
Machine learning of large deviations

Hugo Touchette

Department of Mathematical Sciences
Stellenbosch University, South Africa

Rare Events: Analysis, Numerics, and Applications
Brin Mathematics Research Center

University of Maryland, USA

• Jiawei Yan and Grant Rotskoff
PRE 105, 024115, 2022
arxiv:2107.03348

Hugo Touchette (Stellenbosch) Machine learning of large deviations March 2023 1 / 14



Dynamical large deviations

• Markov process: (Xt)
T
t=0

• Observable: AT = AT [x ]

Rare event probability

P(AT = a) ≈ e−TI (a)

Generating function

E [eTλAT ] ≈ eTψ(λ)

Prediction problem

• How are fluctuations created?

• Conditioning: Xt |AT = a

• Fluctuation / effective process
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Different large deviations

Transition event

P(X ε
τ ∈ B|X ε

0 ∈ A) ≈ e−I/ε

• Low-noise limit

• Transition path

Extensive event

P
(
1
T

∫ T
0 f (Xt)dt ∈ C

)
≈ e−TI

• Long-time limit

• Family of paths (process)

Physics

• Work done WT on a system

• Heat QT exchanged

• Fluctuations related to dissipation
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FIG. 1. Schematic view of the experimental setup, displaying the
trapping laser (785-nm semiconductor laser, optically isolated and
expanded) and the probe laser (639 nm) used for recording the instan-
taneous displacement of a 1-µm polystyrene bead. The trapping laser
is focused inside a fluidic cell in which the bead is immersed using
a polarizing beam splitter (PBS) and a water immersion objective
(Obj1, 60×, NA = 1.2). The quarter wave-plate (λ/4) ensures that
the light scattered by the trapped bead and collected by Obj1 is
directed toward the on-axis photodiode. The probe laser illuminates
the bead from the backside using a second objective (Obj2, 60×,
NA = 0.7) and is collected by Obj1. A dichroic beamsplitter sends
the probe light to the second photodiode that gives the signal used
for our analyses.

(inertial) regime. Moreover, these estimators together will turn
very useful for characterizing colored noise and nonergodic
effects that enrich the physics of more complex Brownian
systems.

II. WIENER VERSUS ORNSTEIN-UHLENBECK
CROSSOVER IN AN OPTICAL TRAP

Free Brownian motion driven only by the Gaussian white
noise of thermal fluctuations is described by the Wiener pro-
cess Wt . The displacement of the overdamped free Brownian
object reads

dxt =
√

2DdWt , (1)

working directly with the differential dWt with the following
properties: 〈dWt 〉 = 0, 〈dWt dWt ′ 〉 = δ(t, t ′)dt . The diffusion
coefficient D = kBT/γ involves the Boltzmann constant kB,
the temperature of the surrounding fluid T , and the Stokes
drag coefficient γ .

Inside the trap, the harmonic optical potential modifies the
stochastic process by exerting on the object a restoring force
characterized by a constant stiffness κ . The same displace-
ment now follows the Ornstein-Uhlenbeck process:

dxt = − κ

γ
xt dt +

√
2DdWt . (2)

Our experiment consists of trapping in ultrapure water a
single Brownian micron-sized spherical bead in the harmonic
potential created at the waist of a focused laser beam and
recording in real time the overdamped position of the trapped
bead. The experimental setup is schematized on Fig. 1 and
detailed in Appendix A. The trapping potential is formed by
focusing a 785-nm laser beam and the instantaneous position
x(t ) is recorded using a second 639-nm low-power laser acting
as a probe, as shown in Fig. 1. All the experimental results pre-

FIG. 2. The instantaneous position of the bead trapped at the
laser waist is recorded along the optical axis with an acquisition
frequency of 215 = 32 768 Hz for 10 min. The result is a very long
trajectory that can be used as such. It can also be recombined into an
ensemble of shorter trajectories, as schematized. In our experiments,
the thermally limited axial displacement δz ∼

√
kBT/κ ∼ 40 nm of

the bead taking the values extracted below in Fig. 3 is fully contained
within the Rayleigh range ∼0.5 µm of the 639-nm laser, leading
to a linear relation between the intensity modulation and the axial
displacement. Corresponding calibration procedures are described in
Ref. [9].

sented in this paper are obtained from a 10-min-long trajectory
(i.e., 1.97 × 107 successive position measurements acquired
at an acquisition frequency of 215 = 32 768 Hz). As noted in
the Introduction, this long trajectory can be used as a whole,
for example, in high-sensitivity measurements or can also be
cut and rearranged, for instance in stochastic thermodynamics
studies, in an ensemble of subtrajectories if the system is
ergodic. The procedure is sketched in Fig. 2 and relies on the
fact that the modulation of the 639-nm light is proportional to
the axial displacement of the bead inside the trap.

These data are compared, throughout this paper, with
numerical simulations obtained from an algorithm for the
Wiener process,

xt+%t = xt +
√

2D%tθt , (3)

where θ is a dimensionless Gaussian white noise with 〈θt 〉 =
0, 〈θtθt ′ 〉 = δ(t − t ′), according to the methods detailed in
Ref. [21]. By the same token, the algorithm for the Ornstein-
Uhlenbeck process is

xt+%t = xt − κ

γ
xt%t +

√
2D%tθt . (4)

This discretization method, known as the Euler-Maruyama
method, corresponds to an O(%t1/2) approximation of Itô-
Taylor expansions [22]. As discussed in detail in Appendix D,
higher order terms lead to a more efficient algorithm known
as the Mildstein algorithm, which our simulations are based

032132-2

Simulations
• Time-averaged estimators

• Convergence determined by LDs

• Non-reversible acceleration
[Rey-Bellet + Spiliopoulos 2015]
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Large deviation theory

LD functions
• Rate function:

I (a) = max
λ∈R
{λa− ψ(λ)}

• SCGF:
ψ(λ) = dom eigenval(Lλ)

Fluctuation process

dX̃t = F̃ (X̃t)dt + σdWt

• Modified drift:

F̃ = F + D∇ ln rλ, I ′(a) = λ

t

xHtL
a

PHA T=
aL

• Effective process creating fluctuation

• Efficient process for importance sampling
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Optimal control representation

[Fleming 70s-80s; Chetrite & HT 2013-15; Jack & Sollich 2015]

X t ∼ P[x ] −→ X̃ t ∼ P̃[x ]

• Cost function:

CT =
1

T
ln

P̃[x ]

P[x ]
, EX̃ [CT ] =

1

T
D(P̃||P)

t

xHtL

SCGF

ψ(λ) = lim
T→∞

min
X̃

EX̃ [λAT − CT ]

Rate function

I (a) = lim
T→∞

min
X̃t

EX̃ [AT ]=a

EX̃ [CT ]

• Dual optimization problems
• Minimizer: Effective process
• Cost estimator:

ĈT =
1

2σ2

∫ T

0
[F (X̃t)− F̃ (X̃ t)]2dt
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Different methods

,
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Numerical
• Spectral problem

• Control problem

Simulation
• Importance sampling

• Splitting / cloning

Problems
• High dim functions

• Find optimal sampler

• Simulate many traj
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Machine learning approaches

• Solve spectral or control problem

• Representation: rλ(x) ≈ u(x ;λ, θ︸︷︷︸
params

)

• Basis functions: David Limmer’s group, Berkeley

[Ray et al. PRL 2017, JCP 2020]

[Das et al. JCP 2019]

• MPS and tensor nets: Juan Garrahan’s group, Nottingham

[Bañuls & Garrahan PRL 2019]

[Causer et al. PRE 2021]

• Neural networks: [Oakes et al. ML Sci. & Tech. 2020]

• Reinforcement learning: [Rose et al. NJP 2021], [Das et al. JCP 2021]

Our approach

• Trajectory gradient minimization of control cost

• NN representation of control force
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Stochastic minimization

Algorithm

0 Initialize NN: F̃ (x) = u(x ;λ, θ)

1 Simulate M trajectories (batches)

2 Estimate cost ĈM,T (λ, θ)

3 Compute gradient ∇θĈM,T (λ, θ)
• Autodiff
• Adjoint method

4 Update NN: θ′ = θ − γ∇θĈM,T

5 Repeat 1-4 (training)

6 Repeat for different λ

0 T

Xt

...

1

M

2
...

...

Extras
• Transfer learning: λ : 0→ ∆λ→ 2∆λ→ · · ·
• Replica exchange: λ↔ λ′
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Application 1: Simple diffusion

[Nemoto et al. PRE 2016]

• Dynamics:

dXt = −X 3
t +
√

2εdWt

• Observable:

AT =
1

T

∫ T

0
Xt(Xt + 1)dt

• NN: 2 layers, hidden dim = 50

• Training step: 220 traj, T = 10

• Autodiff (PyTorch)

• DPT at λ = 0

• No slowing down ε→ 0
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Comparison with cloning
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• Cloning with feedback [Nemoto et al. PRE 2016]

• Time, single workstation, mins

• N = batch size = no. trajectories
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Application 2: Active Brownian particles

[Cagneta et al. PRL 2017; Chiarantoni et al. JPA 2020; GrandPre et al. PRE 2018, PRE 2021]

Ẋ
(i)
t = −µ∂U(Xt)

∂x(i)︸ ︷︷ ︸
repulsive pair potential

+ vb
(i)
t︸︷︷︸

active drive

+
√

2Dξ
(i)
t︸ ︷︷ ︸

noise

• Active force:

b
(i)
t = [cosφ

(i)
t , sinφ

(i)
t ], φ

(i)
t =

√
6Dη

(i)
t

• Directional persistence at short time scales

• Brownian run-and-tumble
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Figure 1: An active colloid on a two-dimensional (x, y)-plane. The vector !F (with

components Fx and Fy) denotes the self-propulsion force emerging due to interactions

with the environment. x(t) and y(t) are the coordinates of the instantaneous position of

the centre of the colloid.

and the limit of an infinitely long trajectory. For a single trajectory of duration T , one

defines the single trajectory spectral density (STSD)

Sx(f, T ) =
1

T

∣∣∣∣
∫ T

0

dt eift x(t)

∣∣∣∣
2

, (4)

which is a functional of the trajectory and itself a random process. We denote its average

by µx(f, T ) = 〈Sx(f, T )〉 so that the spectral density is obtained as

µx(f) = lim
T→∞

µx(f, T ) . (5)

We note that a standard textbook analysis focuses precisely on µx(f) which is an

ensemble-averaged property that can be understood as a suitable Fourier transform of the

covariance function of the process x(t). In some instances, however, the limit T → ∞
does not exist (see, e.g., Refs. [48–53, 55–57] for some examples) and one has to resort

to either alternative definitions of the spectral density (e.g. the one due to Wigner

and Ville, see Refs. [48, 56] and references therein), or operate directly with the finite-

T counterpart µx(f, T ). Indeed, this quantity is well-defined for any finite T and also

gives access to useful information about the ageing properties (T -dependence) of spectral

densities [58–63]. In particular, µx(f, T ) evaluated at zero frequency reads

µx(f = 0, T ) =
1

T

〈(∫ T

0

dt x(t)

)2
〉

, (6)

[Squarcini et al 2021]

[Callegari and Volpe 2019]
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Results

• Entropy production:

SN,T =
1

NT

N∑

i=1

∫ T

0
D−1vb(i)t ◦dX(i)

t

• Different fluctuation phases
• SN,T = 〈S〉:

• Natural system
• No clustering

• SN,T < 〈S〉:
• Directional force inhibited
• Clustering

• Dynamical phase transition?

• 6 layers, hidden dim = 1000

• M = 75 or 20 for N = 200

• Adjoint gradient
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Conclusions

• Scalable: Trajectories not stored

• Agnostic: No tuned representation

• Stable: Simple additive estimator

• Direct error estimates (batch means)

• Can be applied to Markov chains / jump processes

Future work

• Physics of modified force / interactions

• Trade-off density / flux

• Comparisons with other algorithms / benchmarks

J. Yan, H. Touchette, G. Rotskoff
Learning nonequilibrium control forces to characterize dynamical phase transitions

PRE 105, 024115, 2022, arxiv:2107.03348

Source code: github.com/quark-strange/machine learning LDP
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Gradient computation

Automatic differentiation [Baydin et al. JMLR 2018]

def CostFunction(traj, params):

...

dC = grad(CostFunction, some_traj, some_params)

• PyTorch, TensorFlow, JAX

• Limited by size of computational graph

Adjoint sensitivity method [Li et al. 2020]

ẋ(t) = u(x(t); θ)

∂

∂θ
C = −

∫ 0

T
h(t)︸︷︷︸

Lagrange param

∂u(x(t); θ)

∂θ︸ ︷︷ ︸
known

dt

ḣ(t) = −h(t)
∂u(x(t); θ)

∂x(t)
, h(T ) =

∂C (x(T ))

∂x(T )

Hugo Touchette (Stellenbosch) Machine learning of large deviations March 2023 14 / 14


