
MATRIX FACTORIZATION

MARIA CAMERON

Contents

1. Getting started: examples data science problems solved via matrix factorization 1
2. Some useful matrix decompositions 2
2.1. The symmetric eigenvalue problem 2
2.2. SVD 3
2.3. Ky-Fan norms 3
2.4. Pivoted QR and pivoted Cholesky 6
3. Nonnegative matrix factorization (NMF) 6
3.1. Projected gradient descent 6
3.2. Multiplicative update scheme by Lee and Seung 7
3.3. Coordinate descent (CD) 8
4. Collaborative filtering and matrix completion 10
4.1. Two simple trial models 10
4.2. Low-rank factorization 11
4.3. Penalizing nuclear norm 13
5. CUR matrix decomposition 15
References 15

1. Getting started: examples data science problems solved via matrix
factorization

This chapter will be largely based on D. Bindel’s lectures. My notes here are mostly
complimentary to Bindel’s.

Please read Lecture 5 ”Latent Factor Models” for the introduction. The section “A
gallery of examples” gives you an idea of what kind of problems we should think about in
the context of data science and matrix factorization.

• Document search and latent semantic analysis (LSA). There is a nice demo in Wiki
and an article Introduction to Latent Semantic Analysis by T. Landauer, P. Foltz,
and D. Laham with a nice illustrative example. The idea is to use the truncated
SVD.
• K-means clustering is the standard clustering algorithm. For a given data matrix
A n × d whose rows represent data while columns represent attributes, it finds a

1

http://www.cs.cornell.edu/~bindel/class/sjtu-summer19/lec/2019-05-28.pdf
https://en.wikipedia.org/wiki/Latent_semantic_analysis
http://lsa.colorado.edu/papers/dp1.LSAintro.pdf
http://lsa.colorado.edu/papers/dp1.LSAintro.pdf

Fall 2020 AMSC808N/CMSC828V

k × d matrix R consisting of k rows of A each of which represents a cluster, and
an n× k matrix L with Lij = 1 if row i of A belongs to cluster j, and 0 otherwise,
such that A ≈ LR. A nice demo for this algorithm is in Wiki.
• Eigenfaces and Fisherfaces are techniques for face recognition based on making

face images low-resolution, and computing a covariance matrix and its eigenvalue
decomposition – see Wiki.
• Collaborative filtering and the Netflix challenge is an instance of matrix completion

problem. Imagine a matrix of users’ ratings where rows correspond to movies and
columns correspond to the users. Each user watched just a small subset of available
movies. The task is to predict the missing entries, i.e., to find a matrix according
to some model that fits the available data the best. Here is a helpful presentation
for the Netfix challenge by M. Gromley.
• Anchor words and interpretable topic models. A shortcoming of SVD used in LSA

is that the columns of U and V are hard-to-interpret. In particular, they may
have negative entries. Instead, we would like to factor a matrix into factors with
nonnegative entries. In order to make the factor have a probabilistic interpretation,
i.e., this document is attributed to this topic, the entries corresponding to each
topic should sum up to one. The resulting problem is called Nonnegative Matrix
Factorization or NMF.

2. Some useful matrix decompositions

Please read D. Bindel’s Lecture 6 “SVD and other low-rank decompositions”.

2.1. The symmetric eigenvalue problem. Real symmetric matrices have many uses in
data analysis. Among them are:

• representation of weighted or unweighted undirected graphs;
• similarities between objects;
• covariances of vector random variables;
• counts of pairs of words that occur together across sets of documents.

The eigenvectors and eigenvalues of a symmetric matrix A are stationary points (a.k.a.
critical points) and the corresponding values of the objective function for the constrained
optimization problem

(1) φ(x) = x>Ax→ max subject to ‖x‖22 = 1.

They are also the critical points for the Rayleigh quotient

(2) ρA(x) =
x>Ax

x>x
.

Exercise Prove that stationary points of ρA(x) are the eigenvectors of A.

Besides the symmetric eigenvalue problem above a generalized eigenvalue problem arises
in applications, e.g. in Fisherfaces (see Bindel’s lecture 5). If M is a symmetric positive
definite matrix then one can define an associated inner product

〈x,y〉M = y>Mx.

https://en.wikipedia.org/wiki/K-means_clustering
https://en.wikipedia.org/wiki/Eigenface
https://www.cs.cmu.edu/~mgormley/courses/10601-s17/slides/lecture25-mf.pdf
https://www.cs.cmu.edu/~mgormley/courses/10601-s17/slides/lecture25-mf.pdf
http://www.cs.cornell.edu/~bindel/class/sjtu-summer19/lec/2019-05-29.pdf

Fall 2020 AMSC808N/CMSC828V

Then the problem is Ax = λMx.
There are two families of methods for solving symmetric eigenvalue problem.

• The first family aims at finding the full spectral decomposition. A is decomposed to
UTU> where U is orthogonal and T is tridiagonal. Then a very efficient algorithm
for finding eigenvalues of the tridiagonal matrix is applied. This is what is done by
the Matlab command eig.
• If matrix is very large and sparse, the full decomposition might require too much

memory. Then a few eigenpairs corresponding to the largest eigenvalues are com-
puted by iterative methods. The main workhorse is the Lanczos method. This is
what is used in the Matlab command eigs.

Discussion of these methods belongs to the course Numerical Linear Algebra. I will not
discuss them here.

2.2. SVD. Read Section 3.2.3 in [1]. Also, see Bindel’s lecture 6.
We recall the definition of the full SVD decomposition for an n × d matrix A: A =

UΣV = A, where

• U is n× n, UU> = U>U = I,
• Σ is n× d with the top left submatrix being diag{σ1, . . . , σd} and all entries in the

rest of Σ are zeros, and
• V is d× d, V V > = V >V = I.

2.3. Ky-Fan norms.

Definition 1. We say that a function f : Rn×d → R is orthogonally (or unitarily in the
complex case) invariant if f(Q1AQ2) = f(A) for any orthogonal (unitary) matrices Q1

and Q2.

Any unitarily invariant function can be written in terms of singular values of A. Indeed,
take Q1 = U> and Q2 = V and you

f(A) = f(Σ) = f̃(σ1, . . . , σd).

Among the most important unitarily invariant functions are the Ky-Fan norms, which are
lp norms of the vectors of singular values. The Ky-Fan norms we care about are:

• The l∞ Ky-Fan norm is the 2-norm of A (the operator 2-norm or the spectral norm):

(3) ‖A‖2 = σ1 = max
1≤i≤d

σi.

• The l2 Ky-Fan norm is the Frobenius norm of A:

(4) ‖A‖F =

√√√√ n∑
i=1

d∑
j=1

|aij |2.

Exercise Prove that

(5) ‖A‖2F =
d∑
i=1

σ2
i .

Fall 2020 AMSC808N/CMSC828V

Hint: use the full SVD of A and the cyclic property of trace (you can prove this
property by direct checking):

(6) trace(ABC) = trace(BCA) = trace(CAB)

for all A, B , C such that their product is defined and is a square matrix.

• The nuclear norm

(7) ‖A‖∗ =
d∑
i=1

σj

is the Ky-Fan l1 norm.

The Eckart-Young-Mirsky theorem says that the truncated SVD of A is the best rank k
approximation to A in the 2-norm and in the Frobenius norm. It also holds for any Ky-Fan
norm, so, for the nuclear norm as well.

Theorem 1. (Eckart-Young-Mirsky) Let A = UΣV > be the SVD of A. Then for any
matrix M of rank ≤ k we have

‖A−M‖2 ≥
∥∥∥A− UkΣkV

>
k

∥∥∥
2

= σk+1,(8)

‖A−M‖F ≥
∥∥∥A− UkΣkV

>
k

∥∥∥
F

=

√√√√ n∑
j=k+1

σ2
j(9)

Proof. Proof for the matrix 2-norm. If M = UkΣkV
>
k then

‖A− UkΣkV
>
k ‖2 =

∥∥∥∥∥∥
d∑

j=k+1

σjujv
>
j

∥∥∥∥∥∥
2

= σk+1.

Now let M be an arbitrary rank ≤ k matrix. If rank of A is ≤ k, then taking M = A will
zero out any norm of the difference A −M . So, assume rank(A) = r > k. The null-space
of M has dimension ≥ d − k. The space spanned by {v1, . . . ,vk+1} has dimension k + 1.
Hence

dim null(M) + dim span(Vk+1) ≥ d+ 1 > d,

which means that they have an intersection of dimension ≥ 1. Let

x ∈ null(M) ∩ span(Vk+1), ‖x‖2 = 1.

Then

‖A−M‖22 ≥ ‖(A−M)x‖22 = ‖UΣV >x‖22 = ‖ΣV >x‖22 ≥ σ2
k+1‖V >x‖22 = σ2

k+1.

This completes the proof for the 2-norm. �

The proof for the Frobenius norm makes use of the following lemma.

Fall 2020 AMSC808N/CMSC828V

Lemma 1. Let a matrix A ∈ Rn×d be decomposed into a sum A = B + C. Let σj(M)
denote the jth singular value of the matrix M , M = A,B,C. We also set σj(M) = 0 for
all integer j > rank(M). Then

(10) σi+j−1(A) ≤ σi(B) + σj(C) ∀i, j ≥ 1,

Proof. Let i and j be arbitrary integers 1 ≤ i, j ≤ d. Then, by the Eckart-Young-Mirsky
theorem for the 2-norm

σi(B) + σj(C) ≡ ‖B −Bi−1‖2 + ‖C − Cj−1‖2 = σ1(B −Bi−1) + σ1(C − Cj−1).

By the triangle inequality for the 2-norm we have:

‖B −Bi−1‖2 + ‖C − Cj−1‖2 ≥ ‖B −Bi−1 + C − Cj−1‖2 ≡ ‖A−Bi−1 − Cj−1‖2.

Now we observe that the rank of a sum of two matrices cannot exceed the sum of their
ranks. Therefore,

rank(Bi−1 + Cj−1) ≤ i+ j − 2.

Then, by the Eckart-Young-Mirsky theorem for the 2-norm we have:

‖A−Bi−1 − Cj−1‖2 ≥ ‖A−Ai+j−2‖2 = σi+j−1(A)

as desired. �

Now we prove the Eckart-Young-Mirsky theorem for the Frobenius norm.

Proof. Proof for the Frobenius norm. Lemma 1 implies that for any matrix M for
rank ≤ k and for all i = 1, 2, . . . we have:

(11) σk+i(A) ≤ σi(A−M) + σk+1(M) ≡ σi(A−M),

as σk+1(M) = 0 as k + 1 exceeds the rank of M . By (5):

‖A−M‖2F =
d∑
i=1

σ2
i (A−M) ≥

d−k∑
i=1

σ2
i (A−M).

Then we apply (11) and obtain

‖A−M‖2F ≥
d−k∑
i=1

σ2
i (A−M) ≥

d−k∑
i=1

σ2
k+i(A) =

d∑
j=k+1

σ2
j (A)

as desired. �

Exercise Prove Eckart-Young-Mirsky theorem for an arbitrary Ky-Fan norm.

Fall 2020 AMSC808N/CMSC828V

2.4. Pivoted QR and pivoted Cholesky. The pivoted QR is the QR decomposition
returns a permutation matrix Π, an orthogonal matrix Q, and an upper-triangular matrix
R such that

(12) AΠ = QR, such that r11 ≥ r22 ≥ . . . ≥ rdd.

The matrix Π permutes columns of A. The pivoted QR can be computed in Matlab:

[Q,R,P] = qr(A) returns an upper triangular matrix R, a unitary matrix Q,

and a permutation matrix P, such that A*P = Q*R.

If all elements of A can be approximated by the floating-point numbers,

then this syntax chooses the column permutation P so that

abs(diag(R)) is decreasing.

Otherwise, it returns P = eye(n).

The permutation matrix is computed in a greedy fashion, i.e., one column in a time. The
first column of Π selects the column of A with maximal Euclidean norm, i.e.,

AΠ(:, 1) = q1r11.

The second one is selected so that AΠ(:, 2) has the larges component orthogonal to q1.
And so on.

The pivoted Cholesky applied to a symmetric positive definite matrix A returns an
upper-triangular matrix R and a permutation matrix P such that

(13) Π>AΠ = R>R, where r11 ≥ r22 ≥ . . . ≥ rdd > 0.

3. Nonnegative matrix factorization (NMF)

Reference: D. Bindel’s Lecture 7 “NMF”. A common problem with low-rank factoriza-
tions is that they are hard-to-interpret. In this section, we switch to interpretable matrix
factorizations.

Let A be an n × d matrix with nonnegative entries. We seek matrices W ∈ Rn×k+ and

H ∈ Rk×d+ where the subscripts + means that their entries must be nonnegative, such that

(14) A ≈WH.

3.1. Projected gradient descent. Perhaps the simplest method to compute an NMF is
using projected gradient descent (PGD). The projection used here is a simple nonnegativity
constraint:

P(x) = [x]+, elementwise maximum of x and 0.

Let φ be the objective function. The iteration is defined by

(15) xk+1 = P(xk − αk∇φ(xk)).

Its convergence properties are similar to those of the unprojected version. A convergence
for convex functions and sufficiently small stepsizes can be proven. Ill-conditioning may
make the convergence slow.

http://www.cs.cornell.edu/~bindel/class/sjtu-summer19/lec/2019-05-30.pdf

Fall 2020 AMSC808N/CMSC828V

To work out the PGD iteration, it is handy to introduce the Frobenius inner product

(16) 〈X,Y 〉F :=
∑
i,j

xijyij = trace(X>Y) = trace(Y >X).

For the problem (14), the objective function is

(17) φ(W,H) =
1

2
‖A−WH‖2F =

1

2
〈A−WH,A−WH〉F .

Furthermore, to reduce the amount of writing, it is useful to use the notation δφ, δW and
δH for the variations of φ, W , and H, respectively. This is an analog of the differential of
a function of several variables. Regular differentiation rules apply. Let R := A−WH. We
have:

δφ =
1

2
δ〈R,R〉F = 〈δR,R〉F

= −〈(δW)H,R〉F − 〈W (δH), R〉F .(18)

In the calculation below, we will use the cyclic property of the trace (6) to isolate the
variations of W and H in the Frobenius inner products in (18):

〈(δW)H,R〉F = trace
(
H>(δW)>R

)
= trace

(
(δW)>RH>

)
= 〈(δW), RH>〉F ,(19)

〈W (δH), R〉F = trace
(

(δH)>W>R
)

= 〈(δH),W>R〉F .(20)

These equations mean that

(21)
∂φ

∂Wij
= −

(
RH>

)
ij
,

∂φ

∂Hij
= −

(
W>R

)
ij
, 1 ≤ i ≤ n, 1 ≤ j ≤ d.

Therefore, the PGD iteration for minimizing (17) among W ∈ Rn×k+ and H ∈ Rk×d+ is:

(22) Wnew =
[
W + αRH>

]
+
, Hnew =

[
H + αW>R

]
+
.

3.2. Multiplicative update scheme by Lee and Seung. One of the earliest and most
popular algorithms for NMF is the multiplicative update by D. D. Lee and H. S. Seung
(2001) [2]. A derivation of their iteration can also be found here. In this algorithm, the
entries of the matrices W and H are all updated with individually selected stepsizes. Let
SW be the matrix of stepsizes for the entries of W , and SH be the same for H. The
iteration is the projected gradient descend modified accordingly:

(23) Wnew =
[
W + SW �RH>

]
+
, Hnew =

[
H + SH �W>R

]
+
.

The projection in (23) zeroes out negative values. They may appear due to the subtractions
hidden in R = A − WH provided that all current entries in all matrices involved are
nonnegative. The trick proposed by Lee and Seung allows us to avoid the need for the
projection: the stepsizes are chosen so that the subtraction is eliminated! Let us rewrite
(23) decoding R and removing the projection:

(24) Wnew = W + SW �
[
AH> −WHH>

]
, Hnew = H + SH �

[
W>A−W>WH

]
.

https://papers.nips.cc/paper/1861-algorithms-for-non-negative-matrix-factorization.pdf
https://papers.nips.cc/paper/1861-algorithms-for-non-negative-matrix-factorization.pdf
https://www.jjburred.com/research/pdf/jjburred_nmf_updates.pdf

Fall 2020 AMSC808N/CMSC828V

The Lee and Seung stepsizes are

(25) SW = W �
[
WHH>

]
, SH = H �

[
W>WH

]
,

where � denotes entrywise division. It is easy to see that with this choice of stepsizes, the
subtractions in (24) are completely eliminated as the subtracted term is canceled with the
W and H, respectively. Therefore, the Lee-Seung iteration is:

(26) Wnew =
[
W �AH>

]
�
[
WHH>

]
, Hnew =

[
H �W>A

]
�
[
W>WH

]
.

Monotone convergence of this algorithm is proven in [2]. A shortcoming of this algorithm
is that it takes very conservative stepsizes, and it may take very many steps to achieve the
desired convergence.

3.3. Coordinate descent (CD). Coordinate descent embraces the class of methods
where the update directions are chosen along particular coordinates or their blocks.

3.3.1. One entry at-a-time. The simplest version of CD updates one entry of W or H at-
a-time. Let s be step length and ei be a column vector with entry 1 at position i and the
rest of its entries being zeros. To determine s for updating entry (i, j) of W , we solve the
following constrained least squares problem:

1

2

∥∥∥A− (W + seie
>
j)H

∥∥∥2

F
=

1

2

∥∥∥R− seie>j H∥∥∥2

F

=
1

2
‖R‖2F − s〈(eie>j), RH>〉F +

s2

2
‖eie>j H‖2F(27)

subject to s ≥ −wij .(28)

Here, we used the cyclic property of the trace (6) and the rule:

(29) ‖A+B‖2F = ‖A‖2F + ‖B‖2F + 2〈A,B〉F .
Exercise Prove (29).

The matrix eie
>
j has only one nonzero entry at the position (i, j) equal to one, and the

matrix eie
>
j H has a single nonzero row i equal to the row j of H. Therefore,

〈(eie>j), RH>〉F = (RH>)ij , ||eie>j H‖2F = (HH>)jj .

Hence s minimizing the quadratic function

s2

2
(HH>)jj − s(RH>)ij +

1

2
‖R‖2F is s =

(RH>)ij
(HH>)jj

.

Applying the constraint (28) we get the stepsize for the entry (i, j):

(30) s = max

{
−wij ,

(RH>)ij
(HH>)jj

}
.

This leads to the update for wij and for row i of R:

(31) wij = wij + s, Ri,: = Ri,: − sHj,:.

Fall 2020 AMSC808N/CMSC828V

To update entry (i, j) of H, we are solving

1

2

∥∥∥A−W (H + seie
>
j)
∥∥∥2

F
=

1

2

∥∥∥R− sWeie
>
j

∥∥∥2

F

=
1

2
‖R‖2F − s〈(eie>j),W>R〉F +

s2

2
‖Weie

>
j ‖2F(32)

subject to s ≥ −hij .(33)

The stepsize and the update is obtained by a similar calculation:

(34) s = max

{
−hij ,

(W>R)ij
(W>W)ii

}
, hij = hij + s, R:,j = R:,j − sW:,i.

3.3.2. Hierarchical alternating least squares (HALS) or rank-one residual iteration (RRI).
The formulas developed in Section 3.3.1 are readily adapted for updating one column of
W at-a-time and one row of H at-a-time. The corresponding constrained least squares
problems

1

2
‖R− uHj,:‖2F → min subject to u ≥ −W:,j ,(35)

1

2
‖R−W:,iv‖2F → min subject to v ≥ −Hi,:.(36)

These problems are equivalent to

1

2
‖R− uiHj,:‖2F → min subject to ui ≥ −wij , 1 ≤ i ≤ n,(37)

1

2
‖R−W:,ivj‖2F → min subject to vj ≥ −hij , 1 ≤ j ≤ d.(38)

Therefore, the formulas for stepsizes (30) and (34) are suitable for computing u and v. The
update formulas for column j of W and the matrix R, and then row i or H and R are:

W:,j = W:,j + u, R = R− uHj,:; Hi,: = Hi,: + v, R = R−W:,iv.

3.3.3. Alternating non-negative least squares (ANLS). The ANLS updates all entries of W
then all entries of H by solving the following constrained convex optimization problems:

φ1(W) =
1

2
‖A−WH‖2F → min subject to W ≥ 0,(39)

φ2(H) =
1

2
‖A−WH‖2F → min subject to H ≥ 0.(40)

Unfortunately, contrary to HALS, these problems cannot be solved in simple closed form.
One approach is to solve them using the active set method that we have studied in this
course. Its shortcoming is that we add or remove only one free variable from the active set
at-a-time. As a result, the active set method can take many iterations to converge in this
high-dimensional problem.

Fall 2020 AMSC808N/CMSC828V

4. Collaborative filtering and matrix completion

Reference: D. Bindel’s Lecture 8 “Matrix Completion”. Imagine a spreadsheet with
columns corresponding to movies and rows corresponding to users. Each user has watched
some subset of movies. The problem posed by the Netflix company is to make intelligent
guesses based on the available data how much each user would like the movies that she/he
hasn’t watched yet and make appropriate recommendations. Similar problems are also
important for other online sellers. When you are shopping for some product, you often
see that the website recommends you to look at some other products by saying something
like: “The customers who looked at this products also looked at these products”. I see this
often and find that the system predicts my tastes and my needs quite well.

In this section, we will explore some methods for making such intelligent predictions.
Let A be an incomplete n× d matrix in which only aij for

(i, j) ∈ Ω ⊂ {(l1, l2) | 1 ≤ l1 ≤ n, 1 ≤ l2 ≤ d}
are known. We will denote by PΩ(A) the projection of A onto Ω:

PΩ(A) =

{
aij , (i, j) ∈ Ω,

0, otherwise.

The idea is to pick a model M for some parametric family in order to minimize some loss
function. For now, we pick the squared errors loss:

(41) φ(M) =
1

2
‖PΩ(A−M)‖2F =

1

2

∑
(i,j)∈Ω

(aij −mij)
2.

Let us consider some models for M to build up some intuition.

4.1. Two simple trial models.

4.1.1. Baseline model. Let M = µ1n×d where µ is to be determined. Plugging M into (41)
and finding the minimizer of the resulting 1D quadratic function, we find

(42) µ =
1

|Ω|
∑

(i,j)∈Ω

aij .

While this model is exactly solvable, it is useless for making predictions. It gives the same
rating for all movies and all users.

4.1.2. Baseline plus uniform adjustments for each user and each movie. This model is
given by

(43) M = µ1n×d + b11×d + 1n×1c
>, b ∈ Rn, c ∈ Rd.

The first term in (43) gives some uniform base rating to all movies for each user. The
second term uniformly adjusts ratings for all movies, but these adjustments are chosen
individually for each user. The third term adjusts movie rating uniformly for all users, but
these adjustments are individual for each movie.

http://www.cs.cornell.edu/~bindel/class/sjtu-summer18/lec/2018-06-22.pdf

Fall 2020 AMSC808N/CMSC828V

The solution to this problem is the solution to the linear system obtained by taking the
gradient of

(44) φ(µ,b, c) =
1

2

∑
(i,j)∈Ω

(aij − µ− bi − cj)2 :

∂φ

∂µ
=

∑
(i,j)∈Ω

(aij − µ− bi − cj) = 0,(45)

∂φ

∂bi
=
∑
j∈Ωi

(aij − µ− bi − cj) = 0, Ωi := {j | (i, j) ∈ Ω},(46)

∂φ

∂cj
=
∑
i∈Ωj

(aij − µ− bi − cj) = 0, Ωj := {i | (i, j) ∈ Ω}.(47)

• Note that the set of solutions to (45)–(47) is at least two-dimensional:

if (µ,b, c) is a solution, then so is (µ+ α,b + β1n×1, c− (α+ β)1d×1), ∀α, β ∈ R.

However, this is not really a problem since each of these solutions give the same
matrix M , hence the same recommendations. One way to get rid of this nonunique-
ness is to impose the condition that b and c both sum up to zero. Them µ is given
by (42).
• Also note that the resulting linear system is large: |Ω| × (1 + n + d). This only

will be a problem if we try to use factorization-based direct methods. But certain
iterative methods will work just fine.
• Finally, and most importrantly, this model is still not useful as it predicts the same

relative rankings for each user.

4.2. Low-rank factorization. An actually useful model is the low-rank model:

(48) M = XY >, X ∈ Rn×k, Y ∈ Rd×k.

As the second model considered in the previous section, the factorization M = XY > is
not unique. To get rid of this nonuniqueness and to penalize crazy choices of X and Y , we
regularize the problem by introducing penalty for large Frobenius norms of X and Y :

(49) F (X,Y) =
1

2
‖PΩ(A−XY >)‖2F +

λ

2

(
‖X‖2F + ‖Y ‖2F

)
.

Let R = PΩ(A−XY >). Then F (X,Y) =
1

2
〈R,R〉F +

λ

2

(
‖X‖2F + ‖Y ‖2F

)
.

Fall 2020 AMSC808N/CMSC828V

To take the variation of F , we first calculate the variation of its first term:

〈δR,R〉F = 〈(−δX)Y > −X(δY)>, R〉F
= −〈(δX)Y >, R〉F − 〈X(δY)>, R〉F
= −trace(Y (δX)>R)− trace((δY)X>R)

= −trace((δX)>RY)− trace((R>X)>(δY))

= −〈δX,RY 〉F − 〈δY,R>X〉F .(50)

Note that in the calculation above we did not need to project the first argument of the
Frobenius inner product because the terms of (−δX)Y > −X(δY)>) corresponding to un-
known entries of A will be zeroes out due to the second term R.

The variation of the second term of F is

〈δX, λX〉F + 〈δY, λY 〉F .
Hence

(51) δF = 〈δX, λX −RY 〉F + 〈δY, λY −R>X〉F .
First, consider the case where all entries of A are available. Let us show that in this

case, the solution to F → min would be

(52) X = Uk
√
sλ(Σk), Y = Vk

√
sλ(Σk), where sλ(σ) = [σ − λ]+,

and UkΣkV
>
k is the truncated SVD of A. Note that if λ = 0 then XY > = UkΣkV

>
k would

be the optimal rank k approximation of k as we know from the Eckart-Young-Mirsky
theorem.

We will show that, if X and Y are given by (52), then the variation of F is zero, i.e.

(53) RY = λX, R>X = λY.

Indeed,

RY = UΣV >Vk
√
sλ(Σk)− Uksλ(Σk)V

>
k Vk

√
sλ(Σk)

= UkΣk

√
sλ(Σk)− Uksλ(Σk)

√
sλ(Σk)

= Uk [Σk − sλ(Σk)]
√
sλ(Σk) = λUk

√
sλ(Σk) = λX,

R>X = V ΣU>Uk
√
sλ(Σk)− Vksλ(Σk)U

>
k Uk

√
sλ(Σk)

= VkΣk

√
sλ(Σk)− Vksλ(Σk)

√
sλ(Σk)

= Vk [Σk − sλ(Σk)]
√
sλ(Σk) = λVk

√
sλ(Σk) = λY.

Here we have used the fact that for 1 ≤ j ≤ k,

σj − [σj − λ]+ =

{
λ, λ ≤ σj ,
σj , λ > σj ,

and, if λ > σj , then sλ(σj) = 0.

Fall 2020 AMSC808N/CMSC828V

The situation is trickier if only partial data are available. In this case, we need to
minimize F numerically. For example, we can use stochastic gradient descent. Another
option is to do the alternating iteration:

Xk+1 = arg min
X

F (X,Y k),(54)

Y k+1 = arg min
Y

F (Xk+1, Y).(55)

Each of these steps can be further decomposed into a collection of small linear least squares
problems. For example, at each substep of (54), we solve the linear least squares problem
to compute the row i of X:

(56) x>i = arg min
x

1

2

∥∥∥x>YΩi − aΩi

∥∥∥2

2
+
λ

2
‖x‖2,

where Ωi := {j | (i, j) ∈ Ω}.

4.3. Penalizing nuclear norm. Reference: Bindel’s lecture 8, Section 3 “Nuclear norm
trick”.

An alternative approach to optimizing factors of the model matrix M is to optimize
the matrix M itself. Note that rank is not a continuous function of matrix entries, hence,
imposing rank constraints is not a promising approach. Instead, we are going to penalize
the nuclear norm of M , i.e.,

(57) φ(M) =
1

2
‖PΩ(A)− PΩ(M)‖2F + λ‖M‖∗, ‖M‖∗ =

∑
i

σi(M).

The nuclear norm constraint is low-rank promoting for the same reason as the lasso regu-
larizer is sparsity promoting. Below I offer an explanation for it.

Observe that φ(M) can be viewed as a Lagrangian function minus tλ for the following
constrained optimization problem

(58) f(M) :=
1

2
‖PΩ(A)− PΩ(M)‖2F → min subject to t− ‖M‖∗ ≥ 0

for some positive constant t. If there exists a matrix M with ‖M‖∗ < t such that PΩ(A−
M) = 0, then the KKT optimality conditions require that λ = 0 as λ(t−‖M‖∗) = 0 while
t−‖M‖∗ > 0. Since we set λ > 0 in (57), this is not the case. This means that ‖M‖∗ = t.

To get a sense of what is the set ‖M‖∗ = t, let us consider a very simple example that
we can visualize. Consider the set of 2× 2 matrices

M(w, x, y, z) :=

[
w x
y z

]
.

Let us find a subset S1 of (w, x, y, z) ∈ R4 such that the nuclear norm of the matrix is 1,
i.e.

(59) S1 :=
{

(w, x, y, z) ∈ R4 | σ1(M(w, x, y, z)) + σ2(M(w, x, y, z)) = 1
}
.

The set S1 is a 3D surface in a 4D space. We are particularly interested in two aspects of
S1:

http://www.cs.cornell.edu/~bindel/class/sjtu-summer18/lec/2018-06-22.pdf
http://www.cs.cornell.edu/~bindel/class/sjtu-summer18/lec/2018-06-22.pdf

Fall 2020 AMSC808N/CMSC828V

• Does the surface have singularities (2D edges)? This is because the level sets of
f(M) in (58) are smooth ellipsoids, and the minimal ellipsoid having a nonempty
intersection with the surface ‖M‖∗ tends to have this intersection on a singular
edge.
• Do these singularities of the surface correspond to a low rank of M(w, x, y, z)?

We cannot visualize a 3D surface in 4D, but we can visualize a family of its 2D slices
each of which corresponds to a fixed value of w. Three of these slices are displayed in
Fig. 1. We color the slices according to the value of the determinant of M(w, x, y, z).
If det(M(w, x, y, z)) = 0 then rank(M(w, x, y, z)) < 2. We see that each slice has sin-
gular a singular edge, and the surface color near the edge is green which corresponds to
det(M(w, x, y, z)) = 0. The full set of slices is shown in the Youtube video.

Figure 1. Slices of the set S1 (see (59)) corresponding to w = −0.19 (left),
w = 0.31 (middle), and w = 0.81 (right). The coloring of the surfaces
corresponds to the values of det(M(w, x, y, z)). Note that the edge of these
surfaces is green which corresponds to det(M(w, x, y, z)) = 0.

Now let us discuss methods for solving the minimization problem (57). It is helpful to
see what is the solution to it in the case if all entries of A are known, the so-called proximal
problem. Then (57) becomes

(60) φ(M) =
1

2
‖A−M‖2F + λ‖M‖∗.

Its minimizer is given by

(61) Sλ(A) := Usλ(Σ)V >,

where A = UΣV > is the SVD of A and sλ(σj) = max{σj − λ, 0} as before. Note that if
there are exactly k singular values of A greater than λ then (61) is also the minimizer for
the problem considered in Section (4.2):

(62) F (X,Y) =
1

2

∥∥∥A−XY >∥∥∥2

F
+
λ

2

(
‖X‖2F + ‖Y ‖2F

)
→ min, X ∈ Rn×k, Y ∈ Rd×k.

A similar result holds when only part of the data matrix A is available: the nuclear norm
regularization and the optimization of the factored form with Frobenius norm regularization
on the factors yield the same model predictions when the factor size k in the latter problem
is at least as large as the rank observed in the nuclear norm problem.

https://youtu.be/b9Gz6lT7LNs

Fall 2020 AMSC808N/CMSC828V

The SVD solution (61) to the proximal problem suggests the following iteration:

(63) M j+1 = Sλ
(
M j + PΩ(A−M j)

)
.

Since there are only a few singular values greater than λ at each step, the necessary
components of the SVD at each step can be computed very efficiently using a Lanczos-type
algorithm (see e.g. Trefenthen and Bau “Numerical Linear Algebra”).

5. CUR matrix decomposition

Please read the PNAS article by M. Mahoney and P. Drineas of 2009 [3]. The CUR
algorithm in it is the one I would like you to implement. The preceding article by the
same authors plus S. Muthukrishnan [4] contains detailed proofs and more complicated
algorithms with better worst-case scenario guarantees. A background material on leverage
scores can be found e.g. here. In addition, here is a nice lecture on CUR by Jeff M. Philips,
University of Utah.

References

[1] J. W. Demmel, Applied Numerical Linear Algebra. SIAM, 1997.
[2] D. D. Lee and H. S. Seung, “Algorithms for non-negative matrix factorization,” Proc. Neural Information

Processing Systems, 2001.
[3] M. W. Mahoney and P. Drineas, “Cur matrix decompositions for improved data analysis,” PNAS,

vol. 106, no. 3, pp. 697–702, 2009.
[4] P. Drineas, M. W. Mahoney, and S. Muthukrishnan, “Relative-error cur matrix decompositions,” SIAM

J. Matrix Anal. Appl., vol. 30, no. 2, pp. 844–881, 2008.

https://people.maths.ox.ac.uk/trefethen/text.html
https://www.pnas.org/content/pnas/106/3/697.full.pdf
http://yintat.com/teaching/cse599-winter18/10.pdf
https://www.cs.utah.edu/~jeffp/teaching/cs7931-S15/cs7931/5-cur.pdf
https://www.cs.utah.edu/~jeffp/teaching/cs7931-S15/cs7931/5-cur.pdf

	1. Getting started: examples data science problems solved via matrix factorization
	2. Some useful matrix decompositions
	2.1. The symmetric eigenvalue problem
	2.2. SVD
	2.3. Ky-Fan norms
	2.4. Pivoted QR and pivoted Cholesky

	3. Nonnegative matrix factorization (NMF)
	3.1. Projected gradient descent
	3.2. Multiplicative update scheme by Lee and Seung
	3.3. Coordinate descent (CD)

	4. Collaborative filtering and matrix completion
	4.1. Two simple trial models
	4.2. Low-rank factorization
	4.3. Penalizing nuclear norm

	5. CUR matrix decomposition
	References

