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1. Introduction

See my slides and read:

• chapters 1 and 2 in M. Newman’s review paper [1],
• chapter 1 in A. L. Barabasi’s book “ Network Science”,
• the 3-page paper Nature by Watts and Strogatz (1998) [2].

2. Basic algorithms for graph exploration

Suppose we have a graph G(V,E) where V is the set of vertices and E is the set of
edges. Often, the graph is given by the list of its vertices 1, . . . , n, and the list of edges
(i, j), i, j ∈ {1, . . . , n}. The list of edges, sorted according to the tail vertices of the edges
is easily recasted into the adjacency list. Another way to define a graph is to provide its
n×n adjacency matrix A = (Aij) where Aij = 1 if there is an edge from i to j and Aij = 0
otherwise. These ways of defining a graph is suitable for both, directed and undirected
graphs, and can easily be extended to a weighted graph by adding weights to the list of
edges.

Given a graph, the first natural question is whether it is connected or not. If, not, what
are its connected components?

Definition 1. A connected component of a graph G(V,E) is a subset of its vertices V1 ⊂ V
such that

1

https://epubs.siam.org/doi/pdf/10.1137/S003614450342480
http://networksciencebook.com/chapter/1#networks
http://worrydream.com/refs/Watts-CollectiveDynamicsOfSmallWorldNetworks.pdf
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(1) for any pair of vertices i, j ∈ V1 there is a path in G(V,E) from i to j, and
(2) if there is a path from i ∈ V1 to j ∈ V , then j ∈ V1, i.e., the connected component

is a maximal subset.

If the graph G(V,E) is directed, and we restrict ourselves to accounting only for directed
paths, then such a component is called strongly connected.

The two straightforward algorithms that compute all connected components in time
O(|V | + |E|) are the breadth-first search (BFS) and depth-fist search (DFS) – see the so-
called CLRS textbook [3](Chapter 22).

2.1. Breadth-first search. The breadth-first search (BFS) is one of the simplest algo-
rithms for searching a directed or undirected unweighted graph and is a building block
for many important graph algorithms. It computes shortest paths from the source (any
designated vertex) to all other vertices reachable from it.

The BFS uses the data structure called the queue. The key feature of a queue is the
principle that the first element entering it is the first one who exits it. This structure is
denoted by the symbol Q in the pseudocode below (Algorithm 1). The color attribute of a
vertex indicates if the vertex

• has never been in the queue (WHILE),
• is either in the queue now, or is just out of it and its adjacency list being explored

now (GRAY),
• is out of the queue and adjacency list has been already explored (BLACK).

The other attributes of a vertex v are v.d, the shortest distance to the source, and v.parent,
the predecessor of v in a shortest path from the source to it. The predecessor subgraph for
a given graph G(V,E) and a source vertex s ∈ V is defined as Gπ = (Vπ, Eπ) where

Vπ = {v ∈ V | v.parent 6= NIL} ∪ {s}, Eπ = {(v.parent, v) | v ∈ Vπ\{s}}.

If not all vertices are discovered in a run of BFS, then we can start a new run with an
undiscovered vertex chosen as a source.

Remark A tree is a special kind of undirected graph that contains no cycles. A tree with
n vertices contains n− 1 edges. Often one of the vertices is specified as a root. All vertices
that are not a root and have only one adjacent edge are called leaves. A union of trees is
called a forest.

Let us prove the correctness of the BFS [3] (Section 22.2).

Theorem 1. Let G(V,E) be a directed or undirected graph, and suppose BFS is run on G
from a given source s ∈ V .

(1) BFS discovers every vertex v ∈ V that is reachable from the source s;
(2) upon termination, for all v ∈ V , v.d = δ(s, v), the shortest path length from s to v.
(3) For any vertex v 6= s that is reachable from s, one of the shortest paths from s to

v is a shortest path from s to v.parent followed by the edge (v.parent, v).

First we will prove some useful inequalities.

https://edutechlearners.com/download/Introduction_to_algorithms-3rd%20Edition.pdf
https://edutechlearners.com/download/Introduction_to_algorithms-3rd%20Edition.pdf
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Algorithm 1: Breadth-first search.

Input: An unweighted graph G(V,E) , and a root vertex s.
for each vertex u ∈ V do

u.color = WHITE ;

u.d = ∞;

u.parent = NIL;

end

s.color = GRAY;

s.d = 0;

Q = 0;

Add s to Q;

while Q is not empty do
Take the first vertex u from Q;

for each v adjacent to u do
if v.color == WHITE then

v.color = GRAY;

v.d = u.d + 1;

v.parent = u;

Add v to the end of Q;

end

end

u.color = BLACK;

end
Output: The connected component containing s, distances and paths from s to all
vertices in each connected component, and the breadth-first tree (the predecessor
subgraph).

Lemma 1. In the settings of Theorem 1:

δ(s, v) ≤ δ(s, u) + 1 ∀(u, v) ∈ E.(1)

v.d ≥ δ(s, v) ∀v ∈ V.(2)

Proof. Prove inequality (1). If u and v are both not reachable form s, then ∞ ≤ ∞ + 1
which is true. If both u and v are reachable from s, the shortest path from s to v cannot
be longer than the shortest path from s to u followed by the edge (u, v).

Inequality (2) will be proven by induction on the number of additions to the queue. The
basis of the induction holds as s.d = 0 ≥ δ(s, s) = 0, and v.d = ∞ ≥ δ(s, v) for all v ∈ V .
Assume that (2) holds right after the first k additions to the queue. Suppose a white vertex
v is discovered during the search from u just dequeued. By induction hypothesis,

u.d ≥ δ(s, u).
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Hence, using (1), we obtain (2):

v.d ≥ u.d+ 1 ≥ δ(s, u) + 1 ≥ δ(s, v)

The vertex v is then enqueued and made gray. Therefore, v.d no longer can change. Hence
the induction hypothesis is maintained. �

Lemma 2. Suppose that vertices v and w are enqueued during the execution of BFS, and
that v is enqueued before w. Then v.d ≤ w.d at the time that w is enqueued.

We will prove that if the queue contains vertices (v1, . . . , vr) where v1 is the head and
vr is the tail, then

(3) vr.d ≤ v1.d+ 1 and vi.d ≤ vi+1.d ∀i = 1, . . . , r − 1.

Once we prove (3), the statement of Lemma 2 will follow immediately.

Proof. The proof is conducted by induction on the number of queue operations. Initially,
when the queue contains only s, (3) holds automatically. Suppose that (3) holds at some
step of the execution of BFS. To prove the induction step, we want to show that then it
also holds after (i) dequeueing v1 and (ii) enqueueing a new vertex vr+1. Note that vr+1

may happen before dequeueing v1.
As v1 is dequeued, v1.d ≤ v2.d by induction assumption. Hence vr.d ≤ v1.d+1 ≤ v2.d+1.

Hence (3) is maintained.
Let (v1, . . . , vr) be the current queue, and we are enqueueing a new vertex vr+1 discovered

from a dequeued vertex u. Since u used to be in the queue right before v1,

v1.d ≥ u.d, and vr.d ≤ u.d+ 1.

Hence
vr+1.d = u.d+ 1 ≤ v1.d+ 1, and vr.d ≤ u.d+ 1 = vr+1.d.

Therefore, (3) is maintained as a result of any queue operation. �

Now we are ready to prove theorem 1.

Proof. We will prove statement (2) from converse. Let v be the vertex with the minimum
δ(s, v) (length of the shortest path from s) that receives an incorrect d value. Clearly,
v 6= s. Moreover, v must be reachable from s, since otherwise δ(s, v) = ∞ ≥ v.d ≥ δ(s, v)
implying that v.d = δ(s, v).

Thus, v.d > δ(s, v). Let u be the vertex immediately preceding v in a shortest path from
s to v. Then

δ(s, v) = δ(s, u) + 1.

Since δ(s, u) < δ(s, v) and because of our choice of v, we have u.d = δ(s, u) which implies
that

(4) v.d > δ(s, v) = δ(s, u) + 1 = u.d+ 1.

Now consider the moment of dequeueing u. At this time, v is either white, or gray, or
black.

• If v is white, then v.d = u.d+ 1 which contradicts (4).
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• If v black, it means that it was removed from the queue before u, hence by Lemma
2, v.d ≤ u.d which contradicts (4).
• If v is gray, then it was discovered from a vertex t and painted gray, and t was

removed from the queue before u. Hence, by Lemma 2,

t.d ≤ u.d and v.d = t.d+ 1 ≤ u.d+ 1

which contradicts (4).

Therefore, in all scenarios, we come to a contradiction. Hence v.d = δ(s, v) for all v ∈ V .
All vertices reachable from s must be discovered, since otherwise we would have

∞ = v.d > δ(s, v).

Finally, we observe that if v.parent = u then v.d = u.d+ 1. Thus, we obtain a shortest
path from s to v by adding (v.parent, v) to a shortest path from from s to v.parent.

�

2.2. Depth-first search. The depth-first search (DFS), like BFS is suitable for unweighted
graphs, directed or undirected. DFS creates a predecessor subgraph for a given graph
G(V,E) defined a bit differently from the one for BFS: Gπ = (V,Eπ) where

Eπ = {(v.parent, v) | v ∈ V, v.parent 6= NIL}.
This subgraph is called a depth-first forest comprising several depth-first trees. In an
undirected graph, each depth-first tree spans a connected component of the graph. In
general, each depth-first tree contains all vertices reachable from its root. In a directed
graph, we say that v is reachable from s if and only if there is a directed path from s to v.

In DFS, the vertices are colored the same way as in BFS. This technique guarantees that
each vertex ends up in exactly one depth-first tree, so that the trees are disjoint.

Besides the depth-first forest, DFS also timestamps each vertex. Each vertex has two
timestamps.

• The first timestamp v.d records when it is first discovered; v.color changes from
WHITE to GRAY.
• The second timestamp v.f records when DFS finishes examining all v’s adjacency

list, i.e., discovers all vertices hanging down from v; v.color changes from GRAY to
BLACK.

Note that all timestamps are between 1 and 2|V | as there is exactly one discovery event
and one finishing event for each vertex. For every vertex u,

u.d < u.f.

Algorithm 2–3 constitutes a pseudocode for DFS. Algorithm 3 is a recursive function as it
calls itself. I’d like to remark that time can be made into a global variable. In C language,
I would define it as a local variable of pointer-to-integer type. In the pseudocodes, I also
define it as a local variable but in a manner suitable for Matlab implementation.

Note that the output of the DFS depends on the order in which the vertices are discov-
ered. The cost of DFS is O(|V |+ |E|).

Let us discuss some properties of DFS.



Fall 2020 AMSC808N/CMSC828V

Algorithm 2: DFS(G)

Input: An unweighted graph G(V,E).
for each vertex u ∈ V do

u.color = WHITE ;

u.parent = NIL;

end

time = 0;

for each vertex u ∈ V do
if u.color == WHITE then

time = DFS-VISIT(G,u,time);

end

end

Algorithm 3: time = DFS-VISIT(G,u,time)

Input: An unweighted graph G(V,E), a selected vertex u, and the time variable.
time = time + 1;

u.d = time;

u.color = GRAY;

for each v adjacent to u do
if v.color == WHITE then

v.parent = u;

time = DFS-VISIT(G,u,time);

end

end

u.color = BLACK;

time = time + 1;

u.f = time;

Theorem 2. (Parenthesis theorem) Let DFS be applied to any directed or undirected
graph G(V,E). Then for any two vertices u and v, exactly one of the following three
conditions holds:

• [u.d, u.f ] ∩ [v.d, v.f ] = ∅, and neigther u nor v is a descendant of the other in the
depth-first forest,
• [u.d, u.f ] is entirely inside [v.d, v.f ], and u is a descendant of v in a depth-first tree,

or
• [v.d, v.f ] is entirely inside [u.d, u.f ], and v is a descendant of u in a depth-first tree.

Furthermore, v is a descendant of u in the depth-first forest if and only if

u.d < v.d < v.f < u.f.

The proof directly follows from the structure of Algorithm 2–3.



Fall 2020 AMSC808N/CMSC828V

Theorem 3. (White-path theorem) In a depth-first forest of a directed or undirected
graph G(V,E), vertex v is a descendant of vertex u if and only if at time u.d (when the
search discovers u), there is a path from u to v consisting entirely of white vertices.

Proof. =⇒: If v = u then the path consists of a single vertex u which is still white at the
moment when we set u.d. If v is a proper descendant of u then u.d < v.d, so v is white at
time u.d. Since v is any descendant of u, all vertices on the unique simple path from u to
v in the depth-first forest are white at time u.d.
⇐=: Suppose that there is a path of white vertices from u to v at time u.d, but v does

not become a descendant of u in the depth-first tree. Without the loss of generality, we
assume that every vertex other than v along the path becomes a descendant of u. Let w
be the predecessor of v in the path, so that w is a descendant of u. Then w.f < u.f by
Theorem 2. Since v must be discovered after u is discovered but before w is finished, by
Theorem 2 we have

u.d < v.d < w.f ≤ u.f.
Hence, by Theorem 2, [v.d, v.f ] is entirely inside [u.d, u.f ] and hence v is a descendant of
u. �

Another property of DFS is that it can be used to classify edges of G(V,E). We define
the following types of edges in terms of the depth-first forest Gπ produced by DFS on G:

• Tree edges are those in Gπ. Edge (u, v) is a tree edge iff v is discovered by
exploring edge (u, v).
• Back edges are those edges (u, v) connecting a vertex u to an ancestor v in a

depth-first tree. We consider self-loops, which occur in directed graphs, to be back
edges.
• Forward edges are those nontree edges (u, v) that connect a vertex u to its de-

scendant in a depth-first tree.
• Cross edges are all other edges. They can go between vertices in the same depth-

first tree, as long as one vertex is not an ancestor of the other, or they can go
between vertices in different depth-first trees.

Suppose DFS is exploring an edge (u, v). Note that then u is gray. There are the
following possibilities for v:

• v.color = WHITE, hence (u, v) is a tree edge;
• v.color = GRAY, hence (u, v) is a back edge;
• v.color = BLACK, hence (u, v) is a forward or cross edge.

Theorem 4. In DFS of an undirected graph G, every edge of G is either a tree edge or a
back edge.

Proof. Let (u, v) be an arbitrary edge of G, and suppose without the loss of generality that
u.d < v.d. Then, since v is in the adjacency list of u,

u.d < v.d < v.f < u.f.

Hence v is white as it is discovered from u and hence (u, v) is a tree edge.
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If v.d < u.d, then (u, v) is a back edge since v is still gray at the time this edge is
explored. �

Theorem 5. A directed graph G is acyclic if and only if DFS of G yields no back edges.

Proof. =⇒: Suppose that a DFS produces a back edge (u, v). Then vertex v is an ancestor
of vertex u in the depth-first forest. Thus, G contains a path from v to u, and the back
edge (u, v) completes a cycle.
⇐=: Suppose that G contains a cycle c. We show that DFS of G yields a back edge.

Let v be the first vertex to be discovered in c, and let (u, v) be the preceding edge in c. At
time v.d, the vertices of c form a path of white vertices from v to u. By Theorem 3, vertex
u becomes a descendant of v in the depth-first forest. Therefore, (u, v) is a back edge. �

3. Random graph models

Network models help us to understand the meaning of such statistical network properties
as average shortest path length, clustering coefficient, degree distribution – how they relate
to the way the network has been formed and how they relate to each other.

3.1. Poisson random graphs. The study of network models dates back to 1950s. Solomonoff
and Rapoport (1951) [4] and, independently, Erdös and Renyi (1959) [5] proposed random
graph models with similar properties:

• [4]: the random graph G(n, p) which is an ensemble of random graphs with n
vertices and in which each of (1/2)n(n− 1) possible edges exists with probability p;
• [5]: the random graph G(n,N) which is an ensemble of random graphs with n

vertices and N edges randomly selected out of (1/2)n(n− 1) possible edges.

In both works, the limit n → ∞ was considered, and a number of asymptotic estimates
were obtained. The model G(n, p) makes analysis a bit easier, so, we will focus on it. We
will also let n tend to infinity in a manner where the mean degree

(5) z = 2
pn(n− 1)

2n
= p(n− 1)

remains constant. In this case, the model has a Poisson degree distribution. Indeed, the
probability that a vertex has degree k is given by:

(6) pk =

(
n− 1
k

)
pk(1− p)n−k−1.

Letting n→∞, fixing k, and setting p = z/(n− 1), we obtain the Poisson distribution:

(7) pk = lim
n→∞

(n− 1) . . . (n− k)

k!

zk

(n− 1)k

(
1− z

n− 1

)n−1(
1− z

n− 1

)−k
=
zke−z

k!
.

Both Solomonoff and Rapoport and Erdös and Renyi discovered the most interesting
and important property of the Poisson random graph: it possesses a phase transition.
If the mean degree z < 1, all connected components of the graph are small (with high
probability). In contrast, if z > 1, there appears the so-called giant component containing
O(n) vertices. Let u be the probability that a random vertex does not belong to the giant
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component. It is equal to the probability that none of its neighbors belongs to the giant
component. This argument allows us to derive an equation for u:

(8) u =
∞∑
k=0

pku
k =

∞∑
k=0

(uz)ke−z

k!
= ez(u−1).

Observing that S = 1 − u is the probability for a random vertex to belong to the giant
component, we obtain an equation for S:

(9) S = 1− e−zS .

The graphs of 1− S − exp(−zS) for z = 1/2, 1, and 2 are shown in Fig. 1.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
-0.7
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-0.5

-0.4

-0.3

-0.2

-0.1

0

0.1

1-S-exp(-S/2)
1-S-exp(-S)
1-S-exp(-2S)

Figure 1. Graphs of f(S) = 1− S − exp(−zS) where S is the fraction of
vertices in the giant component for various mean degrees z. Using elemen-
tary calculus, one can show that S = 0 is the only root for z ≤ 1, and there
appears an additional solution S > 0 for z > 1.

In order to obtain more theoretical results for Poisson random graphs, we need to enhance
our arsenal of analytical tools. A powerful tool is the method of generating functions widely
used by M. Newman and collaborators. A beautiful book “Generatingfuncanology” by H.
Wilf is available online.

3.2. Generating functions. This brief review follows the one in [6]. Let pk be a discrete
probability distribution. The index k runs from 0 to ∞. If the number of outcomes is
finite, then the tail of the distribution is merely 0, and all results obtained in this section
will still apply. A generating function for this probability distribution is defined as a power
series:

(10) G(x) :=

∞∑
k=0

pkx
k.

https://www.math.upenn.edu/~wilf/gfology2.pdf
https://www.math.upenn.edu/~wilf/gfology2.pdf
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Since pk is a probability distribution, we have

(11) G(1) =
∞∑
k=0

pk = 1.

The generating function allows us to restore the distribution according to the formula:

(12) pk =
1

k!

dkG(x)

dxk

∣∣∣∣
x=0

.

Therefore, the function G(x) encapsulates all information available about the distribution.
In particular, it “generates” the distribution.

The generating function allows us to calculate all moments for the distribution. In
particular, the mean is given by

(13) 〈k〉 =
∞∑
k=0

kpk =
∞∑
k=1

kpk1
k−1 = G′(1).

The mth moment is given by

(14) 〈km〉 =
∞∑
k=0

kmpk =

[(
x
d

dx

)m
G(x)

]
x=1

.

If pk is the distribution for a property of an object (i.e., the degree distribution for the
vertices of a random graph) and G(x) is its generating function, then the distribution of the
sum of this property over m independent realizations is generated by G(x)m. For example,
let m = 2:

[G(x)]2 =

[ ∞∑
k=0

pkx
k

]2
=
∑
j,k

pjpkx
j+k

= p0p0x
0 + (p0p1 + p1p0)x+ (p0p2 + 2p1p1 + p2p0)x

2 + . . . .

3.3. Poisson random graphs: mean size of non-giant component. We will follow
the discussion in [6]. For the Poisson random graph with mean degree z, the generating
function for the degree distribution is given by

(15) G0(x) =
∞∑
k=0

e−z
zk

k!
xk = ez(x−1).

As it should be, G0(1) = e0 = 1. Let us check that the mean degree is z. Indeed,

G′0(1) = zez(x−1)
∣∣∣
x=1

= z.

Now we will calculate the average size of non-giant component, i.e., the expected size of
the component where a randomly picked vertex that does not lie in the giant component
belongs to. Let us pick a vertex v and an edge emanating from it. Suppose that this edge
leads to another vertex w. We want to obtain the distribution for the so-called excess
degree of w, i.e, the probability qk that k edges other than (v, w) are incident to w. Since
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the probability to arrive to w from v is proportional to the degree of w which is k + 1, we
get:

(16) qk =
(k + 1)pk+1∑∞

k=1 kpk
=

(k + 1)pk+1

z
= e−z

(k + 1)zk+1

z(k + 1)!
= e−z

zk

k!
= pk.

Therefore, for the Poisson random graph, the distributions pk and qk coincide! Hence,
for the Poisson model, the generating function G1(x) for the excess degree distribution

coincides with G0(x) = ez(x−1).
Let H1(x) be the generating function for the total number of vertices reachable by

choosing a random edge, not belonging to the giant component if any, and following to
one of its ends. It must satisfy the following self-consistency equation obtained under the
assumption that all small components are tree-like, i.e., contain no cycles:

(17) H1(x) = xq0 + xq1H1(x) + xq2[H1(x)]2 + xq3[H1(x)]3 + . . . = xG1(H1(x)).

Let us clarify why we think about each non-giant component as a tree. Remember that
we assume that n is very large and the probability of an edge between any pair of vertices
scales as O(1/n). The number of vertices in a non-giant component is a small fraction of
n. Hence the probability that there is an extra edge connecting two vertices of the same
small component also scales as O(1/n) and hence tends to zero as n → ∞. In [6], (17) is
illustrated with the following diagram:

= + + + + …

Assume for now that there is no giant component. We randomly select a vertex v and
look at the probability distribution for the size of the connected component containing it.
It is generated by the function

(18) H0(x) = xp0 + xp1H1(x) + xp2[H1(x)]2 + xp3[H1(x)]3 + . . . = xG0(H1(x)).

The mean size of a non-giant component is given by

(19) 〈s〉 = H ′0(1) = G0(H1(1)) +G′0(H1(1))H ′1(1) = 1 +G′0(1)H ′1(1).

The derivative H ′(1) can be found from (17):

(20) H ′1(1) = G1(H1(1)) +G′1(H1(1))H ′1(1) = 1 + zH ′1(1).

Therefore,

(21) H ′1(1) =
1

1− z
.
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Hence, we find that

(22) 〈s〉 = 1 +
z

1− z
=

1

1− z
Now suppose that there is a giant component occupying the fraction S of vertices. The

probability u that a vertex is not in the giant component satisfies (8):

u = ez(u−1) = G0(u).

We also observe that H0(1) = H1(1) = u, the fraction of vertices not in the giant compo-
nent. Therefore, we need to renormalize all probabilities for component sizes in the series
H0(x):

hk 7→
hk

H0(1)
,

so that the renormalized probabilities sum up to 1 and hence are suitable for computing
the expected size for non-giant components. Hence, (19) becomes

(23) 〈s〉 =
H ′0(1)

H0(1)
=
G0(H1(1)) +G′0(H1(1))H ′1(1)

H0(1)
.

In the presence of the giant component,

(24) H ′1(1) =
G1(u)

1−G′1(u)
=

u

1− zez(u−1)
=

u

1− zu
.

Hence, we obtain:

(25) 〈s〉 =
1

u

[
G0(u) +

G′0(u)zu

1− zu

]
= 1 +

zu

1− zu
=

1

1− zu
=

1

1− z + zS
.

3.4. Random graphs with arbitrary degree distributions. While Poisson random
graphs offer an analytically solvable model in the limit n → ∞, they do not resemble
real-life networks in a number of aspects. One such an aspect it the degree distribution.
In many real-world networks, a power degree distribution is observed – see Fig. 3.2 in [1]:
the internet, the World-Wide Web, protein interactions, collaborations in mathematics,
citations networks all exhibit degree distribution of the form

(26) pk =
k−α

ζ(α)
, where ζ(α) =

∞∑
k=1

k−α is the Riemann zeta function.

Note that the Riemann zeta function is finite for all α such that Re(α) > 1. Another degree
distribution that is observed in real-world networks is exponential, e.g., in the power-grid
network (Fig. 3.2 in [1]).

Motivated by this fact, random graphs with a specified degree distribution were intro-
duced – see [6] and references therein. These graphs can be sampled by generating vertices
with numbers of “stubs” distributed according to the given distribution pk and then ran-
domly matching the stubs. The only restriction of this approach is that the total number
of stubs must be even.
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The method of generating functions used in the previous section is straightforwardly
transferable to a model with specified degree distribution. As before, we obtain the excess
degree distribution

qk =
(k + 1)pk+1∑∞

j=1 jpj
=

(k + 1)pk+1

z
where z =

∞∑
j=1

jpj is the mean degree.

The distributions pk and qk are generated by G0(x) and G1(x) respectively which no longer
need to coincide. Note that

(27) G1(x) =
G′0(x)

z
.

Random graphs with a given degree may or may not have a giant component, and, what
is most interesting for me, a criterion for the existence of giant component can be derived
[6].

3.4.1. Phase transition. Let us pick a vertex v and consider its first neighbors, second
neighbors, ..., mth neighbors, and so on as in M. Newman, “Random graphs as models for
networks” (2002). The excess degree distribution for the first neighbors is qk. The mean
excess degree is given by

(28)
∞∑
k=0

kqk =
1

z

∞∑
k=0

k(k + 1)pk+1 =
1

z

∞∑
k=0

(k − 1)kpk =
〈k2〉 − 〈k〉
〈k〉

,

where z ≡ z1 ≡ 〈k〉 is the mean degree. The expected number of second neighbors is
equal to the mean excess degree of the first neighbors times the expected number of first
neighbors:

(29) z2 = 〈k〉〈k
2〉 − 〈k〉
〈k〉

= 〈k2〉 − 〈k〉

Then we take an arbitrary second neighbor of v and apply the same argument to calculate
the expected number of third neighbors. The average excess degree for second neighbors
is still given by (28). The probability that any of these excess edges reconnect to the first
neighbor of v or to v itself tends to zero as n → ∞. Therefore, the expected number of
third neighbors is the expected number of second neighbors times the mean excess degree:

z3 = z2
〈k2〉 − 〈k〉
〈k〉

=
z2
z1
z2 =

[
z2
z1

]2
z1.

By a similar argument, we find the expected number of mth neighbors:

(30) zm =
z2
z1
zm−1 =

[
z2
z1

]m−1
z1.

Equation (30) allows us find a criterion for existence of the giant component. Summing
(30) over all m and adding the vertex v, we find the expected size of a connected component

https://arxiv.org/pdf/cond-mat/0202208.pdf
https://arxiv.org/pdf/cond-mat/0202208.pdf
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containing v:

(31) 〈s〉 = 1 + z1

∞∑
m=1

[
z2
z1

]m−1
=

{
1 +

z21
z1−z2 , z1 > z2

∞, otherwise.

If this expression is finite, i.e., if z2 < z1, there is no giant component. Otherwise, there is.
Recalling (29) for z2, we write the condition for the phase transition: z1 = z2, i.e.,

(32) 0 = z2 − z1 = 〈k2〉 − 2〈k〉 =

∞∑
k=0

k(k − 2)pk.

We remark that (32) for the phase transition was originally derived by Molloy and Reed
(1995) [7] using a different approach.

3.4.2. Average shortest path length. Equation (30) allows us to estimate the average short-
est path length in the giant component of a random graph with a specified degree dis-
tribution provided that there is one. Let us assume that the giant component embraces
almost all vertices in the graph. We assume that z2 � z1 and set the expected size of lth
neighborhood to be equal to the whole graph n:

zl =

[
z2
z1

]l−1
z1 ' n.

For here, we obtain the following estimate for the average shortest path length:

(33) l ' 1 +
log(n/z1)

log(z2/z1)
.

For the special case of Erdös-Renyi random graph we have z2 = z21 = z2 (as G1 = G0),
hence

l ' 1 +
log n− log z

log z
=

log n

log z
.

3.4.3. Clustering coefficient. Another important quantity of interest is the clustering co-
efficient. There are different non-equivalent definitions of clustering coefficient. Here, we
will define it as the ratio of the tripled number of triangles in the network to the number
of connected triples:

(34) C =
3× number of triangles in the network

number of connected triples of vertices
.

Let v be an arbitrary vertex, and let ki and kj be excess degrees of two of its neighbors.
The distributions for the excess degrees are qk. The probability that these two neighbors
are connected to each other is

(35)
kikj
nz

.

Indeed, we have ki stubs emanating from i. For each of them, the probability to connect to
one out of kj stubs of j is kj/nz as nz is the total number of stubs. Averaging this probability

https://www.cs.toronto.edu/~molloy/webpapers/gc2.ps
https://www.cs.toronto.edu/~molloy/webpapers/gc2.ps
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over the joint distribution for ki and kj which is merely the square of the distribution for
the excess degree due to the independence of ki and kj and recalling (28), we get:

(36) C =
〈kikj〉
nz

=
1

nz

∞∑
k,l=0

klqkql =
1

nz

[ ∞∑
k=0

kqk

]2
=

1

nz

[
〈k2〉 − 〈k〉
〈k〉

]2
.

This expression can be rewritten in terms of the coefficient of variation of the degree
distribution cv defined by

(37) c2v :=
〈k2〉 − 〈k〉2

〈k〉2
,

i..e., cv is the ratio of the standard deviation to the mean. Using it, we obtain:

(38) C =
z

n

[
〈k2〉 − 〈k〉2 + 〈k〉2 − 〈k〉

〈k〉2

]2
=
z

n

[
c2v +

z − 1

z

]2
.

Thus, we see that C scales with n as O(z/n), however, the factor by which z/n is multiplied
can be large.

3.4.4. Average size of non-giant components. In a manner similar to the one used for the
Poisson random graphs, one can calculate the average size of a non-giant component [6]:

(39) 〈s〉 =
H ′0(1)

H0(1)
= 1 +

zu2

[1− S][1−G′1(u)]
,

where u ≡ H1(1) is the smallest non-negative solution to u = G1(u), and S is the fraction
of graph occupied by the giant component: S = 1−G0(u).

Exercise Give a detailed derivation of (39).
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