
GRAPH DATA ANALYSIS

MARIA CAMERON, PERRIN RUTH

Contents

1. Introduction and Notation 1
2. Basic algorithms for graph exploration 2
2.1. Breadth-first search 2
2.2. Depth-first search 6
3. Random graph models 8
3.1. Erdös-Renyi random graphs 8
3.2. Generating functions 9
3.3. Poisson random graphs: mean size of non-giant component 10
3.4. Random graphs with arbitrary degree distributions 11
4. Percolation 15
4.1. Node Percolation 15
4.2. SIR Model 17
4.3. Edge Percolation and SIR Model on Random Networks 18
References 19

1. Introduction and Notation

For more resources read:

• chapters 1 and 2 in M. E. J. Newman’s review paper [1],
• chapter 1 in A. L. Barabási’s book “ Network Science”,
• the 3-page paper Nature by Watts and Strogatz (1998) [2].

Suppose we have a graph G(V,E) where V is the set of vertices and E is the set of
edges. In these notes we will assume G is a simple graph, i.e. G will not contain self-loops
or multiple edges. Furthermore, we will assume that G is an unweighted graph. Outside of
the next section we will also assume that G is undirected. For clarity the following figure
contains a simple unweighted, undirected graph and modifications to it that are not simple,
directed, and weighted, respectively.

1

2

1 3

1

https://epubs.siam.org/doi/pdf/10.1137/S003614450342480
http://networksciencebook.com/chapter/1#networks
http://worrydream.com/refs/Watts-CollectiveDynamicsOfSmallWorldNetworks.pdf

Summer 2023 REU tutorials

Unless otherwise specified we will let the number of vertices and edges be n = |V | and
m = |E|. Frequently we will work with sparse networks, i.e. m = O(n), which reduces the
complexity of many classical problems in graph theory. One way to define a graph is by
an n × n adjacency matrix A where Ai,j = 1 if there is an edge from i to j and Ai,j = 0
otherwise. If G is undirected then A is a symmetric matrix. Another way to define a
graph is by an adjacency list which is a list containing n elements where each element is
a list corresponding to the neighbors of a node of the graph. An adjacency list can be
interpreted as a sparse representation of an adjacency matrix. These ways of defining a
graph can easily be extended to weighted graphs.

In lab 11 you will be expected to write implementations for the algorithms in § 2 from
scratch. Nonetheless, there are many programs available for studying networks. In Matlab
one can create a graph object from an adjacency matrix A by running G=graph(A) for which
there are many pre-defined functions. In Python, the networkx package is commonly used.
Mathematica is useful for visualizing networks as well.

2. Basic algorithms for graph exploration

Given a graph, the first natural question is whether it is connected or not. If, not, what
are its connected components?

Definition 1. A connected component of a graph G(V,E) is a subset of its vertices V1 ⊂ V
such that

(1) for any pair of vertices i, j ∈ V1 there is a path in G(V,E) from i to j, and
(2) if there is a path from i ∈ V1 to j ∈ V , then j ∈ V1, i.e., the connected component

is a maximal subset.

If the graph G(V,E) is directed, and we restrict ourselves to accounting only for directed
paths, then such a component is called strongly connected.

The two straightforward algorithms that compute all connected components in time
O(n+m) are the breadth-first search (BFS) and depth-fist search (DFS) – see the so-called
CLRS textbook [3](Chapter 22).

2.1. Breadth-first search. The breadth-first search (BFS) is one of the simplest algo-
rithms for searching a directed or undirected unweighted graph and is a building block
for many important graph algorithms. It computes shortest paths from the source (any
designated vertex) to all other vertices reachable from it.

The BFS uses the data structure called the queue. The key feature of a queue is the
principle that the first element entering it is the first one who exits it (FIFO). This structure
is denoted by the symbol Q in the pseudocode below (Algorithm 1). The color attribute of
a vertex indicates if the vertex

• has never been in the queue (WHITE),
• is either in the queue now, or is just out of it and its adjacency list being explored
now (GRAY),

• is out of the queue and adjacency list has been already explored (BLACK).

https://networkx.org/
https://edutechlearners.com/download/Introduction_to_algorithms-3rd%20Edition.pdf
https://edutechlearners.com/download/Introduction_to_algorithms-3rd%20Edition.pdf

Summer 2023 REU tutorials

The other attributes of a vertex v are v.d, the shortest distance to the source, and v.parent,
the predecessor of v in a shortest path from the source to it. The predecessor subgraph for

Algorithm 1: Breadth-first search.

Input: An unweighted graph G(V,E) , and a root vertex s.
for each vertex u ∈ V do

u.color = WHITE ;

u.d = ∞;

u.parent = NIL;

end

s.color = GRAY;

s.d = 0;

Q = 0;

Add s to Q;

while Q is not empty do
Take the first vertex u from Q;

for each v adjacent to u do
if v.color == WHITE then

v.color = GRAY;

v.d = u.d + 1;

v.parent = u;

Add v to the end of Q;

end

end

u.color = BLACK;

end
Output: The connected component containing s, distances and paths from s to all
vertices in each connected component, and the breadth-first tree (the predecessor
subgraph).

a given graph G(V,E) and a source vertex s ∈ V is defined as Gπ = (Vπ, Eπ) where

Vπ = {v ∈ V | v.parent ̸= NIL} ∪ {s}, Eπ = {(v.parent, v) | v ∈ Vπ\{s}}.

If not all vertices are discovered in a run of BFS, then we can start a new run with an
undiscovered vertex chosen as a source.

Remark A tree is a special kind of undirected graph that contains no cycles. A tree with
n vertices contains n− 1 edges. Often one of the vertices is specified as a root. All vertices
that are not a root and have only one adjacent edge are called leaves. A union of trees is
called a forest.

Let us prove the correctness of the BFS [3] (Section 22.2).

Summer 2023 REU tutorials

Theorem 1. Let G(V,E) be a directed or undirected graph, and suppose BFS is run on G
from a given source s ∈ V .

(1) BFS discovers every vertex v ∈ V that is reachable from the source s;
(2) upon termination, for all v ∈ V , v.d = δ(s, v), the shortest path length from s to v.
(3) For any vertex v ̸= s that is reachable from s, one of the shortest paths from s to

v is a shortest path from s to v.parent followed by the edge (v.parent, v).

First we will prove some useful inequalities.

Lemma 1. In the settings of Theorem 1:

δ(s, v) ≤ δ(s, u) + 1 ∀(u, v) ∈ E.(1)

v.d ≥ δ(s, v) ∀v ∈ V.(2)

Proof. Prove inequality (1). If u and v are both not reachable form s, then ∞ ≤ ∞ + 1
which is true. If both u and v are reachable from s, the shortest path from s to v cannot
be longer than the shortest path from s to u followed by the edge (u, v).

Inequality (2) will be proven by induction on the number of additions to the queue. The
basis of the induction holds as s.d = 0 ≥ δ(s, s) = 0, and v.d = ∞ ≥ δ(s, v) for all v ∈ V .
Assume that (2) holds right after the first k additions to the queue. Suppose a white vertex
v is discovered during the search from u just dequeued. By induction hypothesis,

u.d ≥ δ(s, u).

Hence, using (1), we obtain (2):

v.d ≥ u.d+ 1 ≥ δ(s, u) + 1 ≥ δ(s, v)

The vertex v is then enqueued and made gray. Therefore, v.d no longer can change. Hence
the induction hypothesis is maintained. □

Lemma 2. Suppose that vertices v and w are enqueued during the execution of BFS, and
that v is enqueued before w. Then v.d ≤ w.d at the time that w is enqueued.

We will prove that if the queue contains vertices (v1, . . . , vr) where v1 is the head and
vr is the tail, then

(3) vr.d ≤ v1.d+ 1 and vi.d ≤ vi+1.d ∀i = 1, . . . , r − 1.

Once we prove (3), the statement of Lemma 2 will follow immediately.

Proof. The proof is conducted by induction on the number of queue operations. Initially,
when the queue contains only s, (3) holds automatically. Suppose that (3) holds at some
step of the execution of BFS. To prove the induction step, we want to show that then it
also holds after (i) dequeueing v1 and (ii) enqueueing a new vertex vr+1. Note that vr+1

may happen before dequeueing v1.
As v1 is dequeued, v1.d ≤ v2.d by induction assumption. Hence vr.d ≤ v1.d+1 ≤ v2.d+1.

Hence (3) is maintained.

Summer 2023 REU tutorials

Let (v1, . . . , vr) be the current queue, and we are enqueueing a new vertex vr+1 discovered
from a dequeued vertex u. Since u used to be in the queue right before v1,

v1.d ≥ u.d, and vr.d ≤ u.d+ 1.

Hence

vr+1.d = u.d+ 1 ≤ v1.d+ 1, and vr.d ≤ u.d+ 1 = vr+1.d.

Therefore, (3) is maintained as a result of any queue operation. □

Now we are ready to prove theorem 1.

Proof. We will prove statement (2) from converse. Let v be the vertex with the minimum
δ(s, v) (length of the shortest path from s) that receives an incorrect d value. Clearly,
v ̸= s. Moreover, v must be reachable from s, since otherwise δ(s, v) = ∞ ≥ v.d ≥ δ(s, v)
implying that v.d = δ(s, v).

Thus, v.d > δ(s, v). Let u be the vertex immediately preceding v in a shortest path from
s to v. Then

δ(s, v) = δ(s, u) + 1.

Since δ(s, u) < δ(s, v) and because of our choice of v, we have u.d = δ(s, u) which implies
that

(4) v.d > δ(s, v) = δ(s, u) + 1 = u.d+ 1.

Now consider the moment of dequeueing u. At this time, v is either white, or gray, or
black.

• If v is white, then v.d = u.d+ 1 which contradicts (4).
• If v black, it means that it was removed from the queue before u, hence by Lemma
2, v.d ≤ u.d which contradicts (4).

• If v is gray, then it was discovered from a vertex t and painted gray, and t was
removed from the queue before u. Hence, by Lemma 2,

t.d ≤ u.d and v.d = t.d+ 1 ≤ u.d+ 1

which contradicts (4).

Therefore, in all scenarios, we come to a contradiction. Hence v.d = δ(s, v) for all v ∈ V .
All vertices reachable from s must be discovered, since otherwise we would have

∞ = v.d > δ(s, v).

Finally, we observe that if v.parent = u then v.d = u.d+ 1. Thus, we obtain a shortest
path from s to v by adding (v.parent, v) to a shortest path from from s to v.parent.

□

Summer 2023 REU tutorials

2.2. Depth-first search. The depth-first search (DFS), like BFS is suitable for unweighted
graphs, directed or undirected. DFS creates a predecessor subgraph for a given graph
G(V,E) defined a bit differently from the one for BFS: Gπ = (V,Eπ) where

Eπ = {(v.parent, v) | v ∈ V, v.parent ̸= NIL}.
This subgraph is called a depth-first forest comprising several depth-first trees. In an
undirected graph, each depth-first tree spans a connected component of the graph. In
general, each depth-first tree contains all vertices reachable from its root. In a directed
graph, we say that v is reachable from s if and only if there is a directed path from s to v.

In DFS, the vertices are colored the same way as in BFS. This technique guarantees that
each vertex ends up in exactly one depth-first tree, so that the trees are disjoint.

Besides the depth-first forest, DFS also timestamps each vertex. Each vertex has two
timestamps.

• The first timestamp v.d records when it is first discovered; v.color changes from
WHITE to GRAY.

• The second timestamp v.f records when DFS finishes examining all v’s adjacency
list, i.e., discovers all vertices hanging down from v; v.color changes from GRAY to
BLACK.

Note that all timestamps are between 1 and 2|V | as there is exactly one discovery event
and one finishing event for each vertex. For every vertex u,

u.d < u.f.

Algorithm 2–3 constitutes a pseudocode for DFS. Algorithm 3 is a recursive function as it
calls itself. I’d like to remark that time can be made into a global variable. In C language,
I would define it as a local variable of pointer-to-integer type. In the pseudocodes, I also
define it as a local variable but in a manner suitable for Matlab implementation.

Algorithm 2: DFS(G)

Input: An unweighted graph G(V,E).
for each vertex u ∈ V do

u.color = WHITE ;

u.parent = NIL;

end

time = 0;

for each vertex u ∈ V do
if u.color == WHITE then

time = DFS-VISIT(G,u,time);

end

end

Note that the output of the DFS depends on the order in which the vertices are discov-
ered. The cost of DFS is O(|V |+ |E|).

Summer 2023 REU tutorials

Algorithm 3: time = DFS-VISIT(G,u,time)

Input: An unweighted graph G(V,E), a selected vertex u, and the time variable.
time = time + 1;

u.d = time;

u.color = GRAY;

for each v adjacent to u do
if v.color == WHITE then

v.parent = u;

time = DFS-VISIT(G,u,time);

end

end

u.color = BLACK;

time = time + 1;

u.f = time;

Let us discuss some properties of DFS.

Theorem 2. (Parenthesis theorem) Let DFS be applied to any directed or undirected
graph G(V,E). Then for any two vertices u and v, exactly one of the following three
conditions holds:

• [u.d, u.f] ∩ [v.d, v.f] = ∅, and neither u nor v is a descendant of the other in the
depth-first forest,

• [u.d, u.f] is entirely inside [v.d, v.f], and u is a descendant of v in a depth-first tree,
or

• [v.d, v.f] is entirely inside [u.d, u.f], and v is a descendant of u in a depth-first tree.

Furthermore, v is a descendant of u in the depth-first forest if and only if

u.d < v.d < v.f < u.f.

The proof directly follows from the structure of Algorithm 2–3.

Theorem 3. (White-path theorem) In a depth-first forest of a directed or undirected
graph G(V,E), vertex v is a descendant of vertex u if and only if at time u.d (when the
search discovers u), there is a path from u to v consisting entirely of white vertices.

Proof. =⇒: If v = u then the path consists of a single vertex u which is still white at the
moment when we set u.d. If v is a proper descendant of u then u.d < v.d, so v is white at
time u.d. Since v is any descendant of u, all vertices on the unique simple path from u to
v in the depth-first forest are white at time u.d.

⇐=: Suppose that there is a path of white vertices from u to v at time u.d, but v does
not become a descendant of u in the depth-first tree. Without the loss of generality, we
assume that every vertex other than v along the path becomes a descendant of u. Let w
be the predecessor of v in the path, so that w is a descendant of u. Then w.f < u.f by

Summer 2023 REU tutorials

Theorem 2. Since v must be discovered after u is discovered but before w is finished, by
Theorem 2 we have

u.d < v.d < w.f ≤ u.f.

Hence, by Theorem 2, [v.d, v.f] is entirely inside [u.d, u.f] and hence v is a descendant of
u. □

3. Random graph models

Network models help us to understand the meaning of such statistical network properties
as average shortest path length, clustering coefficient, degree distribution – how they relate
to the way the network has been formed and how they relate to each other.

3.1. Erdös-Renyi random graphs. The study of network models dates back to 1950s.
Solomonoff and Rapoport (1951) [4] and, independently, Erdös and Renyi (1959) [5] pro-
posed random graph models with similar properties:

• [4]: the random graph G(n, p) which is an ensemble of random graphs with n
vertices and in which each of (1/2)n(n− 1) possible edges exists with probability p;

• [5]: the random graph G(n,N) which is an ensemble of random graphs with n
vertices and N edges randomly selected out of (1/2)n(n− 1) possible edges.

In both works, the limit n → ∞ was considered, and a number of asymptotic estimates
were obtained. The model G(n, p) makes analysis a bit easier, so, we will focus on it. We
will also let n tend to infinity in a manner where the mean degree

(5) z = 2
pn(n− 1)

2n
= p(n− 1)

remains constant. In this case, the model has a Poisson degree distribution. Indeed, the
probability that a vertex has degree k is given by:

(6) pk =

(
n− 1
k

)
pk(1− p)n−k−1.

Letting n → ∞, fixing k, and setting p = z/(n− 1), we obtain the Poisson distribution:

(7) pk = lim
n→∞

(n− 1) . . . (n− k)

k!

zk

(n− 1)k

(
1− z

n− 1

)n−1(
1− z

n− 1

)−k

=
zke−z

k!
.

Due to this limit Erdös-Renyi random graphs are often called Poisson random graphs.
Both Solomonoff and Rapoport and Erdös and Renyi discovered the most interesting

and important property of the Erdös-Renyi random graph: it possesses a phase transition.
If the mean degree z < 1, all connected components of the graph are small (with high
probability). In contrast, if z > 1, there appears the so-called giant component containing
O(n) vertices. Let u be the probability that a random vertex does not belong to the giant
component. It is equal to the probability that none of its neighbors belongs to the giant
component. This argument allows us to derive an equation for u:

(8) u =

∞∑
k=0

pku
k =

∞∑
k=0

(uz)ke−z

k!
= ez(u−1).

Summer 2023 REU tutorials

Observing that S = 1 − u is the probability for a random vertex to belong to the giant
component, we obtain an equation for S:

(9) S = 1− e−zS .

The graphs of 1− S − exp(−zS) for z = 1/2, 1, and 2 are shown in Fig. 1.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
-0.7

-0.6

-0.5

-0.4

-0.3

-0.2

-0.1

0

0.1

1-S-exp(-S/2)

1-S-exp(-S)

1-S-exp(-2S)

Figure 1. Graphs of f(S) = 1− S − exp(−zS) where S is the fraction of
vertices in the giant component for various mean degrees z. Using elemen-
tary calculus, one can show that S = 0 is the only root for z ≤ 1, and there
appears an additional solution S > 0 for z > 1.

In order to obtain more theoretical results for Poisson random graphs, we need to enhance
our arsenal of analytical tools. A powerful tool is the method of generating functions widely
used by M. Newman and collaborators. A beautiful book “Generatingfuncanology” by H.
Wilf is available online.

3.2. Generating functions. This brief review follows the one in [6]. Let pk be a discrete
probability distribution. The index k runs from 0 to ∞. If the number of outcomes is
finite, then the tail of the distribution is merely 0, and all results obtained in this section
will still apply. A generating function for this probability distribution is defined as a power
series:

(10) G(x) :=
∞∑
k=0

pkx
k.

Since pk is a probability distribution, we have

(11) G(1) =
∞∑
k=0

pk = 1.

The generating function allows us to restore the distribution according to the formula:

(12) pk =
1

k!

dkG(x)

dxk

∣∣∣∣
x=0

=
1

2πi

∮
G(z)

zk+1
dz

https://www.math.upenn.edu/~wilf/gfology2.pdf
https://www.math.upenn.edu/~wilf/gfology2.pdf

Summer 2023 REU tutorials

where the integral is over some contour around the origin. Therefore, the function G(x)
encapsulates all information available about the distribution. In particular, it “generates”
the distribution.

The generating function allows us to calculate all moments for the distribution. In
particular, the mean is given by

(13) ⟨k⟩ =
∞∑
k=0

kpk =
∞∑
k=1

kpk1
k−1 = G′(1).

The mth moment is given by

(14) ⟨km⟩ =
∞∑
k=0

kmpk =

[(
x
d

dx

)m

G(x)

]
x=1

.

If pk is the distribution for a property of an object (i.e., the degree distribution for the
vertices of a random graph) and G(x) is its generating function, then the distribution of the
sum of this property over m independent realizations is generated by G(x)m. For example,
let m = 2:

[G(x)]2 =

[∞∑
k=0

pkx
k

]2

=
∑
j,k

pjpkx
j+k

= p0p0x
0 + (p0p1 + p1p0)x+ (p0p2 + 2p1p1 + p2p0)x

2 +

3.3. Poisson random graphs: mean size of non-giant component. We will follow
the discussion in [6]. For the Poisson random graph with mean degree z, the generating
function for the degree distribution is given by

(15) G0(x) =

∞∑
k=0

e−z z
k

k!
xk = ez(x−1).

As it should be, G0(1) = e0 = 1. Let us check that the mean degree is z. Indeed,

G′
0(1) = zez(x−1)

∣∣∣
x=1

= z.

Now we will calculate the average size of non-giant component, i.e., the expected size of
the component where a randomly picked vertex that does not lie in the giant component
belongs to. Let us pick a vertex v and an edge emanating from it. Suppose that this edge
leads to another vertex w. We want to obtain the distribution for the so-called excess
degree of w, i.e, the probability qk that k edges other than (v, w) are incident to w. Since
the probability to arrive to w from v is proportional to the degree of w which is k + 1, we
get:

(16) qk =
(k + 1)pk+1∑∞

k=1 kpk
=

(k + 1)pk+1

z
= e−z (k + 1)zk+1

z(k + 1)!
= e−z z

k

k!
= pk.

Summer 2023 REU tutorials

Therefore, for the Poisson random graph, the distributions pk and qk coincide! Hence,
for the Poisson model, the generating function G1(x) for the excess degree distribution

coincides with G0(x) = ez(x−1).
Let H1(x) be the generating function for the total number of vertices reachable by

choosing a random edge, not belonging to the giant component if any, and following to
one of its ends. It must satisfy the following self-consistency equation obtained under the
assumption that all small components are tree-like, i.e., contain no cycles:

(17) H1(x) = xq0 + xq1H1(x) + xq2[H1(x)]
2 + xq3[H1(x)]

3 + . . . = xG1(H1(x)).

Let us clarify why we think about each non-giant component as a tree. Remember that
we assume that n is very large and the probability of an edge between any pair of vertices
scales as O(1/n). The number of vertices in a non-giant component is a small fraction of
n. Hence the probability that there is an extra edge connecting two vertices of the same
small component also scales as O(1/n) and hence tends to zero as n → ∞. In [6], (17) is
illustrated with the following diagram:

Assume for now that there is no giant component. We randomly select a vertex v and
look at the probability distribution for the size of the connected component containing it.
It is generated by the function

(18) H0(x) = xp0 + xp1H1(x) + xp2[H1(x)]
2 + xp3[H1(x)]

3 + . . . = xG0(H1(x)).

The mean size of a non-giant component is given by

(19) ⟨s⟩ = H ′
0(1) = G0(H1(1)) +G′

0(H1(1))H
′
1(1) = 1 +G′

0(1)H
′
1(1).

The derivative H ′(1) can be found from (17):

(20) H ′
1(1) = G1(H1(1)) +G′

1(H1(1))H
′
1(1) = 1 + zH ′

1(1).

Therefore,

(21) H ′
1(1) =

1

1− z
.

Hence, we find that

(22) ⟨s⟩ = 1 +
z

1− z
=

1

1− z

These results can be extended to random graphs with a giant connected components as
shown in [6].

3.4. Random graphs with arbitrary degree distributions. While Poisson random
graphs offer an analytically solvable model in the limit n → ∞, they do not resemble
real-life networks in a number of aspects. One such an aspect it the degree distribution.
In many real-world networks, a power degree distribution is observed – see Fig. 3.2 in [1]:

Summer 2023 REU tutorials

the internet, the World-Wide Web, protein interactions, collaborations in mathematics,
citations networks all exhibit degree distribution of the form

(23) pk =
k−α

ζ(α)
, where ζ(α) =

∞∑
k=1

k−α is the Riemann zeta function.

Note that the Riemann zeta function is finite for all α such that Re(α) > 1. Another degree
distribution that is observed in real-world networks is exponential, e.g., in the power-grid
network (Fig. 3.2 in [1]).

Motivated by this fact, random graphs with a specified degree distribution were intro-
duced – see [6] and references therein. These graphs can be sampled by generating vertices
with numbers of “stubs” distributed according to the given distribution pk and then ran-
domly matching the stubs. The only restriction of this approach is that the total number
of stubs must be even.

The method of generating functions used in the previous section is straightforwardly
transferable to a model with specified degree distribution. As before, we obtain the excess
degree distribution

qk =
(k + 1)pk+1∑∞

j=1 jpj
=

(k + 1)pk+1

z
where z =

∞∑
j=1

jpj is the mean degree.

The distributions pk and qk are generated by G0(x) and G1(x) respectively which no longer
need to coincide. Note that

(24) G1(x) =
G′

0(x)

z
.

Random graphs with a given degree may or may not have a giant component, and, what
is most interesting for me, a criterion for the existence of giant component can be derived
[6].

3.4.1. Configuration Model. The configuration model was initially developed in the late
1970s in order to generate random graphs from a given degree distribution. In particular,
this model draws a graph from the possible graphs that satisfy the given degree distribution
uniformly at random. Thus, the configuration model works well as a baseline random graph
model while still accounting for varying degrees. Some resources for the history and analysis
of this model can be found in §4.2 of Newman’s review paper [1].

Assume we have a probability mass function for which we can generate a degree dis-
tribution. Then if a given node has degree d we assign it d “stubs”, and pairs of stubs
are combined as edges uniformly at random. A pseudocode version of this is given in
Algorithm 4.

When running the configuration model, it is possible to generate self-loops and multi-
edges. However, the expected number of these errors is constant in n. Typically, one
corrects for this by removing self-loops and multi-edges. If the configuration model were
adjusted to not allow erroneous edges then it would have a different probabilistic prior.

Summer 2023 REU tutorials

Algorithm 4: Configuration Model

Input: Degree sequence d(0),d(1),. . .,d(n)
Initialize an empty list L;
for i = 1:n do

Add d(i) copies of i to L;
end
Attach elements from L pairwise uniformly at random;

3.4.2. Phase transition. Let us pick a vertex v and consider its first neighbors, second
neighbors, ..., mth neighbors, and so on as in M. Newman, “Random graphs as models for
networks” (2002). The excess degree distribution for the first neighbors is qk. The mean
excess degree is given by

(25)
∞∑
k=0

kqk =
1

z

∞∑
k=0

k(k + 1)pk+1 =
1

z

∞∑
k=0

(k − 1)kpk =
⟨k2⟩ − ⟨k⟩

⟨k⟩
,

where z ≡ z1 ≡ ⟨k⟩ is the mean degree. The expected number of second neighbors is
equal to the mean excess degree of the first neighbors times the expected number of first
neighbors:

(26) z2 = ⟨k⟩⟨k
2⟩ − ⟨k⟩
⟨k⟩

= ⟨k2⟩ − ⟨k⟩

Then we take an arbitrary second neighbor of v and apply the same argument to calculate
the expected number of third neighbors. The average excess degree for second neighbors
is still given by (25). The probability that any of these excess edges reconnect to the first
neighbor of v or to v itself tends to zero as n → ∞. Therefore, the expected number of
third neighbors is the expected number of second neighbors times the mean excess degree:

z3 = z2
⟨k2⟩ − ⟨k⟩

⟨k⟩
=

z2
z1

z2 =

[
z2
z1

]2
z1.

By a similar argument, we find the expected number of mth neighbors:

(27) zm =
z2
z1

zm−1 =

[
z2
z1

]m−1

z1.

Equation (27) allows us find a criterion for existence of the giant component. Summing
(27) over all m and adding the vertex v, we find the expected size of a connected component
containing v:

(28) ⟨s⟩ = 1 + z1

∞∑
m=1

[
z2
z1

]m−1

=

{
1 +

z21
z1−z2

, z1 > z2

∞, otherwise.

https://arxiv.org/pdf/cond-mat/0202208.pdf
https://arxiv.org/pdf/cond-mat/0202208.pdf

Summer 2023 REU tutorials

If this expression is finite, i.e., if z2 < z1, there is no giant component. Otherwise, there is.
Recalling (26) for z2, we write the condition for the phase transition: z1 = z2, i.e.,

(29) 0 = z2 − z1 = ⟨k2⟩ − 2⟨k⟩ =
∞∑
k=0

k(k − 2)pk.

We remark that (29) for the phase transition was originally derived by Molloy and Reed
(1995) [7] using a different approach.

3.4.3. Average shortest path length. Equation (27) allows us to estimate the average short-
est path length in the giant component of a random graph with a specified degree dis-
tribution provided that there is one. Let us assume that the giant component embraces
almost all vertices in the graph. We assume that z2 ≫ z1 and set the expected size of lth
neighborhood to be equal to the whole graph n:

zl =

[
z2
z1

]l−1

z1 ≃ n.

For here, we obtain the following estimate for the average shortest path length:

(30) l ≃ 1 +
log(n/z1)

log(z2/z1)
.

For the special case of Erdös-Renyi random graph we have z2 = z21 = z2 (as G1 = G0),
hence

l ≃ 1 +
log n− log z

log z
=

log n

log z
.

3.4.4. Clustering coefficient. Another important quantity of interest is the clustering co-
efficient. There are different non-equivalent definitions of clustering coefficient. Here, we
will define it as the ratio of the tripled number of triangles in the network to the number
of connected triples:

(31) C =
3× number of triangles in the network

number of connected triples of vertices
.

Let v be an arbitrary vertex, and let ki and kj be excess degrees of two of its neighbors.
The distributions for the excess degrees are qk. The probability that these two neighbors
are connected to each other is

(32)
kikj
nz

.

Indeed, we have ki stubs emanating from i. For each of them, the probability to connect to
one out of kj stubs of j is kj/nz as nz is the total number of stubs. Averaging this probability
over the joint distribution for ki and kj which is merely the square of the distribution for
the excess degree due to the independence of ki and kj and recalling (25), we get:

(33) C =
⟨kikj⟩
nz

=
1

nz

∞∑
k,l=0

klqkql =
1

nz

[∞∑
k=0

kqk

]2

=
1

nz

[
⟨k2⟩ − ⟨k⟩

⟨k⟩

]2
.

https://www.cs.toronto.edu/~molloy/webpapers/gc2.ps
https://www.cs.toronto.edu/~molloy/webpapers/gc2.ps

Summer 2023 REU tutorials

This expression can be rewritten in terms of the coefficient of variation of the degree
distribution cv defined by

(34) c2v :=
⟨k2⟩ − ⟨k⟩2

⟨k⟩2
,

i..e., cv is the ratio of the standard deviation to the mean. Using it, we obtain:

(35) C =
z

n

[
⟨k2⟩ − ⟨k⟩2 + ⟨k⟩2 − ⟨k⟩

⟨k⟩2

]2
=

z

n

[
c2v +

z − 1

z

]2
.

Thus, we see that C scales with n as O(z/n), however, the factor by which z/n is multiplied
can be large.

3.4.5. Average size of non-giant components. In a manner similar to the one used for the
Poisson random graphs, one can calculate the average size of a non-giant component [6]:

(36) ⟨s⟩ = H ′
0(1)

H0(1)
= 1 +

zu2

[1− S][1−G′
1(u)]

,

where u ≡ H1(1) is the smallest non-negative solution to u = G1(u), and S is the fraction
of graph occupied by the giant component: S = 1−G0(u).

Exercise Give a detailed derivation of (36).

4. Percolation

Broadly speaking, this section will focus on the construction of random graphs within
networks. From a destructive point of view we may remove nodes or edges from a network
and look at how this effects its structure. This is applicable to the robustness of the
internet and technological networks. From a more constructive point of view we may
study the affect of nodes/edges with varying states. For instance, we might look at the
spread of an epidemic or information along a social network. For general resources on these
topics read:

• chapter 8 of M. E. J. Newman’s review paper [1]
• chapters 8 and 10 in A. L. Barabási’s book Network Science

4.1. Node Percolation. Consider a process where we remove nodes uniformly at random
from a graph G that is assumed to have a giant connected component. One natural question
is how many nodes can we remove before destroying the giant component? The analysis
of this will follow the paper [8].

We will assume G is a random graph (i.e. from the configuration model) with probability
pk of having a node of degree k. Let q be the probability that a node is removed from G.
Following the notation of Cohen et al., quantities after the breakdown of G will be denoted
by a prime, e.g. the new graph will be called G′ and degree distribution following p′k. If
the degree of a given node is initially k0 then the probability its new degree 0 ≤ k ≤ k0

https://epubs.siam.org/doi/pdf/10.1137/S003614450342480
http://networksciencebook.com/

Summer 2023 REU tutorials

follows a binomial distribution Bin(1 − q, k0). The updated degree distribution may then
be computed as follows

(37) p′k =

∞∑
k0=k

pk0

(
k0
k

)
(1− q)kqk−k0

The expected degree of G′ is then

⟨k⟩′ =
∞∑
k=0

k
∑
k0≥k

pk0

(
k0
k

)
(1− q)kqk−k0

=
∞∑

k0=0

pk0
∑

1≤k≤k0

k

(
k0
k

)
(1− q)kqk−k0

=

∞∑
k0=0

(1− q)k0pk0
∑

1≤k≤k0

(
k0 − 1

k − 1

)
(1− q)k−1qk−k0

= (1− q)⟨k0⟩

A similar argument may be used to show that ⟨k2⟩′ = (1 − q)2⟨k20⟩ + q(1 − q)⟨k0⟩. Then,
by the Molloy-Reed criterion the giant connected component breaks when q = qc

(38) (1− qc)
2⟨k20⟩+ qc(1− qc)⟨k0⟩ − 2(1− qc)⟨k0⟩ = 0.

If we define κ0 = ⟨k20⟩/⟨k0⟩ then

(39) qc =
κ0 − 2

κ0 − 1

For a random Erdös-Renyi graph with mean degree z = ⟨k0⟩ we may use a Poisson distri-
bution to show κ0 = 1 + z. Thus, the main connected component breaks when

(40) qc = 1− 1

z
.

Next, assume that the degree distribution follows a power law pk = ck−α. It is typical
to assume that there is a minimum and maximum degree m and K where K → ∞ as
n → ∞.Here we may choose K such that the probability a node has degree higher than it
is

∫∞
K x−αdx = 1

n . Then, the moments of a power law may be estimated by the integral

⟨kℓ0⟩ = c

∫ K

m
x−αxℓdx.

With the additional assumption K ≫ m we find

(41) κ0 ≈
∣∣∣∣2− α

3− α

∣∣∣∣×

m, if α > 3

mα−2K3−α, if 2 < α < 3

K, if 1 < α < 2.

Summer 2023 REU tutorials

For α > 3 we have the parameter κ0 is fixed and we get a fixed breakdown point qc. For
α < 3 we have κ0 grows with K (or n). Thus, as n → ∞ the point at which the connected
component breaks down is

qc =
1− 2/κ0
1− 1/κ0

→ 1

or the network is immune to these random attacks. As a point of reference Cohen et al. [8]
consider the internet which has α ≈ 2.5 making it robust to these attacks.

4.2. SIR Model. Next we will consider the formation of epidemics on a network following
the formulation in [9]. In the SIR model individuals may be in 3 states

• Susceptible: a healthy individual who has yet to catch a disease,
• Infected: an individual with the disease that may spread it to others,
• Recovered: an individual who no longer has the disease (or died).

First, we consider the all-to-all case, i.e. the any infected individual can infect any suscepti-
ble individual without bias. In this scenario we need only look at the fraction of individuals
in each state. Namely, s(t), i(t), and r(t) are the proportions of the population that are
susceptible, infected, and recovered at time t, respectively. Assume that there is a uniform
rate of transmission and recovery. This results in a system of ODEs:

ds
dt = −βis
di
dt = βis− γi
dr
dt = γi

(42)

where i+ s+ r = 1. This was originally developed L. Reed and W. H. Frost in the 1920s,
but it was never published. At the start of a disease the infected population is small and
s ≈ 1. Thus, at the start of a disease we get the infected ODE is

(43)
di

dt
≈ βi(1− γ

β
).

This motivates the constant R0 := γ
β . For a short time if R0 > 1 the infected population

grows exponentially and for R0 < 1 it decays exponentially. Thus, we find the epidemic
threshold R0 = 1.

Next, we will consider the SIR model on networks, initially developed in [10]. In this
model, individuals are represented by nodes and contacts by edges. Consider the case
where u and v are two neighboring nodes where u is infected and v is susceptible. Then
the disease may transfer from u to v with rate β, and u recovers with rate γ. Then the
probability v catches the disease from u is given by the race condition T = β

β+γ . The

parameter T is also known as the transmission rate.
One way of simulating the SIR model is by discrete time steps. Over an interval of

length ∆t an infection spreads over an edge with probability β∆t and each infected node
recovers with probability γ∆t. As initial conditions, it is sufficient to infect a single node
at random. Typically the time a node is in the infected state is set to a fixed value τ . This
is arguably more realistic and does not complicate future analysis. However, changing the
infection time to a constant changes the transmission rate to T = 1− e−βτ .

Summer 2023 REU tutorials

The spread of disease over a network can also be described by a deterministic model.
Let the probability that node u is susceptible, infected, or recovered be given by su(t),
iu(t), and ru(t), respectively. Then, these equations can be evolved by

(44)


dsu
dt = −βsu

∑
v∼u iv

diu
dt = βsu

∑
v∼u iv − γiu

dru
dt = γiu.

4.3. Edge Percolation and SIR Model on Random Networks. As noted in the
previous section the probability that a disease can spread over an edge is given by T . This
probability does not depend on which node gets infected first. If we only wanted to find
the total number of individuals it would be sufficient to replace our dynamics with passing
on the disease with probability T . Furthermore, we could initially assign each edge as
a transmitting edge. Then a node will get infected if it is connected to the source by
transmitting edges only. An epidemic would be described by a giant connected component
formed by transmitting edges. The following will use a generating function approach [9].

Let G0(x) be the generating function for the degree distribution of our graph. Let
G1(x) = G0(x)/z be the generating function for the degree distribution. The generating
function for transmitting edges from a node is given by

G0(x;T) =

∞∑
m=0

∞∑
k=m

pk

(
k

m

)
Tm(1− T)m−kxm

=
∞∑
k=0

pk

k∑
m=0

(
k

m

)
(xT)m(1− T)m−k

=
∞∑
k=0

pk(1 + (x− 1)T)k = G0(1 + (x− 1)T)

The generating function for excess transmitting edges is similarly given by G1(x;T) =
G1(1 + (x− 1)T).

Next we want to compute a threshold for the size of the giant connected component. Let
PS(T) be the probability that a randomly chosen (source) node causes an outbreak of size S.
The outbreak size is simply the size of the connected component of the subgraph induced by
transmitting edges. Define H0(x;T) to be the generating function with coefficients PS(T).
Let H1(x;T) be the generating function for outbreak sizes along one side of an edge. We
will also assume the subgraph induced by transmitting edges is locally tree-like. The size
of our outbreak is 1 (for the source infection) plus the size of the outbreak caused by each
person infected by the source. In generating function terminology we get the recurrence

(45) H0(x;T) = x1G0(H1(x;T);T).

Similarly we find the recurrence for the excess outbreak distribution to be

(46) H1(x;T) = xG1(H1(x;T);T)

Summer 2023 REU tutorials

To solve the recurrence for H1 it may work to set an initial guess x0 and iterate xn+1 =
xnG1(H1(xn;T);T). Otherwise a nonlinear solver can be used. To find the coefficients of
H0(x;T) use Eq. 12.

The mean size of the outbreaks is given by

(47) ⟨s⟩ = dH0(x;T)

dx

∣∣∣
x=1

= 1 +G′
0(1;T)H

′
1(1;T)

This may be simplified by differentiating Eq. 46:

(48) H ′
1(1;T) = 1 +G′

1(1;T)H
′
1(1;T) =

1

1−G′
1(1;T)

.

Thus, our average outbreak size is

(49) ⟨s⟩ = 1 +
TG′

0(1)

1− TG′
1(1)

.

The critically transmissability for an epidemic, Tc, occurs when ⟨s⟩ diverges to infinity, i.e.:

(50) Tc =
1

G′
1(1)

.

For an Erdös-Renyi random graph with mean degree z we have that G′
1(z) = G′

0(z) = z.

Thus, we have for these graphs Tc =
1
z . Recall that T = β

β+γ where β is the rate of infection

along an edge and γ is the rate of recovery. To imitate the all-to-all case define β̄ = βz as

the average rate of infection from all neighbors. Similarly, define R̄0 = β̄
γ . Then, we find

an epidemic occurs when

(51) R̄0 =
z

z − 1
> 1.

In other terms, it is harder to create an epidemic in an Erdös-Renyi random graph than
the all to all case. However, they are equal in the limit z → ∞.

References

[1] M. E. J. Newman, “The structure and function of complex networks,” SIAM Review, vol. 45, no. 2,
pp. 167–256, 2003.

[2] D. J. Watt and S. H. Strogatz, “Collective dynamics of “small-world” networks,” Nature, vol. 393,
pp. 440–442, 1998.

[3] T. H. Cormen, E. Leiserson, Charles, R. L. Rivest, and C. Stein, Introduction to algorithms, Third
edition. The MIT press, 2009.

[4] R. Solomonoff and A. Rapoport, “Connectivity of random nets,” Bulletin of Mathematical Biophysics,
vol. 13, pp. 107–117, 1951.

[5] P. Erdös and A. Renyi, “On random graphs,” Publ. Math. Debrecen, vol. 6, pp. 290–297, 1959.
[6] M. E. J. Newman, H. Strogats, Steven, and D. J. Watts, “Random graphs with arbitrary degree

distributions and their applications,” Physical Review E, vol. 64, p. 026118, 2001.
[7] M. Molloy and B. Reed, “A critical point for random graphs with a given degree sequence,” Random

Structures and Algorithms, vol. 6, pp. 161–180, 1995.
[8] R. Cohen, K. Erez, D. Ben-Avraham, and S. Havlin, “Resilience of the internet to random breakdowns,”

Physical review letters, vol. 85, no. 21, p. 4626, 2000.

Summer 2023 REU tutorials

[9] M. E. Newman, “Spread of epidemic disease on networks,” Physical review E, vol. 66, no. 1, p. 016128,
2002.

[10] P. Grassberger, “On the critical behavior of the general epidemic process and dynamical percolation,”
Mathematical Biosciences, vol. 63, no. 2, pp. 157–172, 1983.

	1. Introduction and Notation
	2. Basic algorithms for graph exploration
	2.1. Breadth-first search
	2.2. Depth-first search

	3. Random graph models
	3.1. Erdös-Renyi random graphs
	3.2. Generating functions
	3.3. Poisson random graphs: mean size of non-giant component
	3.4. Random graphs with arbitrary degree distributions

	4. Percolation
	4.1. Node Percolation
	4.2. SIR Model
	4.3. Edge Percolation and SIR Model on Random Networks

	References

