions above, the process (Yn)n≥0 admits
a quasi-stationary distribution (QSD) νQ in A, namely a
probability measure νQ over A such that: ∀C ⊂ A,

νQ(C ) = P
νQ (Y1 ∈ C |TB > 1).

Remarks:

• QSD and Yaglom limit: if L(Yn|TB > n) admits a limit when
n → ∞, this limit is a QSD.

• The νQ-return process admits νQ as an invariant distribution:

R(νQ) = νQ .
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The Hill relation applied to π = νQ

Since R(νQ) = νQ , one has:

E
νQ

(

TB−1
∑

n=0

f (Yn)

)

=
νQ(f )

PνQ (Y1 ∈ B)
.

Remark: Starting from νQ , TB is geometrically distributed, with
parameter PνQ (Y1 ∈ B).

Back to the mean transition time [Cérou, Guyader, TL, Pommier, 2011]:

E
νQ

(

TB−1
∑

n=0

∆(Yn)

)

= ∆Loop(νQ)

(

1

PνQ (Y1 ∈ B)
− 1

)

+∆React(νQ)

What did we gain, compared to π = νE? The probability
distribution νQ can be sampled by brute force Monte Carlo.
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The algorithm to compute ∆A→B

In practice:
• Simulate the process (Xt)t≥0 (or (Qt ,Pt)t≥0) in a

neighborhood of A, registering the successive loops from A

to Σ and back to A. This gives samples distributed according
to νQ , and ∆Loop(νQ).

• Use AMS to simulate reactive trajectories, starting from the
QSD νQ . This gives an estimate of PνQ (Y1 ∈ B) and of
∆React(νQ).

Remark: Typically, one has PνQ (Y1 ∈ B) ≪ 1 and

∆React(νQ) ≪
∆Loop(νQ)

P
νQ (Y1∈B)

so that

E
νQ

(

TB−1
∑

n=0

∆(Yn)

)

≃
∆Loop(νQ)

PνQ (Y1 ∈ B)
.

This is e.g. the formula used in FFS to compute transition times
[Allen, Valeriani, ten Wolde, 2009].
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Bias analysis

∣
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∣

E
νE

(

TB−1
∑

n=0

f (Yn)

)

− E
νQ

(

TB−1
∑

n=0

f (Yn)

)

EνE

(

TB−1
∑

n=0

f (Yn)

)

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣
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Bias analysis

In practice, we thus compute E
νQ

(

∑TB−1
n=0 f (Yn)

)

instead of the

truth E
νE

(

∑TB−1
n=0 f (Yn)

)

.

Objective: Quantify the relative error

ERR =

∣

∣

∣

∣

∣

∣

E
νE

(

∑TB−1
n=0 f (Yn)

)

− E
νQ

(

∑TB−1
n=0 f (Yn)

)

EνE

(

∑TB−1
n=0 f (Yn)

)

∣

∣

∣

∣

∣

∣

.

as a function of how large is the transition time wrt the
convergence time to the QSD.
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Transition time

The time to observe a transition to B is measured by

1

p+

where p+ = supx∈A P
x(Y1 ∈ B).

Remark: One obviously has, for any x ∈ A,

1

p+
≤ E

x(TB).
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Convergence time to the QSD

The convergence time to the QSD is measured by:

TE
Q = ‖νEHQ‖TV

where

HQ f (x) = E
x

[

TB−1
∑

n=0

(f (Yn)− νQ f )

]

.

Why can TE
Q be seen as a convergence time to the QSD?

TE
Q ≤

∞
∑

n=0

‖LνE (Yn|TB > n)− νQ‖TV
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Bias analysis

Proposition. Assume that p+TE
Q < 1. Then,

ERR ≤
p+TE

Q

1− p+TE
Q

(

1 +
‖f ‖∞
|π0|Af |

)

.

This shows that the bias is small if the transition time is large
compared to the convergence time to the QSD, i.e.

1

p+
≫ TE

Q .

Remark: We have checked on examples that the upper bound is
sharp in various ways. In particular, one can replace p+ neither by
P
νQ (Y1 ∈ B) nor by P

νE (Y1 ∈ B) in the RHS.
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Example: the geometrically ergodic case

In the context of the overdamped Langevin dynamics, one can
show that: ∃νQ , ∃α > 0,∃ρ ∈ (0, 1),∀x ∈ A,∀n ≥ 0,

‖Lx(Yn|TB > n)− νQ‖TV ≤ αρn.

In this case,

TE
Q ≤ min

(

α

1− ρ
, inf
c∈(0,α)

2

1− c

⌈

ln(c/α)

ln ρ

⌉)

.

The RHS goes to min(α, 2) when ρ → 0.

Examples of sufficient conditions to get exponential convergence
[Del Moral, Horton, Jasra, 2022]: double-sided condition [Birkhoff 1957], Dobrushin
condition [Dobrushin, 1970] [Del Moral, Guionnet, 2001], Meyn-Tweedie like
conditions [Champagnat, Villemonais, 2017], ...
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Splitting algorithms

A B
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Multilevel splitting

Objective: sample trajectories between two given metastable states
A and B .

Difficulty: A trajectory leaving A is more likely to go back to A

than to reach B . This is a rare event problem.

We are interested in the rare event {τA < τB} where

τA = inf{t > 0, X t ∈ A}, τB = inf{t > 0, X t ∈ B}

Assume we are given a one dimensional function ξ : Rd → R which
”indexes” the transition from A to B in the following sense:

A ⊂ {x ∈ R
d , ξ(x) < zmin} and B ⊂ {x ∈ R

d , ξ(x) > zmax}.
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Splitting algorithm: basic idea
Let us introduce

τz = inf{t > 0, ξ(X t) > z}.

The idea of splitting algorithms (AMS, FFS, TIS, RESTART, ...) is
to write the rare event

{τB < τA}

as a sequence of nested events: for zmin < z1 < . . . < zmax,

{τz1 < τA} ⊃ {τz2 < τA} ⊃ . . . ⊃ {τzmax
< τA} ⊃ {τB < τA}

and to simulate the successive conditional events: for k = 1, 2, . . .,

{τzq < τA} knowing that {τzq−1 < τA}.

It is then easy to build an unbiased estimator of

P(τB < τA) = P(τz1 < τA)P(τz2 < τA|τz1 < τA) . . .P(τB < τA|τzmax
< τA).
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Splitting algorithm: adaptive level computation
Problem: How to choose the intermediate levels (zq)q≥1 ?

The optimum in terms of variance is attained if

P(τzq < τA|τzq−1 < τA) is constant .

This naturally leads to adaptive versions (AMS, nested sampling)

where the levels are determined by using empirical quantiles.
Choose k < n, and given n trajectories (Xm

t∧τA
)t>0,m=1,...,n in the

event {τzq−1 < τA}, choose zq so that

P(τzq < τA|τzq−1 < τA) ≃

(

1−
k

n

)

.

The level zq is the k-th order statistics of supt≥0 ξ(X
m
t∧τA

):

sup
t≥0

ξ(X
(1)
t∧τA

) < . . . < sup
t≥0

ξ(X
(k)
t∧τA

) =: zq < . . . < sup
t≥0

ξ(X
(n)
t∧τA

).
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AMS: estimator of the rare event probability
Let Qiter be the number of iterations to reach the level zmax:

Qiter = min{q ≥ 0, zq > zmax}

(where z0 is the k-th order statistics of the n initial trajectories). Then,
one obtains the estimator:

(

1−
k

n

)Qiter

≃ P(τzmax
< τA).

An estimator of P(τB < τA) is

p̂ =

(

1−
k

n

)Qiter

p̂corr

where p̂corr is the proportion of trajectories reaching B before A at
the last iteration Qiter.
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AMS Algorithm

A B
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AMS Algorithm

A B
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AMS Algorithm

A B
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AMS Algorithm

A B
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AMS Algorithm

A B
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AMS Algorithm

A B
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AMS Algorithm

A B
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AMS Algorithm: unbiasedness

In practice, the dynamics are discrete in time and this requires
some adaptation of the AMS algorithm.

Theorem [C.-E. Bréhier, M. Gazeau, L. Goudenège, TL, M. Rousset, 2016]: For any choice of
ξ, n and k ,

E(p̂) = P(τB < τA).

The proof is based on Doob’s stopping theorem on a martingale built using filtrations indexed by the level sets of

ξ. Actually, this result is proved for general path observables and in a much more general setting.

Practical counterparts:

• The algorithm is easy to parallelize.

• One can compare the results obtained with different reaction
coordinates ξ to gain confidence in the results.

40 / 46



Introduction The Hill relation QSD approximation Bias analysis Splitting algorithms Conclusion

Results using NAMD

AMS can be used to

• analyze the ensemble of reactive paths (transition states,
transition mechanisms, committor function)

• compute transition times

AMS is easy to implement (a pre-existing MD code can be used as
a black-box). It is currently implemented in the NAMD software
(collaboration with SANOFI, C. Mayne and I. Teo, PhD of L. Lopes).

One example: computing the benzamidine-trypsin dissociation rate

41 / 46



Introduction The Hill relation QSD approximation Bias analysis Splitting algorithms Conclusion

Benzamidine-trypsin (1/2)
Estimation of the off rate of benzamidine from trypsin [I. Teo, C. Mayne, K.

Schulten and TL, 2016].
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Benzamidine-trypsin (2/2)

We obtain a dissociation rate koff = (260 ± 240)s−1 within the
same order of magnitude as the experimentally measured rate
(600 ± 300)s−1.

The overall simulation time taken, summed over all 1000 replicas,
was 2.1µs (2.3µs after including direct MD and steered MD
simulations), which is four orders of magnitude shorter than the
estimated dissociation time of one event.

The main practical difficulty seems to be the determination of a
’good’ domain A.

Computational setting: 68 789 atoms, with 21 800 water molecules, 62 sodium ions, and 68 chloride ions. Water:

TIP3P model. CHARMM36 force field, with parameters for benzamidine obtained from the CGenFF force field.

NPT conditions, at 298 K and 1 atm Langevin thermostat and barostat settings, using 2 fs time steps. AMS with

n = 1000 replicas and k = 1.
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Conclusion

We now have a good understanding of the formula which is used by
many algorithms (FFS, AMS and the “source and sink methods”:
TIS, WE, milestoning) to compute the mean transition time:

• These methods are exact if the process is initialized in the
initial state with the correct distribution: the reactive entrance
distribution. This can be used in combination of the Hill
relation to build unbiased estimators of the mean transition
time for the Langevin dynamics.

• The reactive entrance distribution can be replaced by the
QSD if A is metastable. This can be used in combination of
the Hill relation to build estimators with controled bias if A is
metastable.
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Conclusion

Current research directions:

• We analyzed the bias, and not the variance. This should be
possible, at least in simple prototypical cases, and maybe give
some hints on good choices for some numerical parameters
(e.g. position of Σ).

• In practice, it is observed that the initial conditions that
indeed yield a transition to B are concentrated on some parts
of the boundary ∂A. We are currently working on good
sampling methods for these initial conditions [L. Lopes, T. Pigeon].

In practice, obtaining a precise result requires a throrough sampling
of νQ .
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