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Motivation

« Need for low-rank approximation for a matrix.

. SVD A =UZXZVT gives the best approximation:

I| A - Ak ||[F ?min, but columns of U and V are hard-to-
Interpret

« Columns often correspond to products or features, while
rows correspond to users. A joking example from
Mahoney and Drineas:

[(1/2)age — (1/4/2)height + (1/2)income],




Visual examples (Mahoney and Drineas, PNAS 2009)

A Scatter plot for data from multivariate normal distrbution B Scatter plot for data from the union of two multivariate normal distributions
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C Five examples of noisy sine functions in synthetic data D Five examples of noisy exponential functions in synthetic data
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E Singular vectors of the synthetic data F Projection scatter plot onto the span of the top two singular vectors
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Even more examples...

- Spearman, a social scientist interested in models for
human intelligence, invented “factor analysis”.
Computed first principal component of a set of mental
tests and reined it as an entity. He called it “the general
intelligence factor”. He called the subsequent principal
component “group factors”.

 Application of this analysis resulted in ranking individuals
in single intelligence scale, dubious social applications of
data analysis such as involuntary sterilization of imbeciles
in Virginia. See S. J. Gould “Mismeasure of Man”.




What do we want from a matrix decomposition

- Provable worst-case optimality and algorithmic properties

- Should have a natural statistical interpretation associated
with its construction

- Should perform well in practice



CUR decompositions

G. W. Stewart: quasi-Gram-Schmidt method, applied to A and AT (1999,
2004)

Goreinov, Tyrtyshnikov, Zamarashkin (1997): CUR with choice of columns
related to max uncorrelatedness.

Frieze, Kannan, Vempala (2004): random sampling of columns according to
a probability distribution that depended on columns Euclidean norm. Worst-
case scenario guarantee: [|A - PcA||r = [|A - Akl|r + €]|Al|r with high probability.

Drineas, Kannan, Mahoney (2006): CUR, columns and rows chosen
simultaneously based on their Euclidean norm. Worst-case scenario
guarantee: ||A - CUR||r < ||A - Akl|r+ €]|A]|r with high probability.

N
Drineas, Mahoney, Muthukrishnan (2008 SIAM J Matr Anal Appl): CUR based

on leverage scores: ||A - PcAllr = (1+ £/2)||A - Akl|r

Mahoney and Drineas (PNAS, 2009) “CUR matrix decomposition for
improved data analysis”: ||A - CUR||r < (2 + ¢)||A - Akl|r




Leverage scores
S. Chatterjee and A. S. Hadi (1986)

Linear regression model

Y=XB8+e¢ YeR X eR™ BecR?

e is a random variable, mean 0, variance o2

B=(XTX)'XTy,
Var(8) = e¥(X7X)7,
Y = X3 = PY,

P=XXTX)"'XT,
Var(Y) = %P,
e=Y-Y=(-PY,
Var(e) = ¢%(I — P),
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Leverage scores
Y=PY =X(X"X)"'XTY

Diagonal entries  x; (XTX) _1332_

can be though of as the amount of leverage of

Yy; on y;



CUR Algorithm

Mahoney and Drineas, PNAS 2009

.
A = (osub ),
£=1

Since we seek columns of 4 that are simultaneously correlated
with the span of all top & right singular vectors, we then compute
the normalized statistical leverage scores:

k
=-Y (v [3]
£=1

forallj = 1,...,n. With this normalization, it is straightforward to
show that ; > > 0 and that Z _1 ; = 1, and thus that these scores

form a probability dlstrlbutlon over the n columns.

»n-n



ColumnSelect(A,k,epsilon)

. Compute v!,...,v* (the top k right singular vectors of A)
and the normalized statistical leverage scores of Eq. 3.

. Keep the jth column of 4 with probability p; = min{1, cx;},
forallj € {1,...,n}, where c = O(klogk/€?).

. Return the matrix C consisting of the selected columns
of A.

AlgorithmCUR(A,k,epsilon)

. Run COLUMNSELECT on A with ¢ = O(klogk/€?) to
choose columns of A and construct the matrix C.

. Run COLUMNSELECT on AT with r = O(klogk/€?) to
choose rows of 4 (columns of A7) and construct the matrix
R.

. Define the matrix U as U = CTAR™', where Xt denotes a
Moore-Penrose generalized inverse of the matrix X (17).

l4 — CUR|F < (2+¢€) 14 —Akllr,



Drineas, Mahoney, Muthukrishnan (2008)
Two variants of algorithm for selecting columns

Exactly(c)

Data : AcR™*"™ p;, > 0,7 € [n] s.t. Zie[n] p; = 1, positive integer ¢ < n.

Result : Sampling matrix S, rescaling matrix D, and sampled and rescaled

columns C.
Initialize S and D to the all zeros matrices.

fort=1,...,cdo

Pick i; € [n], where Pr(i; = 1) = p;;
Sit = 1;

Dy = 1/\/@

end

C =ASD.

Algorithm 4. The EXACTLY(c) algorithm to create S, D, and C.



Expected(c)

Data : AeR™*" p; >0,i € [n] s.t. Zie[n] p; = 1, positive integer ¢ < n.

Result : Sampling matrix S, rescaling matrix D, and sampled and rescaled
columns C'.

Initialize S and D to the all zeros matrices.

t=1;

for j=1,...,ndo

Pick j with probability min{1, cp;};
if j s picked then
Sjt = 1;
Dy = 1/ min{1, \/@}7
t=t+1;
end
end
C = ASD.

Algorithm 5. The EXPECTED(c) algorithm to create S, D, and C.




Drineas, Mahoney, Muthukrishnan (2008)

THEOREM 4. Let A € R™*™, let C € R™*° be a matriz consisting of any c
columns of A, and let € € (0,1]. If we set r = 3200c?/e2 and run Algorithm 2 by
choosing r rows exactly from A and from C with the EXACTLY(c) algorithm, then
with probability at least 0.7

(18) |A—CUR|, < (1+¢€)|A-CCTA|,.

Similarly, if we set r = O(clogc/€?) and run Algorithm 2 by choosing no more than r
rows in expectation from A and from C with the EXPECTED(c) algorithm, then (18)
holds with probability at least 0.7.



l4A — PcAllp < (1+€/2) |4 — AkllF

I4 — CUR|r = |4 —CCTAR'R|,

lI4 — CUR||p < |4 — CC*A|, + |CCT4 — CC*AR'R|,,
A—CC*A|,+ |A—AR'R|, |

A —PcAlp + |A —APrlr.

IA 1A

l4 = CUR|F =< (2+€) lA = AxllF.



Experiment with text categorization data
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