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A NOTE ON THE KORTEWEG-DE-VRIES EQUATION

The Korteweg-de-Vries equation
ut + uux + βuxxx = 0 (1)

originally arose in the theory of surface waves on shallow water waves. Later it was encountered
in numerous other problems. u is proportional to the horizontal component of the velocity which
is constant over the channel depth. An analogous equation is also valid for the elevation of the
surface over its undisturbed level. The KdV equation has a solution of traveling wave type, the so
called soliton:
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This solution is very stable. Let us derive it. We will look for u(x, t) = w(x−st) ≡ w(y), satisfying
the boundary conditions w(±∞) = 0 and w′(±∞) = 0.
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Since w and w′ are zero at ±∞, C = 0 and B = 0. We continue.
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The integral in the left-hand side can be taken using the substitution
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Then we have ∫
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where
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This equation shows that p ≤ 1. Now we continue.
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Let us introduce
A = ±(y − x0)

√
s/β.

Opening the absolute value we obtain
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Now we return to the variable w.
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Using the identity
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we get
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) .
Introducing u0 = 3s and plugging in y = x− st we obtain Eq. (2).
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