
INTRODUCTION

MARIA CAMERON

Contents

1. What is data science? 1
2. Data Science, Machine Learning, and Scientific computing 2
3. Course syllabus and necessary background 3
4. A brief review of vector and matrix norms, basic matrix decompositions, and

condition numbers 3
4.1. Vector spaces 3
4.2. Vector norms 6
4.3. Matrix norm 7
4.4. Eigenvalues and eigenvectors 7
4.5. QR and SVD 10
5. Condition number 13
5.1. Condition numbers for differentiable functions 13
5.2. Condition number for matrix-vector multiplication 13
5.3. Condition number for solving linear system 14
6. Basics of optimization problems 14
References 15

1. What is data science?

According to Wiki, data science is an inter-disciplinary field that uses scientific methods,
processes, algorithms and systems to extract knowledge and insights from many structural
and unstructured data. Data science is related to data mining, machine learning and big
data. A very interesting philosophical paper “50 Years of Data Science” by David Donoho
offers an extensive discussion on what is Data Science, when was it born, what is its present,
and what is its future. The gist of it is that Data Science is a science about learning from
data. It is a massive explosion of problems and methods that happened as a result of
synthesis of statistics and computer science (this is my understanding of it). The activities
of Data Science are classified into the following 6 divisions (D. Donoho):

(1) Data Exploration and Preparation;
(2) Data Representation and Transformation;
(3) Computing with Data;

1

https://en.wikipedia.org/wiki/Data_science
http://courses.csail.mit.edu/18.337/2015/docs/50YearsDataScience.pdf
https://statistics.stanford.edu/people/david-donoho

Fall 2022 AMSC808N/CMSC828V

(4) Data Modeling;
(5) Data Visualization and Presentation;
(6) Science about Data Science.

Year 1962 can be considered as the years of birth of Data Science: John Tukey published
a paper The Future of Data Analysis in the journal The Annals of Mathematical Statistics
(Vol. 33, No. 1 (Mar., 1962), pp. 1–67), specializing on definitions, theorems, and rigorous
proofs, where he expressed his point that the demand for data gathering, data analysis
and interpretation goes far beyond what is offered by the classical statistical “diet”. This
paper shocked its readers, academic statisticians, and has become highly influential.

2. Data Science, Machine Learning, and Scientific computing

In Spring 2019, David Bindel spent part of his sabbatical in the UMD and delivered a
series of 6 lectures entitled “Numerical Methods for Data Science” which was a compres-
sion of the course that he developed in Cornell University to make Numerical Methods
classes appealing for CS students. This was a really inspirational moment for me. While
listening to Bindel, I was thinking: (i) why don’t we offer such a course? and (ii) I
can do it and I am really thrilled about doing it despite it will require a lot of learn-
ing. I taught this course in Fall 2020 for the first time. Course materials from Fall 2020
and Fall 2021 are available on my personal website: https://www.math.umd.edu/ mari-
akc/NumericalMethodsforDataScienceAndMachineLearning.html.

I believe we are currently living through an exciting time of a revolution in compu-
tational mathematics that started in ∼2018 and is marked by the rapid development of
methods based on techniques borrowed from data science, machine learning, and quan-
tum physics [5]. While the traditional numerical methods for solving partial differential
equations (PDEs) based on finite difference and finite element discretization still remain
very important in such applications as fluid dynamics and as reliable and well-understood
testing techniques, their applicability is limited to low-dimensional problems as their cost
grows exponentially with the dimension of the ambient space. Novel numerical methods
based on (i) exploiting the intrinsic low-dimensional geometry of the problem hidden in the
high-dimensional space by means of diffusion maps [6], or (ii) the representation power of
neural networks [7] and (iii) tensor trains [8] allow us to tackle higher-dimensional prob-
lems inaccessible to the traditional techniques. Due to the novelty of these methods in
computational mathematics, the most basic questions are yet to be answered. How can
we control numerical errors? How one can make reasonable choices for the settings of the
method under consideration in a systematic way? How does the computational cost scale
with the problem size?

The use of artificial neural networks enables the numerical solution to high-dimensional
PDEs that used to be infeasible due to the curse of dimensionality. Within the last couple
of years, I found that many of my mathematical and scientific friends have harnessed
techniques of machine learning and made huge progress in such fields as PDE solving
[1], rare events quantification in stochastic processes [2, 3], geophysics, and computational
chemistry [4], also see web page of G. Rotskoff.

https://pdfs.semanticscholar.org/192e/08be6c4dc6b9b2ed09fddcb6b67920ba7c7c.pdf
http://www.cs.cornell.edu/~bindel/
http://www.cs.cornell.edu/~bindel/blurbs/nmds-umcp.html
https://www.math.umd.edu/~mariakc/NumericalMethodsforDataScienceAndMachineLearning.html
https://www.math.umd.edu/~mariakc/NumericalMethodsforDataScienceAndMachineLearning.html
https://seg.org/Education/Lectures/Distinguished-Lectures/2020-DL-Fomel
https://statmech.stanford.edu

Fall 2022 AMSC808N/CMSC828V

Novel methods based on reinforcement learning, (see the web page of Prof. Haizhao
Yang) aim at approximating solutions to PDEs by formulas of finite complexity and exhibit
dimension-independent computational cost.

Meshless kernel-based methods such as diffusion maps-based PDE solvers also are suit-
able for high dimensions provided that data points occupy a low-dimensional unknown
manifold (e.g. papers by Evans, Cameron, and Tiwary).

Quantum algorithms allow for polynomial-time solutions for NP-hard problems such as
factorization to prime numbers. Currently, they are a subject of active research. They,
however, are beyond the scope of this course.

3. Course syllabus and necessary background

The course will consist of four chapters.

(1) Optimization for large-scale machine learning. Some important references: the
review paper “Optimization methods for machine learning” by L. Bottou, F. Cur-
tis, and J. Nocedal and the large textbook J. Nocedal and S. Wright “Numerical
Optimization”;

(2) Matrix data and latent factor models. Some important references: D. Bindel’s
course “Numerical Methods for Data Science” delivered in the summer school in
Shanghai (because it has a really helpful set of lecture notes ,);

(3) Nonlinear dimensionality reduction. Some important references: A. Benson’s course
“Numerical Methods for Data Science” and the paper “Diffusion Maps” by R. Coif-
man and S. Lafon;

(4) Numerical methods for graph data analysis. Some important references: the review
paper M. Newman “Structure and function of complex networks” and references
therein, A. L. Barabasi Network Science

Some background for this class from linear algebra, calculus, CS, Matlab, floating point
arithmetic, and conditioning is compiled in D. Bindel’s note.

4. A brief review of vector and matrix norms, basic matrix decompositions,
and condition numbers

This review is largely based on D. Bindel’s and J. Goodman’s online textbook “Principles
of Scientific Computing” and J. Demmel’s textbook ”Applied Numerical Linear Algebra”
[9]. A partially debugged version of Bindel&Goodman is available here.

4.1. Vector spaces.

Definition 1. A vector space V is a set closed with respect to the operations of addition
“+”: V × V → V , and multiplication by a scalar “⋅α”: V → V . The operations satisfy the

https://haizhaoyang.github.io
https://haizhaoyang.github.io
https://epubs.siam.org/doi/abs/10.1137/16M1080173?journalCode=siread
https://epubs.siam.org/doi/abs/10.1137/16M1080173?journalCode=siread
https://link.springer.com/book/10.1007/978-0-387-40065-5
https://link.springer.com/book/10.1007/978-0-387-40065-5
https://www.cs.cornell.edu/~bindel/class/sjtu-summer19/
https://www.cs.cornell.edu/~bindel/class/sjtu-summer19/
https://www.cs.cornell.edu/~bindel/class/sjtu-summer19/
https://www.cs.cornell.edu/courses/cs6241/2020sp/
https://www.cs.cornell.edu/courses/cs6241/2020sp/
https://www.sciencedirect.com/science/article/pii/S1063520306000546
https://www.sciencedirect.com/science/article/pii/S1063520306000546
https://www.semanticscholar.org/paper/The-Structure-and-Function-of-Complex-Networks-Newman/e6c4925fb114d13a8568f88957c167c928f0c9f1?p2df
http://networksciencebook.com/chapter/1#networks
http://www.cs.cornell.edu/~bindel/class/sjtu-summer19/lec/background.pdf
https://cs.nyu.edu/courses/spring09/G22.2112-001/book/book.pdf
https://cs.nyu.edu/courses/spring09/G22.2112-001/book/book.pdf
https://epubs.siam.org/doi/book/10.1137/1.9781611971446?mobileUi=0
https://www.dropbox.com/s/bj0br12jrgo1br7/BindelGoodman.pdf?dl=0

Fall 2022 AMSC808N/CMSC828V

following properties.

(1) a + b = b + a,

(2) (a + b) + c = a + (b + c),
(3) α(a + b) = αa + αb,

(4) (α + β)a = αa + βa,

(5) there is 0 ∈ V s.t. a + 0 = a for any a ∈ V,
(6) for any a ∈ V there is (−a) ∈ V s.t. a + (−a) = 0,

(7) α(βa) = (αβ)a,
(8) 1a = a for any a ∈ V.

Exercise Prove that for any a ∈ V 0a = 0 where 0 ∈ R while 0 ∈ V .

Below we remind some basic concepts. Please read Sections 4.2.1 and 4.2.2 in Bindel&Goodman
for more details.

● A subspace W of a vector space V is a subset of V that is a vector space itself with
respect to the same operations as in V , i.e., W is closed under addition and scalar
multiplication: for any w1,w2 ∈ W and α ∈ R or C, w1 +W2 ∈ W and αw1 ∈ W .
Therefore, to check if W is a subspace, it suffices to check if it closed under addition
and scalar multiplication. The properties of the operations are inherited for those
in V .

● The span of vectors v1, ..., vn in V is the set of their all possible linear combinations.
● We say that vectors v1, ..., vn are linearly independent if any their zero linear

combination implies that all of its coefficients are zero.
● A basis of V is a subset of vectors {bi}i∈I such that:

(1) any v ∈ V can be represented as

v =∑
i∈I

αibi,

(2) and the {bi}i∈I is minimal in the sense such that for any m ∈ I one can find
v ∈ V such that

v − ∑
i∈I/m

αibi ≠ 0

for any set of values of αi, i ∈ I/{m}.
Recall a theorem in linear algebra saying that if there is a basis in V {bi}ni=1, then
any other basis in V also has n vectors.

● If the number of vectors in a basis of V is finite, this number is called the dimension
of V . Otherwise, the vector space is infinitely dimensional.

● A linear transformation or a linear map for a vector space V to a vector space W
is a map L ∶ V →W such that for any v1, v2 ∈ V and any α ∈ R or C

L(v1 + v2) = L(v1) +L(v2) and L(αv1) = αL(v1).

https://www.dropbox.com/s/bj0br12jrgo1br7/BindelGoodman.pdf?dl=0

Fall 2022 AMSC808N/CMSC828V

Let B = {bi} be a basis in V and E = {ei} be a basis in W . Then by linearity we
have:

L(v) = L
⎛
⎝∑j

vjbj
⎞
⎠
=∑

j

vjL(bj) =∑
j

vj∑
i

aijei where L(bj) =∑
i

aijei.

Therefore, we can define the matrix of the linear transformation

A =E [L]B = (aij).

Its columns are the images of the basis vectors in V written in the basis in W .
● A matrix product AB is defined if and only if the number of columns in A is equal

the number of rows in B. The matrix product AB corresponds to a composition of
linear transformations with matrices A and B. Matrix multiplication is associative
but not commutative.

● For a matrix A = (aij) the transpose is defined by A⊺ ∶= (aji). If A has complex
entries, than its adjoint is defined as its transpose with complex conjugation: A∗ ∶=
(āji) .

Now let us list some examples illustrating these concepts.

Example (1) Rn is an n-dimensional vector space. Its standard basis is {ei} where
ei is a vector with entry 1 at the ith place and the rest of entries being zeros. Its
subset of vectors satisfying ∑ni=1 ai = 0 is an n − 1-dimensional subspace, while the
subset of vectors satisfying ∑ni=1 ai = 1 is not a subspace as it is not closed under
addition and scalar multiplication.

(2) The set of polynomials of degree less or equal than n denoted by Pn is an (n + 1)-
dimensional vector space. One basis in it is the set

X ∶= {1, x, . . . , xn}.

(3) An example of linear transformation from Pn to Pn−1 is the differentiation:

d

dx
∶ Pn → Pn−1.

Its matrix in the basis X is

DX ∶=

⎡⎢⎢⎢⎢⎢⎢⎢⎣

0 1 0 . . . 0
0 0 2 . . .

⋱
0 . . . 0 n

⎤⎥⎥⎥⎥⎥⎥⎥⎦

.

If we pick another basis, for example, Chebyshev’s basis, the differentiation matrix
will be different.

(4) Example of an infinite-dimensional space is the space of all polynomials, the space
of all continuous functions on an interval [a, b], the space of all continuous functions
on [a, b] satisfying the homogeneous boundary conditions f(a) = f(b) = 0, etc.

Fall 2022 AMSC808N/CMSC828V

4.2. Vector norms.

Definition 2. Norm is a function defined on a vector space V :

N ∶ V Ð→ R+ ≡ [0,+∞]
such that

(1) ∥a∥ ≥ 0, ∥a∥ = 0 iff a = 0,

(2) ∥αa∥ = ∣α∣∥a∥,
(3) ∥a + b∥ ≤ ∥a∥ + ∥b∥.

Example The space of continuous functions on the interval [a, b] with the maximum norm

V = C([a, b]), ∥f∥ = sup
[a,b]

∣f(x)∣.

If the interval is finite, ∥f∥ = max[a,b] ∣f(x)∣.

Example The space of continuous functions on the interval [a, b] with the maximum norm

V = Lp([a, b]), ∥f∥ = (∫

b

a
∣f(x)∣

p
dx)

1/p

.

Example The space V = lp of all sequences {ak}
∞

k=1 such that

∥{a}∥ ∶= (

∞

∑

k=1

∣ak ∣
p
)

1/p

<∞.

In particular, l1 is the space of all absolutely convergent sequences as

∣a∣ ∶=
∞

∑

k=1

∣ak ∣ <∞.

Example The space V = l∞ of all sequences {ak}
∞

k=1 such that

∥{a}∥ ∶= sup
k

∣ak ∣ <∞.

In other words, l∞ is the space of all bounded sequences.

The concept of orthogonality is generalized to vector spaces via the notion of the inner
product.

Definition 3. An inner product is a function (⋅, ⋅) ∶ V × V Ð→ R or C satisfying

(1) (a,a) ≥ 0, (a,a) = 0 iff a = 0,

(2) (a,b) = (b,a),
(3) (a,b + c) = (a,b) + (a,c),
(4) (αa,b) = α(a,b).

The norm induced by an inner product is given by ∥f∥ =
√

(f, f). The norms that are
associated with inner products are especially important.
Example (1)

f, g ∈ L2([a, b]), (f, g) = ∫
b

a
f(x)g(x)dx.

(2) Chebyshev inner product.

f, g ∈ C([−1,1]), (f, g) = ∫
1

−1

f(x)g(x)
√

1 − x2
dx.

Suppose we are looking at the error e(x) = f(x) − p(x) where f is a given function and p is its approximation.
The Chebyshev norm puts more weight to the ends of the interval, i.e., the error near the ends of the interval
contributes more to the norm than the error near its midpoint.

Fall 2022 AMSC808N/CMSC828V

(3) Hermite inner product.

f, g ∈ C([−∞,∞]), (f, g) = ∫
∞

−∞

f(x)g(x)e
−x2

dx.

Suppose we are looking at the error e(x) = f(x) − p(x) where f is a given function and p is its approximation.
Only the error around the origin will contribute significantly to the norm.

4.3. Matrix norm.

Definition 4. The norm of a matrix associated with the vector norm ∥ ⋅ ∥ is defined as

(1) ∥A∥ = max
x≠0

∥Ax∥
∥x∥

.

The geometric sense of the matrix norm is the maximal elongation of a unit vector as a
result of the corresponding linear transformation.

Exercise Let A = (aij) be an m × n matrix, m ≥ n. Show that then:

(1) For the l1-norm,

∥A∥1 = max
j
∑
i

∣aij ∣,

i.e., the maximal column sum of absolute values.
(2) For the max-norm or l∞-norm

∥A∥max = max
i
∑
j

∣aij ∣,

i.e., the maximal row sum of absolute values

4.4. Eigenvalues and eigenvectors. Finding eigenvalues and eigenvectors is often very
useful in many different contexts. For example, the general analytic solution to a linear
system of ODEs ẋ = Ax is often written in terms of eigenvalues and eigenvectors of A. The
2-norm of A is expressed in terms of eigenvalues of A⊺A.

4.4.1. Diagonalizable matrices. Recall that an n × n matrix A is called diagonalizable if it
has n linearly independent eigenvectors. In this case, A can we written as

(2) A = RΛR−1 ≡ RΛL = [r1 r2 ⋯ rn
↓ ↓ ↓]

⎡⎢⎢⎢⎢⎢⎢⎢⎣

λ1

λ2

⋱
λn

⎤⎥⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎢⎣

l1 →
l2 →
⋮
ln →

⎤⎥⎥⎥⎥⎥⎥⎥⎦

.

The columns of R are the right eigenvectors of A. They satisfy:

Arj = λjrj .

The rows of L ∶= R−1 are the left eigenvectors of A satisfying

ljA = λjlj .

Even if A is real, eigenvectors and eigenvalues do not need to be real: they are complex in
the general case.

Fall 2022 AMSC808N/CMSC828V

4.4.2. Symmetric matrices. In the special case where A is real and symmetric, there al-
ways exists an orthonormal basis of real eigenvectors, the eigenvalues are real, and the
eigenvectors corresponding to distinct eigenvalues are orthogonal.

Exercise Let A = (aij) be an m×n matrix, m ≥ n. Show that then for the vector l2-norm,

∥A∥2 =
√
ρ(A⊺A).

Solution Recall that the vector 2-norm is given by ∥x∥2 =
√

x⊺x. Using this we get

∥A∥2 = max
∥x∥2=1

∥Ax∥2 = max
x⊺x=1

√

x⊺A⊺Ax = max
x⊺x=1

√

x⊺A2x.

Since A⊺A is symmetric, its eigen-decomposition is given by

A
⊺

A = UΛU
⊺

,

where U is an orthogonal matrix (i.e., U⊺U = UU⊺
= I, or U⊺

= U−1) whose columns are the eigenvectors of A, and Λ is a
diagonal matrix whose diagonal entries are the corresponding eigenvalues. Using this we continue:

∥A∥2 = max
x⊺x=1

√

x⊺UΛU⊺x = max
x⊺x=1

√

(U⊺x)⊺Λ(U⊺x).

Now we note that

∥x∥2 = ∥U
⊺

x∥2

because

∥x∥
2
2 = x

⊺

x = x
⊺

UU
⊺

x = (U
⊺

x)
⊺

(U
⊺

x) = ∥U
⊺

x∥
2
.

Let us denote U⊺x by y. Then

∥A∥2 = max
y⊺y=1

√

y⊺Λy = max
y⊺y=1

√

y21λ1 + y22λ2 + . . . + y2nλn = max
j=1,...,n

√

∣λn∣ ≡
√

ρ(A⊺A).

Remark If A is a real symmetric matrix, then the eigenvalues of A⊺A are squares of the
eigenvalues of A. Hence the 2-norm of A is the spectral radius of A:

∥A∥2 = max
i

∣λi∣ = ρ(A),

4.4.3. Defective matrices and the Jordan form. If matrix is not diagonalizable, it is called
defective. An example of such a matrix is

(3) A = [1 10
0 1

] .

This matrix has eigenvalue 1 of algebraic multiplicity two and just one eigenvector [1,0]⊺.
This means that the geometric multiplicity of eigenvalue 1 is one. In linear algebra, the
Jordan form is often considered for such matrices:

(4) A = V JV −1

where J is a block-diagonal matrix with blocks of the form

Jj ∶=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

λj 1
λj 1

⋱ ⋱
λj 1

λj

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

There is a unique eigenvector vj corresponding to each block. The columns of V form the
Jordan basis.

Fall 2022 AMSC808N/CMSC828V

In numerical linear algebra, the Jordan form is rarely computed. The reason is that it is unstable with respect to small
perturbations of A. For example, consider a 16 × 16 matrix A

(5) A ∶=

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

0 1
0 1

⋱ ⋱

0 1
0

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

.

It is already in the Jordan form consisting of a single block, and its unique eigenvalue of algebraic multiplicity 16 is zero.
Indeed,

det(λI −A) = λ
16

= 0.

Now consider a perturbation of A such that the zero at its bottom left corner is replaced with 10−16:

(6) A + δA ∶=

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

0 1
0 1

⋱ ⋱

0 1

10−16 0

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

.

The eigenvalues of A + δA are the roots of

det(λI −A) = λ
16
− 10

−16
= 0.

There are 16 distinct complex eigenvalues located at the corners of the 16-gon in the complex plane:

λk = 0.1e
i2πk/16

, k = 0,1, . . .15.

Hence, the Jordan form of A will be diag{λ0, . . . , λ15} which is not close to (6). Thus, we see that a perturbation of the

size of the machine epsilon has a dramatic effect on the Jordan form and on the magnitudes of the eigenvalues of A.

4.4.4. The Schur form. For reasons indicated in Section 4.4.3 the Jordan form of a matrix
is rarely computed. Another eigenvalue revealing form is much more preferable: the Schur
form defined by:

A = QTQ⊺

where T is upper-triangular,

T =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

λ1 t12 t13 . . . t1n
λ2 t23 . . . t2n

⋱ ⋱
λn−1 tn−1,n

λn

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

and Q is orthogonal (or unitary if it is complex), i.e., its columns form an orthonormal
basis, or Q∗Q = I. Often it is more preferable to deal with the so-called real Schur form in
which complex pairs of eigenvalues form 2 × 2 blocks along the diagonal of T . Then both
Q and T are real. The Matlab command to compute the Schur form is

A = rand(10);

[Q,T] = schur(A);

If A is real, this command computes the real Schur form. If you would like the complex
Schur form, type

[Q,T] = schur(A,’complex’);

Fall 2022 AMSC808N/CMSC828V

Exercise Let u + iv be a complex eigenvector of a real matrix A, and µ + iν be the
corresponding eigenvalue. Show that

(7) A[u, v] = [u, v] [µ ν
−ν µ

] ,

i.e., the vectors u and v span a 2-dimensional invariant subspace of A.

4.5. QR and SVD. Here we briefly remind the QR and SVD matrix decompositions (see
[9]). We will return to them in more details later.

Theorem 1. Let A be m×n, m ≥ n. Suppose that A has full column rank. Then there exist
a unique m×n orthogonal matrix Q, i.e., Q⊺Q = In×n, and a unique n×n upper-triangular
matrix R with positive diagonals rii > 0 such that A = QR.

Proof. The proof of this theorem is given by the Gram-Schmidt orthogonalization process.

Algorithm 1: Gram-Schmidt orthogonalization

Input : matrix A = [a1 a2 . . . an], m × n, rank(A) = n.
Output: orthogonal matrix Q m × n, Q⊺Q = In×n, and upper-triangular n × n matrix

R with rii > 0.
for i = 1, . . . ,N do

qi = ai;
for j = 1, . . . , i − 1 do

⎧⎪⎪⎨⎪⎪⎩

rji = q⊺j ai CGS

rji = q⊺j qi MGS
;

qi = qi − rjiqj ;
end

rii = ∥qi∥;
qi = qi/rii;

end

Here CGS and MGS stand for the Classic Gram-Schmidt and the Modified Gram-
Schmidt respectively. �

Unfortunately the classic Gram-Schmidt algorithm is numerically unstable when the
columns of A are nearly linearly dependent. The modified Gram-Schmidt is better but
still can result in Q that is far from orthogonal (i.e., ∥Q⊺Q − I∥ is much larger than the
machine ε) when A is ill-conditioned. There are numerically stable ways to compute the
QR-decomposition, i.e., by using the Householder reflections or Givens’ rotations.

The Singular Value Decomposition (SVD) shows that any linear transformation from
one vector space to another can be represented as a diagonal matrix as soon as right bases
are chosen in each of these spaces.

Theorem 2. [9] Let A be an arbitrary m × n matrix with m ≥ n. Then we can write

A = UΣV ⊺,

Fall 2022 AMSC808N/CMSC828V

where

U is m × n and U⊺U = In×n,
Σ = diag{σ1, . . . , σn}, σ1 ≥ σ2 ≥ . . . ≥ σn ≥ 0,

and V is n × n and V ⊺V = In×n.
The columns of U , u1, ..., un, are called left singular vectors. The columns of V , v1, ...,
vn are called right singular vectors. The numbers σ1, ..., σn are called singular values. If
m < n, the SVD is defined for A⊺.

The geometric sense of this theorem is the following. Let us view the matrix A as a map
from Rn into Rm:

A ∶ Rn → Rm, x↦ Ax.

Then one can find orthogonal bases in Rn, v1, ... ,vn, and in Rm, u1, ..., um and numbers
σ1, ..., σn, such that

vj ↦ σjuj , j = 1, . . . , n.

Then for any x ∈ Rn we have:

if x =
n

∑
j=1

xjvj then Ax =
n

∑
j=1

xjσjuj .

Proof. We use induction in m and n. We assume that the SVD exists for (m− 1)× (n− 1)
matrices and prove it for m × n. We assume A ≠ 0; otherwise, we take Σ = 0 and U and V
are arbitrary orthogonal matrices.

The basic step occurs when n = 1 (since m ≥ n). We write

A = UΣV ⊺ with U = A

∥A∥
, Σ = ∥A∥, V = 1,

where ∥ ⋅ ∥ is the 2-norm.
For the induction step, choose v so that

∥v∥ = 1 and ∥A∥ = ∥Av∥ > 0.

Let

u = Av

∥Av∥
,

which is a unit vector. Choose Ũ and Ṽ so that U = [u, Ũ] and V = [v, Ṽ] are m ×m and
n × n orthogonal square matrices respectively. Now write

U⊺AV = [u⊺

Ũ⊺] ⋅A ⋅ [v Ṽ] = [u⊺Av u⊺AṼ

Ũ⊺Av Ũ⊺AṼ
] .

Then

u⊺Av = (Av)⊺(Av)
∥Av∥

= ∥Av∥ ∶= σ

and

Ũ⊺Av = Ũ⊺u∥Av∥ = 0.

Fall 2022 AMSC808N/CMSC828V

We claim that u⊺AṼ = 0 too because otherwise

σ = ∥A∥ = ∥U⊺AV ∥ ≥ ∥[1,0, . . . ,0]U⊺AV ∥ = ∥[σ, u⊺AṼ]∥ > σ,
a contradiction. Therefore,

U⊺AV = [σ 0

0 Ũ⊺AṼ
] = [u⊺Av 0

0 Ã
] .

Now we apply the induction hypothesis that

Ã = U1Σ1V
⊺

1 .

Hence,

U⊺AV = [σ 0
0 U1Σ1V

⊺
1

] = [1 0
0 U1

] [σ 0
0 Σ1

] [1 0
0 V1

]
⊺

or

A = (U [1 0
0 U1

])[σ 0
0 Σ1

](V [1 0
0 V1

])
⊺

,

which is our desired decomposition. �

The SVD has a large number of important algebraic and geometric properties, the most
important of which are summarized in the following theorem.

Theorem 3. Let A = UΣV ⊺ be the SVD of the m × n matrix A, m ≥ n.

(1) Suppose A is symmetric and A = UΛU⊺ be an eigendecomposition of A Then the
SVD of A is UΣV ⊺ where σi = ∣λi∣ and vi = uisign(λi), where sign(0) = 1.

(2) The eigenvalues of the symmetric matrix A⊺A are σ2
i . The right singular vectors

vi are the corresponding orthonormal eigenvectors.
(3) The eigenvectors of the symmetric matrix AA⊺ are σ2

i and m − n zeroes. The left
singular vectors ui are the corresponding orthonormal eigenvectors for the eigenval-
ues σ2

i . One can take any m−n orthogonal vectors as eigenvectors for the eigenvalue
0.

(4) If A has full rank, the solution of

min
x

∥Ax − b∥ is x = V Σ−1U⊺b.

(5)
∥A∥2 = σ1.

If A is square and nonsingular , then

∥A−1∥2 =
1

σn
.

(6) Suppose
σ1 ≥ . . . ≥ σr > σr+1 = . . . = σn = 0.

Then
rank(A) = r,

null(A) = {x ∈ Rn ∶ Ax = 0 ∈ Rm} = span(vr+1, . . . , vn),

Fall 2022 AMSC808N/CMSC828V

range(A) = span(u1, . . . , ur).
(7)

A = UΣV ⊺ =
n

∑
i=1

σiuiv
⊺
i ,

i.e., A is a sum of rank 1 matrices. Then a matrix of rank k < n closest to A is

Ak =
k

∑
i=1

σiuiv
⊺
i , and ∥A −Ak∥ = σk+1.

5. Condition number

Let f(x) be a vector-valued function that we need to evaluate. The condition number
κ(f ;x) is the ratio of the relative error in f caused by the relative error in x provided that
the change in x is small. Hence, we define κ as

(8) κ(f ;x) ∶= lim
ε→0

max
∥∆x∥=ε

∥f(x +∆x) − f(x)∥/∥f(x)∥
∥∆x∥/∥x∥

.

5.1. Condition numbers for differentiable functions. Let f(x) be a differentiable
vector-valued function f ∶ Rn → Rm. Then

f(x +∆x) = f(x) + J(x + θ∆x)∆x, where θ ∈ (0,1),
and J is the Jacobian matrix of f with entries:

Jij(x) ∶=
∂fi
∂xj

.

Then

κ(f ;x) = lim
ε→0

max
∥∆x∥=ε

∥x∥∥J(x + θ∆x)∆x∥
∥f(x)∥∥∆x∥

.

The maximum over ∆x ∈ Rn such that ∥∆x∥ = ε is achieved if ∆x is parallel to the first
right singular vector v1 of J(x +∆x) = UΣV ⊺. Therefore,

κ(f ;x) = ∥J∥∥x∥
∥f(x)∥

.

5.2. Condition number for matrix-vector multiplication. A particular case is when
f(x) is a linear function, i.e., f(x) = Ax where A is an m × n matrix. Then the Jacobian
matrix of f is constant and is equal to A. Hence, the condition number for matrix-vector
multiplication is

(9) κ(A;x) = ∥A∥∥x∥
∥Ax∥

= ∥A∥ ∥x∥
∥Ax∥

.

Identity (9) shows that the condition number will be large if

∥Ax∥
∥x∥

≪ ∥A∥,

Fall 2022 AMSC808N/CMSC828V

i.e., if there is a vector y that is elongated by A by much larger factor than x. Let us
illustrate this phenomenon on a simple example from Bindel&Goodman (Chapter 4, page
89). Let

A = [1000 0
0 10

] and x = [0
1

] .

Then

Ax = [0
10

] .

Suppose x is perturbed by

∆x = [ε
0

] . Then A(x +∆x) −Ax = A∆x = [1000ε
0

] .

The error in x is amplified by the factor of 1000 that is 100 times larger than the elongation
of x. It is easy to check that for this example, κ(A;x) = 100.

5.3. Condition number for solving linear system. On the other hand, let us consider
the problem of solving a linear system Ax = b, i.e., f(x) = A−1b. We find:

(10) κ(A−1; b) = ∥A−1∥ ∥b∥
∥A−1b∥

= ∥A−1∥∥Ax∥
∥x∥

.

The condition number for the linear system Ax = b is large if some vector is stretched by
A much less than the solution x (recall that ∥A−1∥ = 1/σn, where σ is the smallest singular
value of A).

What we often call the condition number of a matrix A defined as

κ(A) = ∥A∥∥A−1∥
is the worst-case scenario condition number for either of the problems: matrix-vector mul-
tiplication and solving of linear system.

6. Basics of optimization problems

The most general optimization problem is

(11) f(x)→min subject to x ∈ Ω.

The function f(x) ∶ Rn → R is called the objective function and the set Ω is the constraint
set. Usually, Ω is defined by a collection of equations ci(x) = 0, i ∈ E , and inequalities
ci(x) ≥ 0, i ∈ I. A point in Ω is called feasible. If Ω ≡ Rn, the optimization problem in
called unconstrained. Methods for solving unconstrained optimization problems are simpler
than those for constrained ones. Methods for constrained optimization are built up upon
theoretical results and methods for unconstrained optimization. The most pivotal pieces
of theory for constrained optimization are the Karush-Kuhn-Tucker theory and duality.
A very important textbook on 20th century optimization is J. Nocedal and S. Wright
“Numerical Optimization” [10].

Even simple optimization problem does not necessarily have a solution. For example, the
function f(x) can be unbounded from below. Most optimization methods with objective

https://link.springer.com/book/10.1007/978-0-387-40065-5
https://link.springer.com/book/10.1007/978-0-387-40065-5

Fall 2022 AMSC808N/CMSC828V

functions bounded from below are only guaranteed to find a stationary point x∗ meaning
∇f(x∗) = 0. This point is even not guaranteed to be a local minimizer!

There is a special class of problems called convex with convex function f(x) and convex
set Ω for which the solution exists and every local minimizer is also a global minimizer:

● the set Ω is convex if for any x, y ∈ Ω, and any 0 < α < 1, αx + (1 − α)y ∈ Ω;
● the function f(x) is convex on a convex set Ω if for any x, y ∈ Ω, and any 0 < α < 1,

f(αx + (1 − α)y) ≤ αf(x) + (1 − α)f(y).
If this inequality is strict, f(x) is strictly convex. In this case, the solution to
problem (11) exists and is unique.

References

[1] W. E and B. Yu, “The deep ritz method: A deep learning-based numerical algorithm for solving
variational problems,” Communications in Mathematics and Statistics, vol. 6, pp. 1–12, 2018.

[2] Y. Khoo, J. Lu, and L. Ying, “Solving for high-dimensional committor functions using artificial neural
networks,” Research in the Mathematical Sciences, vol. 6, no. 1, p. 1, 2019.

[3] Q. Li, B. Lin, and W. Ren, “Computing committor functions for the study of rare events using deep
learning,” Journal of Machine Learning Research, vol. 151, p. 054112, 2019.

[4] Y. Wang, J. Ribeiro, and P. Tiwary, “Machine learning approaches for analyzing and enhancing molec-
ular dynamics simulations,” Current Opinion in Structural Biology, vol. 61, pp. 139–145, 2020.

[5] W. E, “The dawning of a new era in applied mathematics,” Notices of the Americal Mathematical
Society, vol. 68, no. 4, pp. 565–571, 2021.

[6] R. Coifman and S. Lafon, “Diffusion maps,” Appl. Comput. Harmon. Anal., vol. 21, pp. 5–30, 2006.
[7] B. Yu and E. Weinan, “The deep ritz method: A deep learning-based numerical algorithm for solving

variational problems,” Commun. Math. Stat., vol. 6, pp. 1–12, 2018.
[8] I. Oseledets, “Tensor-train decomposition,” SIAM J. Sci. Comput., vol. 33, pp. 2295–2317, 2011.
[9] J. W. Demmel, Applied Numerical Linear Algebra. SIAM, 1997.

[10] J. Nocedal and S. Wright, Numerical Optimization. Springer, 2 ed., 2006.

	1. What is data science?
	2. Data Science, Machine Learning, and Scientific computing
	3. Course syllabus and necessary background
	4. A brief review of vector and matrix norms, basic matrix decompositions, and condition numbers
	4.1. Vector spaces
	4.2. Vector norms
	4.3. Matrix norm
	4.4. Eigenvalues and eigenvectors
	4.5. QR and SVD

	5. Condition number
	5.1. Condition numbers for differentiable functions
	5.2. Condition number for matrix-vector multiplication
	5.3. Condition number for solving linear system

	6. Basics of optimization problems
	References

