Homework 5. Due Thursday, Nov. 19

1. ($\mathbf{5} \mathbf{~ p t s}$) Show that the Laplacian eigenmap to \mathbb{R}^{m} is the solution to the following optimization problem:

$$
\begin{equation*}
\min \sum_{i, j} k_{i j}\left\|y_{i}-y_{j}\right\|_{2}^{2} \quad \text { subject to } \quad Y^{\top} Q Y=I, \quad Y^{\top} Q 1_{n \times 1}=0 . \tag{1}
\end{equation*}
$$

Here, y_{i} 's are columns of Y, and Y is $n \times m$, and the rest of notation as in Section 7.3 of 4-DimReduction.pdf.
2. (20 pts) The goal of this problem is to practice and compare various methods for dimensional reduction.

- Methods:

(a) PCA;
(b) Isomap;
(c) LLE;
(d) t-SNE;
(e) Diffusion map.

Diffusion map should be programmed from scratch. Readily available codes can be used for the rest. For example, the built-in Matlab function can be used for tSNE; S. Roweis's code can be used for LLE; my code for isomap is in the lecture notes. If you use some standard code, specify its source, read its description, and be ready to adjust parameters in it.

- Dataset 1: Scurve generated by MakeScurveData.m: 352 data points in 3D forming a uniform grid on the manifold.

Figure 1: Scurve

- Dataset 2: Scurve generated by MakeScurveData.m and perturbed by Gaussian noise. Try various intensities, push each method to its limit.
- Dataset 3: "Emoji" dataset generated by MakeEmojiData.m: a set of 1024 images each one is 40×40 pixels. Images vary from a smiley face to an angry face and in the degree of blurring. Its subsampled set is shown in Fig. 2. Note
that picking a good value of ϵ for the diffusion map might require some effort as the distances between the nearest neighbors are very nonuniform. You should be able to get a nice 2D surface embedded into $3 D$ with a right ϵ. Using $\alpha=0$ or $\alpha=1$ is up to you.

Figure 2: The subsampled "Emoji" dataset.

- Submit a report on the performance of these methods on each dataset. Include all necessary figures.

